Less than 2^{ω} -many continuous functions that almost cover every continuous function

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based mainly on a joint work with J.B. Seoane-Sepúlveda

Pitt Conference on Function Spaces, February 10, 2018

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblemCredits: This presentation is based on the papers

- (1) K.C. Ciesielski and J.B. Seoane-Sepulveda, *Simultaneous small coverings by smooth functions under the covering property axiom*, submitted, available here.
- (2) K.C. Ciesielski, J.L. Gamez-Merino, T. Natkaniec, and J.B. Seoane-Sepulveda, On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity, Topology Appl. 235 (2018), 73–82, available here.

Will also rely on a material in the book

• K. Ciesielski and J. Pawlikowski, *Covering Property Axiom CPA. A combinatorial core of the iterated perfect set model*, Cambridge Univ. Press, 2004.

This presentation is available here.

- 2 Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 回 ト ・ ヨ ト ・ ヨ ト

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblemThe main theorem

For $X \subset \mathbb{R}$: $D^n(X)$ —all *n*-times differentiable $f: X \to \mathbb{R}$; $C^n(X)$ —all $f \in D^n(X)$ with continuous *n*th derivatives $f^{(n)}$; $D^0(X) = C^0(X)$; $A \subset^* B$ denotes $|A \setminus B| < \mathfrak{c}$.

Theorem (Main Thm)

It is consistent with ZFC, it follows from the Covering Property Axiom CPA, that for every $n < \omega$ there exists a family $\mathcal{F}_n \subset C^n(\mathbb{R})$ of cardinality $\omega_1 < \mathfrak{c}$ such that (i) $g \subset^* \bigcup \mathcal{F}_n$ for every $g \in D^n(\mathbb{R})$. Moreover, there is $\mathcal{F}_\infty \subset C^\infty(\mathbb{R})$ of cardinality $\omega_1 < \mathfrak{c}$ such that (ii) $g \subset^* \bigcup \mathcal{F}_\infty$ for every $g \in C^\infty(\mathbb{R})$.

<ロ> <問> <問> < 回> < 回> < □> < □> <

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofMain Thm for n = 0: continuous functions

Main Thm for n = 0 can be stated: CPA implies

 $\emph{I}_0 \text{: } \exists \mathcal{F}_0 \in [\emph{C}^0(\mathbb{R})]^{<\mathfrak{c}} \ \, \forall g \in \emph{C}^0(\mathbb{R}) \ \, g \subset^\star \bigcup \mathcal{F}_0$

What I_0 means:

- Few functions from \mathcal{F}_0 cover* **every** continuous function
- Few functions from \mathcal{F}_0 cover* **every** level $\mathbb{R} \times \{y\}$
- \subset^* in I_0 cannot be \subset , as \mathcal{F}_0 cannot cover \mathbb{R}^2
- $\int_0 \Longrightarrow \operatorname{cov}(\operatorname{Meager}) < \mathfrak{c}$ Proof: Pick $y \in \mathbb{R} \setminus \bigcup_{f \in \mathcal{F}_0} f[\mathbb{Q}]$ and put $g = \mathbb{R} \times \{y\}$. Then \mathbb{R} is a union of $|\mathcal{F}_0|$ -many nowhere dense sets [f = g]and $|g \setminus \bigcup \mathcal{F}_0|$ -many singletons, while $|\mathcal{F}_0| + |g \setminus \bigcup \mathcal{F}_0| < \mathfrak{c}$.
- So, *I*₀ contradicts CH and MA.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Problem

