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The main theorem

For X ⊂ R: Dn(X )—all n-times differentiable f : X → R;
Cn(X )—all f ∈ Dn(X ) with continuous nth derivatives f (n);
D0(X ) = C0(X ); A ⊂? B denotes |A \ B| < c.

Theorem (Main Thm)
It is consistent with ZFC, it follows from the Covering Property
Axiom CPA, that for every n < ω there exists a family
Fn ⊂ Cn(R) of cardinality ω1 < c such that

(i) g ⊂?
⋃
Fn for every g ∈ Dn(R).

Moreover, there is F∞ ⊂ C∞(R) of cardinality ω1 < c such that
(ii) g ⊂?

⋃
F∞ for every g ∈ C∞(R).

Krzysztof Chris Ciesielski Small coverings by continuous and smooth maps 1



Main thm C(X , Y ) Dn(R) n = 0 proof n > 1 proof Problem

Main Thm for n = 0: continuous functions

Main Thm for n = 0 can be stated: CPA implies

I0: ∃F0 ∈ [C0(R)]<c ∀g ∈ C0(R) g ⊂?
⋃
F0

What I0 means:

Few functions from F0 cover? every continuous function
Few functions from F0 cover? every level R× {y}
⊂? in I0 cannot be ⊂, as F0 cannot cover R2

I0 =⇒ cov(Meager) < c
Proof: Pick y ∈ R \

⋃
f∈F0

f [Q] and put g = R× {y}.
Then R is a union of |F0|-many nowhere dense sets [f = g]
and |g \

⋃
F0|-many singletons, while |F0|+ |g \

⋃
F0| < c.

So, I0 contradicts CH and MA.
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I0 and the size of c
Fact (Proved for this talk. Known?)

I0 =⇒ ∃F0 ∈ [RR]<c ∀y ∈ R R× {y} ⊂?
⋃
F0 =⇒ c = |F0|+

Proof: Let κ = |F0|+ and assume c > κ. Put B = R2 \
⋃
F0,

By = {x : 〈x , y〉 ∈ B}, and note that |By | < c for all y ∈ R.

Claim: There is Y ∈ [R]κ with |
⋃

y∈Y By | < c.

Pr. If cof(c) > κ, then any Y ∈ [R]κ works. If cof(c) ≤ κ, choose
cofinal L ∈ [c]κ; there is λ ∈ L with Zλ = {y ∈ R : |By | ≤ λ} of
cardinality > κ. (Otherwise c = |

⋃
λ∈L Zλ| ≤ κ.) Then any

Y ∈ [Zλ]κ works.

Now, by Claim, there are x0 ∈ R \
⋃

y∈Y By and
y0 ∈ Y \ {f (x0) : f ∈ F0}. Then 〈x0, y0〉 /∈ B ∪

⋃
F0 = R2, a

contradiction.
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Small cover? of C(X ), X ⊂ R arbitrary.

Borel(X ,Y )—all Borel measurable f : X → Y

Fact
CPA implies that if F0 is as in I0, then
B?: g ⊂?

⋃
F0 for every X ⊂ R and g ∈ Borel(X ,R).

Proof: Kuratowski: there is Borel extension G : R→ R of g.

KC & Pawlikowski: CPA implies that

B: ∀G ∈ Borel(R,R) ∃FG ∈ [C0(R)]ω1 s.t . G ⊂
⋃
FG.

So, g ⊂ G ⊂
⋃
FG ⊂?

⋃
F0.

Note: B? =⇒ B.
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Small cover? ⊂ CK (X ,Y ), X and Y Polish spaces

Let CK (X ,Y ) =
⋃
{C(K ,Y ) : K ⊂ X is compact }

Corollary (Proved just for this talk.)
CPA implies that for every Polish X and Y the following holds
IXY : ∃FX ,Y ∈ [CK (X ,Y )]<c ∀g ∈ Borel(X ,Y ) g ⊂?

⋃
FX ,Y

We can also have FX ,Y ⊂ Borel(X ,Y ) and,
if Y is an absolute extensor, FX ,Y ⊂ C(X ,Y ).

