Differentiable pointwise contractive auto-homeomorphism of a Cantor set

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on a joint work with Jakub Jasinski

see http://www.math.wvu.edu/~kcies/publications.html

Pitt Topology Conference, June 25, 2017

 Example
 Construction
 Shrinking maps
 Problems
 Motivation

 Credits:
 This presentation is based on the papers

- (1) K.C. Ciesielski, Pointwise shrinking self-surjection of a Cantor set, notes of Spring 2017.
- K.C. Ciesielski and J. Jasinski, An auto-homeomorphism of a Cantor set with zero derivative everywhere, J. Math. Anal. Appl. 434(2) (2016), 1267–1280.
 - K.C. Ciesielski and J. Jasinski, On closed subsets of ℝ and of ℝ² admitting Peano functions, Real Anal. Exchange 40(2) (2015), 309–317.
 - K.C. Ciesielski and J. Jasinski, On fixed points of locally and pointwise contracting maps, Topology Appl. 204 (2016), 70–78;
 - K.C. Ciesielski and J. Jasinski, *Fixed point theorems for* maps with local and pointwise contraction properties, 57 pages, Canad. J. Math., (2017), in print.

Example	Construction	Shrinking maps	Problems	Motivation
Outlir	he			
1	The example and wi	ny it seems parado	oxical	
2	New simple construc	ction of the examp	le	
3	Pointwise shrinking	maps and minimal	l dynamical sys	tems
4	Open problems: Cor	ntinuum theory?		
5	The begining: Study	of Peano-like fund	ctions	

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Construction	Shrinking maps	Problems	Motivation
example and wh	ny it seems parado	xical	
			ems
	example and wh simple construct twise shrinking r n problems: Cor	example and why it seems parado simple construction of the exampl twise shrinking maps and minimal n problems: Continuum theory?	example and why it seems paradoxical simple construction of the example twise shrinking maps and minimal dynamical syste

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Example Motivation Construction The main result Theorem ([KC & JJ], new short proof to be presented) There exists differentiable auto-homeomorphism f of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}' \equiv 0$. (i) f is a minimal dynamical system (i.e., the f-orbit $O(x) = \{f^{(n)}(x) : n \in \omega\}$ of every $x \in \mathfrak{X}$ is dense in \mathfrak{X}); (ii) f can be extended to a differentiable function $F : \mathbb{R} \to \mathbb{R}$. **Fact:** $f' \equiv 0$ implies that f is *pointwise contractive*:

(PC) for every $x \in \mathfrak{X}$ there are open $U \ni x$ and $\lambda_x \in [0, 1)$ such that $|\mathfrak{f}(x) - \mathfrak{f}(y)| \le \lambda_x |x - y|$ for any $y \in U$.

However, $f' \equiv 0$ does **not** imply that f is *locally contractive*:

(LC) for every $x \in X$ there are open $U \ni x$ and $\lambda_x \in [0, 1)$ s.t. $|f(y) - f(z)| \le \lambda_x |y - z|$ for any $y, z \in U$.
 Example
 Construction
 Shrinking maps
 Problems

 f seems paradoxical: topological angle

Our f is PC but has neither fixed nor periodic points, while:

Theorem ([KC & JJ 2016]; variant of Hu and Kirk [HK 1978])

If $\langle X, d \rangle$ is compact rectifiable-path connected metric space. If $f: X \to X$ is PC, then f has a unique fixed point.

[HK]: without compactness, but *f* must be *uniformly PC, UPC*.

Theorem (Edelstein 1962, almost contradicting main example) If $f: X \rightarrow X$ is LS and X is compact, then f has a periodic point.

f is *locally shrinking*, *LS*, provided for every *x* ∈ *X* there is open *U* ∋ *x* s.t. *f* ↾ *U* is *shrinking*, that is, *d*(*f*(*y*), *f*(*z*)) < *d*(*y*, *z*) for every distinct *y*, *z* ∈ *U*.