$$\begin{split} I_0 \text{ and the size of } \mathfrak{c} \\ \hline \mathsf{Fact} \ (\mathsf{Proved for this talk. Known?}) \\ I_0 \Longrightarrow \exists \mathcal{F}_0 \in [\mathbb{R}^{\mathbb{R}}]^{<\mathfrak{c}} \ \forall y \in \mathbb{R} \ \mathbb{R} \times \{y\} \subset^* \bigcup \mathcal{F}_0 \Longrightarrow \mathfrak{c} = |\mathcal{F}_0|^+ \\ \hline \mathsf{Proof: Let} \ \kappa = |\mathcal{F}_0|^+ \text{ and assume } \mathfrak{c} > \kappa. \text{ Put } B = \mathbb{R}^2 \setminus \bigcup \mathcal{F}_0, \\ B^y = \{x \colon \langle x, y \rangle \in B\}, \text{ and note that } |B^y| < \mathfrak{c} \text{ for all } y \in \mathbb{R}. \end{split}$$

n = 0 proof n > 1 proof

Problem

Claim: There is $Y \in [\mathbb{R}]^{\kappa}$ with $|\bigcup_{y \in Y} B^{y}| < \mathfrak{c}$.

 $D^n(\mathbb{R})$

Pr. If $cof(c) > \kappa$, then any $Y \in [\mathbb{R}]^{\kappa}$ works. If $cof(c) \le \kappa$, choose cofinal $L \in [c]^{\kappa}$; there is $\lambda \in L$ with $Z_{\lambda} = \{y \in \mathbb{R} : |B^{y}| \le \lambda\}$ of cardinality $> \kappa$. (Otherwise $c = |\bigcup_{\lambda \in L} Z_{\lambda}| \le \kappa$.) Then any $Y \in [Z_{\lambda}]^{\kappa}$ works.

Now, by Claim, there are $x_0 \in \mathbb{R} \setminus \bigcup_{y \in Y} B^y$ and $y_0 \in Y \setminus \{f(x_0) \colon f \in \mathcal{F}_0\}$. Then $\langle x_0, y_0 \rangle \notin B \cup \bigcup \mathcal{F}_0 = \mathbb{R}^2$, a contradiction.

Main thm

- Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 回 ト ・ ヨ ト ・ ヨ ト

Borel(X, Y)—all Borel measurable $f: X \rightarrow Y$

FactCPA implies that if \mathcal{F}_0 is as in I_0 , then B^* : $g \subset^* \bigcup \mathcal{F}_0$ for every $X \subset \mathbb{R}$ and $g \in Borel(X, \mathbb{R})$.

Proof: Kuratowski: there is Borel extension $G: \mathbb{R} \to \mathbb{R}$ of g.

KC & Pawlikowski: CPA implies that

B: $\forall G \in Borel(\mathbb{R}, \mathbb{R}) \exists \mathcal{F}_G \in [C^0(\mathbb{R})]^{\omega_1} s.t. G \subset \bigcup \mathcal{F}_G.$

So, $g \subset G \subset \bigcup \mathcal{F}_G \subset^* \bigcup \mathcal{F}_0$.

Note: $B^{\star} \Longrightarrow B$.

🗇 🕨 🖉 🖢 🔺 🚍 🛌

= 990

Main that $C(X, Y) = D^{n}(\mathbb{R})$ n = 0 proof n > 1 proof Problem **Small cover*** $\subset C_{K}(X, Y)$, X and Y Polish spaces Let $C_{K}(X, Y) = \bigcup \{C(K, Y) : K \subset X \text{ is compact } \}$ **Corollary (Proved just for this talk.)** *CPA implies that for every Polish* X and Y the following holds $I_{XY}: \exists \mathcal{F}_{X,Y} \in [C_{K}(X, Y)]^{<c} \forall g \in Borel(X, Y) \ g \subset^{*} \bigcup \mathcal{F}_{X,Y}$ *We can also have* $\mathcal{F}_{X,Y} \subset Borel(X, Y)$ and, *if* Y *is an absolute extensor*, $\mathcal{F}_{X,Y} \subset C(X, Y)$.

Proof: KC & Pawlikowski: CPA implies that there are compact 0-dimensional $\{X_{\xi}\}_{\xi < \omega_1}$ and $\{Y_{\xi}\}_{\xi < \omega_1}$ covering *X* and *Y*.