Proof: KC & Pawlikowski: CPA implies that there are compact
0-dimensional {Xξ}ξ<ω1 and {Yξ}ξ<ω1 covering X and Y .

By previous Fact, for all ζ, ξ < ω1 (embedding Xξ,Yζ ↪→ R )

∃Fζξ ∈ [C0(R)] ∀g ∈ Borel(Xζ ,Yξ) g ⊂?
⋃
Fζξ

Then FX ,Y = {f ∩ (Xζ × Yξ) : ζ, ξ < ω1 & f ∈ Fζξ} works.
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More on small coverings of C(X ,Y )

IXY : ∃FX ,Y ∈ [CK (X ,Y )]<c ∀g ∈ Borel(X ,Y ) g ⊂?
⋃
FX ,Y

CPA implies: for every Polish X and Y , Y absolute extensor,

(?) ∃FX ,Y ∈ [C(X ,Y )]<c ∀g ∈ C(X ,Y ) g ⊂?
⋃
FX ,Y

This fails for X = [0,1]× 2ω andY = 2ω.

Problem (Not investigated so far)

For what other spaces X and Y (?) or IXY hold?
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Families Fn for n > 0

Main Thm for n ∈ N can be stated: CPA implies

In: ∃Fn ∈ [Cn(R)]<c ∀g ∈ Dn(R) g ⊂?
⋃
Fn

Clearly In implies

Jn: ∀g ∈ Dn(R) ∃Fg ∈ [Cn(R)]<c s.t . g ⊂
⋃
Fg

CPA =⇒ Jn was first “proved” by KC & Pawlikowski [CPA book]

For n > 1 their proof was incorrect!

Thus, the proof from submitted paper is the first correct one.
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Can we prove stronger versions of In, n ∈ N?

In = I(Dn,Cn): ∃Fn ∈ [Cn(R)]<c ∀g ∈ Dn(R) g ⊂?
⋃
Fn

Fact: I(Cn−1,Dn): ∃F ∈ [Dn(R)]<c ∀g ∈ Cn−1(R) g ⊂?
⋃
Fn

is false for all n ∈ N.

Pr: For n = 1, there is g1 ∈ “D1(R)”⊂ C0(R) with g′1 =∞ on a
perfect P; so |[f = g] ∩ P| ≤ ω for every f ∈ D0(R).

For n = 2 use g2 =
∫

g1, . . . .

Fact: I∗n : ∀X ⊂ R ∃F ∈ [Cn(R)]<c ∀g ∈ Dn(X ) g ⊂?
⋃
Fg is

false for n > 1.

Pr. Put n = 2 and C—the Cantor ternary set. There is (simple)
f ∈ C1(R) such that g � C ∈ D2(C) and |[f = g] ∩ C| < ω for
every f ∈ D2(R). So, g � C contradicts I∗2 .

Cor to Main Thm: CPA implies I∗0 & I∗1 . Argument: time permitting.
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The structure of CPA (CPAprism part that we use)

For 0 < α < ω1 let Φα—all continuous 1-1 maps f : Cα → Cα s.t.

f (x) � ξ = f (y) � ξ ⇔ x � ξ = y � ξ for all ξ < α and x , y ∈ Cα

and Pα = {f [Cα] : f ∈ Φα}. Also let P =
⋃

0<α<ω1
Pα.

Perf(X )—all P ⊂ X homeomorphic to C

Prism in X—any P ∈ Perf(X ) with (implicit) continuous injection
h from an E ∈ P onto P.
Subprism of a prism P given by h : E → P—any Q = h[E ′], with
E ′ ∈ P, E ′ ⊂ E .
E ⊂ Perf(X ) is Fprism-dense provided for every prism P in
Perf(X ) there exists a subprism Q of P with Q ∈ E .

CPAprism c = ω2 and for every Polish space X and every
Fprism-dense family E ⊂ Perf(X ) there is E0 ⊂ E
such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.
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A simple reduction of I0

If

I0(Z ): ∃FZ ∈ [C0(R)]<c ∀g ∈ C0(Z ) g ⊂?
⋃
FZ

holds for every compact perfect Z ⊂ R, then

F0 =
⋃

n∈NF[−n,n] satisfies I0.