Motivation

 Example
 Construction
 Shrinking maps
 Problems
 Motivation

 f seems paradoxical: real analysis angle

We have $\mathfrak{X} \subseteq \mathfrak{f}[\mathfrak{X}]$, while:

Fact: Assume that $X \subseteq \mathbb{R}$ and $f \colon X \to \mathbb{R}$.

- (i) $X \nsubseteq f[X]$ when X is a bounded closed interval and $|f'| \le \lambda < 1$ on X since then, by the Mean Value Theorem, $|f(y) - f(z)| \le \lambda |y - z|$ for every $y, z \in X$, so that the diameter of f[X] is strictly smaller than the diameter of X. If $\mathfrak{f}' \equiv 0$, then f is constant.
- (ii) $X \nsubseteq f[X]$ when X has a positive finite Lebesgue measure m(X) and $|f'| \le \lambda < 1$ on X since then $m(f[X]) \le \lambda m(X)$.
- (iii) $X \nsubseteq f[X]$ when |f'| < 1 on X and f can be extended to a **continuously** differentiable function $F : \mathbb{R} \to \mathbb{R}$. This has been proved by KC & JJ, *RAEx* **39**(1), 2014.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

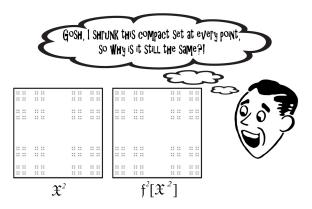
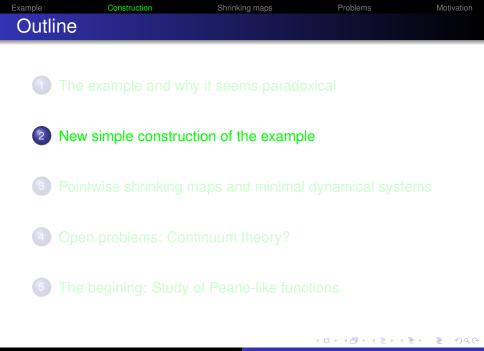
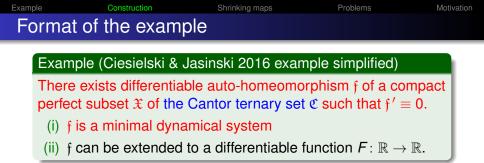


Figure: The result of the action of $\mathfrak{f}^2 = \langle \mathfrak{f}, \mathfrak{f} \rangle$ on $\mathfrak{X}^2 = \mathfrak{X} \times \mathfrak{X}$

イロト イポト イヨト イヨト





(ii) follows from Jarník's theorem; (i) from the format of f:

 $\mathfrak{f} = h \circ \sigma \circ h^{-1}$, where $h: 2^{\omega} \to \mathbb{R}$ is embedding and $\sigma: 2^{\omega} \to 2^{\omega}$ is the "add one and carry" adding machine:

$$\sigma(\boldsymbol{s}) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } \boldsymbol{s}_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, \boldsymbol{s}_{k+1}, \boldsymbol{s}_{k+2}, \ldots \rangle & \text{if } \boldsymbol{s}_k = 0 \text{ and } \boldsymbol{s}_i = 1 \text{ for } i < k. \end{cases}$$

ExampleConstructionShrinking mapsProblemsMotivationDefinition of $h: 2^{\omega} \rightarrow \mathbb{R}$ with $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

$$\begin{split} h(s) &= \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}, \text{ where } N(s \upharpoonright 0) = 1 \text{ and } \\ N(s \upharpoonright n) &= \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n \text{ for } n > 0. \end{split}$$

Fact: If
$$s \neq t \in 2^{\omega}$$
 and $n = \min\{i < \omega : s_i \neq t_i\}$, then
$$3^{-(n+1)N(s \restriction n)} \stackrel{(i)}{\leq} |h(s) - h(t)| \stackrel{(ii)}{\leq} 3 \cdot 3^{-(n+1)N(s \restriction n)}.$$