By previous Fact, for all $\zeta, \xi < \omega_1$ (embedding $X_{\xi}, Y_{\zeta} \hookrightarrow \mathbb{R}$)

• $\exists \mathcal{F}_{\zeta\xi} \in [C^0(\mathbb{R})] \ \forall g \in Borel(X_{\zeta}, Y_{\xi}) \ g \subset^{\star} \bigcup \mathcal{F}_{\zeta\xi}$

Then $\mathcal{F}_{X,Y} = \{ f \cap (X_{\zeta} \times Y_{\xi}) : \zeta, \xi < \omega_1 \& f \in \mathcal{F}_{\zeta\xi} \}$ works.

 $\textit{I}_{XY}: \ \exists \mathcal{F}_{X,Y} \in [\textit{C}_{\textit{K}}(X,Y)]^{<\mathfrak{c}} \ \forall g \in \textit{Borel}(X,Y) \ g \subset^{\star} \bigcup \mathcal{F}_{X,Y}$

CPA implies: for every Polish X and Y, Y absolute extensor,

 $(\star) \ \exists \mathcal{F}_{X,Y} \in [\mathcal{C}(X,Y)]^{<\mathfrak{c}} \ \forall g \in \mathcal{C}(X,Y) \ g \subset^{\star} \bigcup \mathcal{F}_{X,Y}$

This fails for $X = [0, 1] \times 2^{\omega}$ and $Y = 2^{\omega}$.

Problem (Not investigated so far)

For what other spaces X and Y (\star) or I_{XY} hold?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- The theorem and its place in ZFC
- 2 Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 回 ト ・ ヨ ト ・ ヨ ト

Main Thm for $n \in \mathbb{N}$ can be stated: CPA implies

 $I_n: \ \exists \mathcal{F}_n \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in D^n(\mathbb{R}) \ g \subset^{\star} \bigcup \mathcal{F}_n$

Clearly I_n implies

 J_n : $\forall g \in D^n(\mathbb{R}) \ \exists \mathcal{F}_g \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ s.t. \ g \subset \bigcup \mathcal{F}_g$

 $CPA \implies J_n$ was first "proved" by KC & Pawlikowski [CPA book]

For n > 1 their proof was incorrect!

Thus, the proof from submitted paper is the first correct one.

ヘロン 人間 とくほ とくほ とう

= 990

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofCan we prove stronger versions of $I_n, n \in \mathbb{N}$?

 $I_n = I(D^n, C^n): \exists \mathcal{F}_n \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in D^n(\mathbb{R}) \ g \subset^{\star} \bigcup \mathcal{F}_n$

Fact: $I(C^{n-1}, D^n)$: $\exists \mathcal{F} \in [D^n(\mathbb{R})]^{<\mathfrak{c}} \quad \forall g \in C^{n-1}(\mathbb{R}) \quad g \subset^* \bigcup \mathcal{F}_n$ is false for all $n \in \mathbb{N}$.

Pr: For n = 1, there is $g_1 \in "D^1(\mathbb{R})" \subset C^0(\mathbb{R})$ with $g'_1 = \infty$ on a perfect P; so $|[f = g] \cap P| \le \omega$ for every $f \in D^0(\mathbb{R})$.

For
$$n = 2$$
 use $g_2 = \int g_1, \ldots$

Fact: I_n^* : $\forall X \subset \mathbb{R} \ \exists \mathcal{F} \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in D^n(X) \ g \subset^* \bigcup \mathcal{F}_g$ is false for n > 1.

Pr. Put n = 2 and \mathfrak{C} —the Cantor ternary set. There is (simple) $f \in C^1(\mathbb{R})$ such that $g \upharpoonright \mathfrak{C} \in D^2(\mathfrak{C})$ and $|[f = g] \cap \mathfrak{C}| < \omega$ for every $f \in D^2(\mathbb{R})$. So, $g \upharpoonright \mathfrak{C}$ contradicts l_2^* .