Thus it is enough to show that, every compact perfect Z ⊂ R,

CPA implies I0(Z ).

We will apply CPA to Polish space Z × C(Z ),

C(Z ) considered with the uniform convergence topology.
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Fprism-density lemma

Lemma
For every Polish spaces X and Y , the family

E = {P ∈ Perf(X × Y ) : either π1 � P or π2 � P is one-to-one}

is Fprism-dense, where π1 and π2 are the projections of X × Y
onto X and Y , respectively.

For X = Y = R the lemma is proved in [CPA book].

The generalization is straightforward.

Lemma will be used to X × Y = Z × C(Z ),
with Z ⊂ R compact perfect.
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CPAprism implies I0(Z )

E = {P ∈ Perf(Z×C(Z )) : either π1 � P or π2 � P is one-to-one}

is Fprism-dense. So, by CPAprism,

there is E0 ⊂ E such that |E0| ≤ ω1 and |Z × C(Z ) \
⋃
E0| ≤ ω1.

Let F = {P ∈ E0 : π1 � P is one-to-one}.

So, for every P ∈ F , P ∈ C(π1[P],C(Z )) is a continuous map,

fP : π1[P]→ R defined as fP(x) = P(x)(x) is continuous and,

by Tietze’s Extension Theorem, can be extended to f̂P ∈ C(R).

Claim: FZ = {f̂P : P ∈ F} satisfies I0(Z ). (Clearly |FZ | ≤ ω1.)
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Why FZ = {f̂P : P ∈ F} satisfies I0(Z )?

E0 ⊂ {P ∈ Perf(Z × C(Z )) : either π1 � P or π2 � P is one-to-one}

|Z × C(Z ) \
⋃
E0| ≤ ω1, F = {P ∈ E0 : π1 � P is one-to-one}

Fix g ∈ C(Z ) and note that |(Z × {g}) \
⋃
F| ≤ ω1.

Fix x ∈ Z s.t. 〈x ,g〉 ∈
⋃
F and P ∈ F with 〈x ,g〉 ∈ P.

It is enough to show that 〈x ,g(x)〉 ∈ fP , as fP ⊂ f̂P .

Indeed, fP(x) = P(x)(x) = g(x), as P(x) = g by 〈x ,g〉 ∈ P.

So, g � π1[(Z × {g}) ∩
⋃
F ] ⊂

⋃
FZ , as needed.
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Reduction of In, n > 0, to simpler cases

It is enough to prove that, for every Z = [a,b],

I∗n(Z ): ∃FZ ∈ [Cn(R)]<c ∀g ∈ Dn(Z ) g ⊂?
⋃
FZ

Idea: repeat n = 0 argument for space Z × Dn(Z )

Problem: Dn(Z ) is not a Polish space

Solution: show, under CPA, the following two statements

In(Z ): ∃FZ ∈ [Cn(R)]<c ∀g ∈ Cn(Z ) g ⊂?
⋃
FZ

Jn: ∀g ∈ Dn(R) ∃Fg ∈ [Cn(R)]<c s.t . g ⊂
⋃
Fg

This is good, since both these imply I∗n(Z ).

Also, Cn(Z ) is Polish, with metric ρ(f ,g) =
∑

i≤n ‖f (i) − g(i)‖∞.
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CPAprism implies In(Z ), n > 0 (brief sketch)

The argument is quite similar to that for n = 0, after you prove

En ={P ∈ Perf(Z × Cn(Z )) : either π2 � P is 1-1 or
π1 � P is 1-1 and ∃fP ∈ Cn(R)∀g ∈ Cn(Z ) g � Pg ⊂? fP}

is Fprism-dense, where Pg = {x ∈ Z : 〈x ,g〉 ∈ P}.