Cor to Main Thm: CPA implies $l_0^* \& l_1^*$. Argument: time permitting.

Problem

- The theorem and its place in ZFC
- 2 Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 回 ト ・ ヨ ト ・ ヨ ト

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblemThe structure of CPA (CPA
prism part that we use)

For $0 < \alpha < \omega_1$ let Φ_{α} —all continuous 1-1 maps $f \colon \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ s.t.

 $f(x) \upharpoonright \xi = f(y) \upharpoonright \xi \iff x \upharpoonright \xi = y \upharpoonright \xi$ for all $\xi < \alpha$ and $x, y \in \mathfrak{C}^{\alpha}$

and $\mathbb{P}_{\alpha} = \{ f[\mathfrak{C}^{\alpha}] \colon f \in \Phi_{\alpha} \}$. Also let $\mathbb{P} = \bigcup_{0 < \alpha < \omega_1} \mathbb{P}_{\alpha}$.

 $\operatorname{Perf}(X)$ —all $P \subset X$ homeomorphic to \mathfrak{C}

Prism in X—any $P \in Perf(X)$ with (implicit) continuous injection *h* from an $E \in \mathbb{P}$ onto *P*.

Subprism of a prism P given by $h: E \to P$ —any Q = h[E'], with $E' \in \mathbb{P}, E' \subset E$.

 $\mathcal{E} \subset \operatorname{Perf}(X)$ is $\mathcal{F}_{\operatorname{prism}}$ -dense provided for every prism *P* in $\operatorname{Perf}(X)$ there exists a subprism *Q* of *P* with $Q \in \mathcal{E}$.

 $\begin{array}{l} {\rm CPA}_{\rm prism} \ {\mathfrak c} = \omega_2 \ {\rm and} \ {\rm for} \ {\rm every} \ {\rm Polish} \ {\rm space} \ X \ {\rm and} \ {\rm every} \\ {\mathcal F}_{\rm prism} \ {\rm -dense} \ {\rm family} \ {\mathcal E} \subset {\rm Perf}(X) \ {\rm there} \ {\rm is} \ {\mathcal E}_0 \subset {\mathcal E} \\ {\rm such} \ {\rm that} \ |{\mathcal E}_0| \le \omega_1 \ {\rm and} \ |X \setminus \bigcup {\mathcal E}_0| \le \omega_1. \end{array}$

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblemA simple reduction of I_0

lf

$\textit{I}_0(\textit{Z}) \text{: } \exists \mathcal{F}_{\textit{Z}} \in [\textit{C}^0(\mathbb{R})]^{<\mathfrak{c}} \ \forall \textit{g} \in \textit{C}^0(\textit{Z}) \ \textit{g} \subset^\star \bigcup \mathcal{F}_{\textit{Z}}$

holds for every compact perfect $Z \subset \mathbb{R}$, then

 $\mathcal{F}_0 = \bigcup_{n \in \mathbb{N}} \mathcal{F}_{[-n,n]}$ satisfies I_0 .

Thus it is enough to show that, every compact perfect $Z \subset \mathbb{R}$,

CPA implies $I_0(Z)$.

We will apply CPA to Polish space $Z \times C(Z)$,

C(Z) considered with the uniform convergence topology.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblem \mathcal{F}_{prism} -density lemma

Lemma

For every Polish spaces X and Y, the family

 $\mathcal{E} = \{ P \in \operatorname{Perf}(X \times Y) : \text{ either } \pi_1 \upharpoonright P \text{ or } \pi_2 \upharpoonright P \text{ is one-to-one} \}$

is $\mathcal{F}_{\text{prism}}$ *-dense,* where π_1 and π_2 are the projections of $X \times Y$ onto X and Y, respectively.

For $X = Y = \mathbb{R}$ the lemma is proved in [CPA book].

The generalization is straightforward.

Lemma will be used to $X \times Y = Z \times C(Z)$, with $Z \subset \mathbb{R}$ compact perfect.

ヘロン 人間 とくほど 人 ほとう

 $\mathcal{E} = \{ P \in \operatorname{Perf}(Z \times C(Z)) : \text{ either } \pi_1 \upharpoonright P \text{ or } \pi_2 \upharpoonright P \text{ is one-to-one} \}$

is $\mathcal{F}_{prism}\text{-dense.}$ So, by $\text{CPA}_{prism}\text{,}$

there is $\mathcal{E}_0 \subset \mathcal{E}$ such that $|\mathcal{E}_0| \leq \omega_1$ and $|Z \times C(Z) \setminus \bigcup \mathcal{E}_0| \leq \omega_1$.

Let $\mathcal{F} = \{ P \in \mathcal{E}_0 : \pi_1 \upharpoonright P \text{ is one-to-one} \}.$

So, for every $P \in \mathcal{F}$, $P \in C(\pi_1[P], C(Z))$ is a continuous map,

 $f_P \colon \pi_1[P] \to \mathbb{R}$ defined as $f_P(x) = P(x)(x)$ is continuous and,

by **Tietze's** Extension Theorem, can be extended to $\hat{f}_P \in C(\mathbb{R})$.

Claim: $\mathcal{F}_{Z} = \{\hat{f}_{P} : P \in \mathcal{F}\}$ satisfies $I_{0}(Z)$. (Clearly $|\mathcal{F}_{Z}| \leq \omega_{1}$.)

Main thm C(X, Y) $D^{n}(\mathbb{R})$ n = 0 proofWhy $\mathcal{F}_{Z} = \{ \hat{f}_{P} \colon P \in \mathcal{F} \}$ satisfies $I_{0}(Z)$?

 $\mathcal{E}_0 \subset \{P \in \operatorname{Perf}(Z \times C(Z)): \text{ either } \pi_1 \upharpoonright P \text{ or } \pi_2 \upharpoonright P \text{ is one-to-one}\}$ $|Z \times C(Z) \setminus []\mathcal{E}_0| \le \omega_1, \mathcal{F} = \{P \in \mathcal{E}_0 : \pi_1 \upharpoonright P \text{ is one-to-one}\}$ Fix $q \in C(Z)$ and note that $|(Z \times \{q\}) \setminus |J\mathcal{F}| < \omega_1$. Fix $x \in Z$ s.t. $\langle x, g \rangle \in \bigcup \mathcal{F}$ and $P \in \mathcal{F}$ with $\langle x, g \rangle \in P$. It is enough to show that $\langle x, g(x) \rangle \in f_P$, as $f_P \subset \hat{f}_P$. Indeed, $f_P(x) = P(x)(x) = g(x)$, as P(x) = g by $\langle x, g \rangle \in P$. So, $q \upharpoonright \pi_1[(Z \times \{q\}) \cap []\mathcal{F}] \subset []\mathcal{F}_7$, as needed.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Problem

- The theorem and its place in ZFC
- 2 Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 同 ト ・ ヨ ト ・ ヨ ト

Main thmC(X, Y) $D^{n}(\mathbb{R})$ n = 0 proofn > 1 proofReduction of I_n , n > 0, to simpler cases

It is enough to prove that, for every Z = [a, b],

 $I_n^*(Z)$: $\exists \mathcal{F}_Z \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in D^n(Z) \ g \subset^{\star} \bigcup \mathcal{F}_Z$

Idea: repeat n = 0 argument for space $Z \times D^n(Z)$

Problem: $D^n(Z)$ is not a Polish space

Solution: show, under CPA, the following two statements

 $\begin{array}{l} I_n(Z) \colon \exists \mathcal{F}_Z \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in C^n(Z) \ g \subset^\star \bigcup \mathcal{F}_Z \\ J_n \colon \forall g \in D^n(\mathbb{R}) \ \exists \mathcal{F}_g \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ s.t. \ g \subset \bigcup \mathcal{F}_g \end{array}$

This is good, since both these imply $I_n^*(Z)$.