The actual condition that ensures the additional requirement

(∗) ∃fP ∈ Cn(R)∀g ∈ Cn(Z ) g � Pg ⊂? fP

is delicate and heavily relies on Whitney’s Extension Theorem,
a differentiable analog of Tietze’s Extension Theorem.
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Whitney’s Extension Theorem, one variable case

Theorem (Whitney’s Extension Theorem)
Let P ⊂ R be perfect, n ∈ N, and f : P → R. There exists an
extension f̄ ∈ Cn(R) of f if, and only if,

(Wn) f ∈ Cn(P) and the map qn−i
f (i) : P2 → R is continuous for

every i ≤ n,
where qn

f : P2 → R is defined as

qn
f (a,b) =


T n

b f (b)− T n
a f (b)

(b − a)n if a 6= b,

0 if a = b

and T n
a f (x) =

∑n
i=0

f (i)(a)
i! (x − a)i is the n-th degree Taylor

polynomial of f at a.
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CPAprism implies Jn, n > 0 (brief sketch)

Jn: ∀g ∈ Dn(R) ∃Fg ∈ [Cn(R)]<c s.t . g ⊂
⋃
Fg

Fix an n ∈ N and a g ∈ Dn(R). For Q ∈ Perf(R) let f = g � Q
and ϕn

g�Q : Q2 → R be defined as
ϕn

g�Q(a,b) =
∑n

k=0 |q
n−k
f (k) (a,b)|+

∑n
k=0 |q

n−k
f (k) (b,a)|.

Since ϕn
g�Q is symmetric,

Eg = {Q ∈ Perf(R) : g � Q ∈ Cn(Q) & ϕn
g�Q ∈ C(Q2)}

is Fprism-dense. (Proved in [CPA book].)

By CPAprism, there is E0 ∈ [E ]ω1 with |R \
⋃
E0| ≤ ω1.

So, g ⊂?
⋃

Q∈E0
g � Q. We need to show that each g � Q can be

extended to an fQ ∈ Cn(R).
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Smooth extendability of g � Q

ϕn
g�Q(a,b) =

∑n
k=0 |q

n−k
(g�Q)(k)

(a,b)|+
∑n

k=0 |q
n−k
(g�Q)(k)

(b,a)|

is continuous and g ∈ Dn(R). By Whitney’s Extension
Theorem, need each qn−k

(g�Q)(k)
(a,b) continuous.This follows from

continuity of Ψ(a,b) =
∑n

k=0 |q
n−k
(g�Q)(k)

(a,b)|.

Why Ψ(a,b) is continuous?

(1) Ψ(a, ·) is continuous, as g ∈ Dn(R)—classic-like argument
for Taylor polynomial.

(2) ϕn
g�Q(a,b) = Ψ(a,b) + Ψ(b,a) is separately continuous—as

ϕn
g�Q and Ψ(a, ·) are continuous.

Lemma: (1) + (2) + a bit more =⇒ Ψ is continuous.
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I∗1: ∀X ⊂ R ∃F ∈ [C1(R)]<c ∀g ∈ D1(X ) g ⊂?
⋃
Fg

Theorem (Seems previously unknown)

For X ⊂ R with no isolated points, g ∈ C(X ), and a continuous
extension ḡ of g onto Gδ-set G ⊃ X:
if g ∈ Dn(X ), then ḡ � B ∈ Dn(B) for some Borel B ⊃ X.

Proof of I∗1 : Can assume that X has no isolated points.

Choose Borel B ⊃ X and ḡ ∈ D1(B) extension of g;

By CPA, there is P ∈ [Perf(R)]ω1 with B =
⋃
P. For each P ∈ P,

by Jarník’s theorem, there is an extension gP ∈ D1(R) of ĝ � P,

so, by Main Thm, there is FP ∈ [C1(R)]ω1 with ĝ � P ⊂?
⋃
FP .

Then Fg =
⋃

P∈P FP is as needed.
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Open problem

The proof of last theorem is based on the

Lemma
For every X ⊂ R with no isolated points and g ∈ C(X ) the set
Dif(g) of points of differentiability of g is a Borel subset of X of
class Gδσδ.

Problem
What is the lowest Borel rank of the set Dif(g) in the Lemma?
For X = R the answer is Fσδ, as shown by Zahorski in 1941.
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That is all!

Thank you for your attention!
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