Also, $C^n(Z)$ is Polish, with metric $\rho(f,g) = \sum_{j \le n} \|f^{(j)} - g^{(j)}\|_{\infty}$

Problem

$\begin{array}{ccc} \text{Main thm} & C(X,Y) & D^{n}(\mathbb{R}) & n = 0 \text{ proof} & n > 1 \text{ proof} \\ \hline & \text{CPA}_{\text{prism}} \text{ implies } I_{n}(Z), \ n > 0 \ (\text{brief sketch}) \end{array}$

The argument is quite similar to that for n = 0, after you prove

- $\mathcal{E}_n = \{ P \in \operatorname{Perf}(Z \times C^n(Z)) : \text{ either } \pi_2 \upharpoonright P \text{ is 1-1 or} \\ \pi_1 \upharpoonright P \text{ is 1-1 and } \exists f_P \in C^n(\mathbb{R}) \forall g \in C^n(Z) \ g \upharpoonright P^g \subset^* f_P \}$
- is $\mathcal{F}_{\text{prism}}$ -dense, where $P^g = \{x \in Z \colon \langle x, g \rangle \in P\}$.

The actual condition that ensures the additional requirement

 $(*) \ \exists f_{\mathcal{P}} \in C^{n}(\mathbb{R}) \forall g \in C^{n}(Z) \ g \upharpoonright \mathcal{P}^{g} \subset^{\star} f_{\mathcal{P}}$

is delicate and heavily relies on Whitney's Extension Theorem, a differentiable analog of Tietze's Extension Theorem.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofWhitney's Extension Theorem, one variable case

Theorem (Whitney's Extension Theorem)

Let $P \subset \mathbb{R}$ be perfect, $n \in \mathbb{N}$, and $f: P \to \mathbb{R}$. There exists an extension $\overline{f} \in C^n(\mathbb{R})$ of f if, and only if, $(W_n) \ f \in C^n(P)$ and the map $q_{f^{(i)}}^{n-i}: P^2 \to \mathbb{R}$ is continuous for every $i \leq n$,

where $q_f^n \colon P^2 \to \mathbb{R}$ is defined as

$$q_f^n(a,b) = \begin{cases} \frac{T_b^n f(b) - T_a^n f(b)}{(b-a)^n} & \text{if } a \neq b, \\ 0 & \text{if } a = b \end{cases}$$

and $T_a^n f(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$ is the n-th degree Taylor polynomial of f at a.

★週 ▶ ★ 理 ▶ ★ 理 ▶ …

3

Problem

 $\begin{array}{ccc} \text{Main thm} & C(X,Y) & D^{n}(\mathbb{R}) & n = 0 \text{ proof} & n > 1 \text{ proof} & \text{Problem} \\ \hline & \text{CPA}_{\text{prism}} \text{ implies } J_{n}, n > 0 \text{ (brief sketch)} \end{array}$

 $J_n: \ \forall g \in D^n(\mathbb{R}) \ \exists \mathcal{F}_g \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ s.t. \ g \subset \bigcup \mathcal{F}_g$

Fix an $n \in \mathbb{N}$ and a $g \in D^n(\mathbb{R})$. For $Q \in \operatorname{Perf}(\mathbb{R})$ let $f = g \upharpoonright Q$ and $\varphi_{g \upharpoonright Q}^n : Q^2 \to \mathbb{R}$ be defined as $\varphi_{g \upharpoonright Q}^n(a, b) = \sum_{k=0}^n |q_{f^{(k)}}^{n-k}(a, b)| + \sum_{k=0}^n |q_{f^{(k)}}^{n-k}(b, a)|.$

Since $\varphi_{g \upharpoonright Q}^n$ is symmetric,

 $\mathcal{E}_{g} = \{ Q \in \operatorname{Perf}(\mathbb{R}) \colon g \upharpoonright Q \in C^{n}(Q) \& \varphi_{g \upharpoonright Q}^{n} \in C(Q^{2}) \}$

is $\mathcal{F}_{\text{prism}}$ -dense. (Proved in [CPA book].)

By CPA_{prism}, there is $\mathcal{E}_0 \in [\mathcal{E}]^{\omega_1}$ with $|\mathbb{R} \setminus \bigcup \mathcal{E}_0| \leq \omega_1$.

So, $g \subset^* \bigcup_{Q \in \mathcal{E}_0} g \upharpoonright Q$. We need to show that each $g \upharpoonright Q$ can be extended to an $f_Q \in C^n(\mathbb{R})$.

Main thmC(X, Y) $D^n(\mathbb{R})$ n = 0 proofn > 1 proofProblemSmooth extendability of $g \upharpoonright Q$

$$arphi_{g|Q}^n(a,b) = \sum_{k=0}^n |q_{(g|Q)^{(k)}}^{n-k}(a,b)| + \sum_{k=0}^n |q_{(g|Q)^{(k)}}^{n-k}(b,a)|$$

is continuous and $g \in D^n(\mathbb{R})$. By Whitney's Extension Theorem, need each $q_{(g \upharpoonright Q)^{(k)}}^{n-k}(a, b)$ continuous. This follows from continuity of $\Psi(a, b) = \sum_{k=0}^{n} |q_{(g \upharpoonright Q)^{(k)}}^{n-k}(a, b)|$.

Why $\Psi(a, b)$ is continuous?

(1) $\Psi(a, \cdot)$ is continuous, as $g \in D^{n}(\mathbb{R})$ —classic-like argument for Taylor polynomial.

(2) $\varphi_{g \upharpoonright Q}^{n}(a, b) = \Psi(a, b) + \Psi(b, a)$ is separately continuous—as $\varphi_{g \upharpoonright Q}^{n}$ and $\Psi(a, \cdot)$ are continuous.

Lemma: (1) + (2) + a bit more $\implies \Psi$ is continuous.

Theorem (Seems previously unknown)

For $X \subset \mathbb{R}$ with no isolated points, $g \in C(X)$, and a continuous extension \overline{g} of g onto G_{δ} -set $G \supset X$: if $g \in D^n(X)$, then $\overline{g} \upharpoonright B \in D^n(B)$ for some Borel $B \supset X$.

Proof of I_1^* : Can assume that X has no isolated points.

Choose Borel $B \supset X$ and $\overline{g} \in D^1(B)$ extension of g;

By CPA, there is $\mathcal{P} \in [\operatorname{Perf}(\mathbb{R})]^{\omega_1}$ with $B = \bigcup \mathcal{P}$. For each $P \in \mathcal{P}$,

by Jarník's theorem, there is an extension $g_P \in D^1(\mathbb{R})$ of $\hat{g} \upharpoonright P$,

so, by Main Thm, there is $\mathcal{F}_P \in [C^1(\mathbb{R})]^{\omega_1}$ with $\hat{g} \upharpoonright P \subset^* \bigcup \mathcal{F}_P$.

Then $\mathcal{F}_g = \bigcup_{P \in \mathcal{P}} \mathcal{F}_P$ is as needed.

- The theorem and its place in ZFC
- 2 Implications for (partial) maps between Polish spaces
- 3 Main Theorem for differentiable functions
- Proof of Main Thm for n = 0
- 5 Sketch of proof of Main Thm for differentiable maps

・ 同 ト ・ ヨ ト ・ ヨ ト

The proof of last theorem is based on the

Lemma

For every $X \subset \mathbb{R}$ with no isolated points and $g \in C(X)$ the set Dif(g) of points of differentiability of g is a Borel subset of X of class $G_{\delta\sigma\delta}$.

Problem

What is the lowest Borel rank of the set Dif(g) in the Lemma? For $X = \mathbb{R}$ the answer is $F_{\sigma\delta}$, as shown by Zahorski in 1941.

That is all!

Thank you for your attention!

Krzysztof Chris Ciesielski

A ►

→ E → < E →</p>