Proof. For $h_n(s) = \sum_{k < n} 2s_k 3^{-(k+1)N(s|k)}$ we have $h_n(s) + 2s_n 3^{-(n+1)N(s|n)} \le h(s) \le h_n(s) + (2s_n + 1)3^{-(n+1)N(s|n)}$, as $h(s) = h_n(s) + 2s_n 3^{-(n+1)N(s|n)} + 2\sum_{k > n} 3^{-(k+1)N(s|k)}$ and $0 \le 2\sum_{k > n} 3^{-(k+1)N(s|k)} \le 2\sum_{i=1}^{\infty} 3^{-[(n+1)N(s|n)+i]} = 3^{-(n+1)N(s|n)}$ So, (i): $|h(s) - h(t)| \ge 3^{-(n+1)N(s|n)}$; and (ii): $|h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s|n)}$. ExampleConstructionShrinking mapsProblemsMotivationProof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$ Def: $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \restriction n)},$

Have: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then

 $3^{-(n+1)N(s|n)} \le |h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s|n)}.$

Also (a): $\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1$ for all n > k

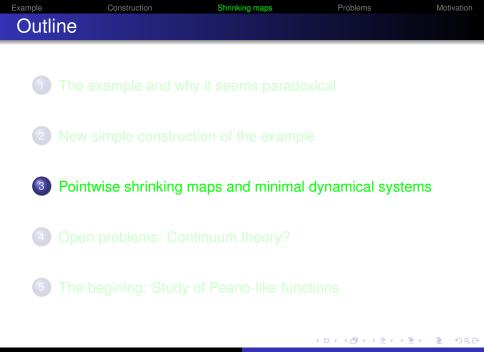
as it fails only for
$$s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$$
.

Proof of $\mathfrak{f}' \equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s)\restriction n)}}{3^{-(n+1)N(s\restriction n)}} = 3 \cdot 3^{-(n+1)N(s\restriction n)}$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ . \Box



Example Construction Shrinking maps Problems Motivation
From shrinking maps to minimal dynamics

For a metric space $\langle X, d \rangle$ and a map $f \colon X \to X$

- *f* is *pointwise shrinking*, *PS*, if for every $x \in X$ there is open $U \ni x$ such that d(f(x), f(y)) < d(x, y) for all $y \in U$, $y \neq x$.
- If $X \subset \mathbb{R}$ and |f'| < 1 everywhere, then *f* is *PS*.

Theorem (KC & JJ 2014)

If $f: X \to X$ is onto, PS, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LS and X is compact, then f has a periodic point,

f is *locally shrinking, LS*, provided for every *x* ∈ *X* there is open *U* ∋ *x* s.t. *f* ↾ *U* is *shrinking*, that is, *d*(*f*(*y*), *f*(*z*)) < *d*(*y*, *z*) for every distinct *y*, *z* ∈ *U*.

Example	Construction	Shrinking maps	Problems	Motivation
Sketch o	f proof			

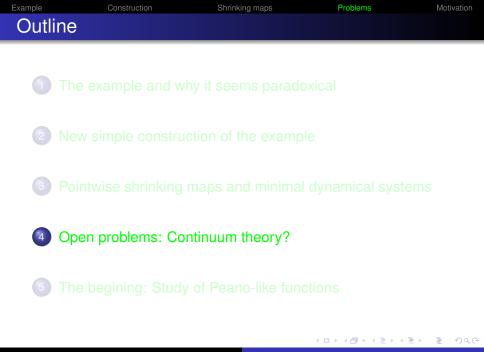
 $\langle X, d \rangle$ is infinite compact, $f: X \to X$ is pointwise shrinking

Thm: There is perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamics.

This is proved by showing the following facts:

- $T \subseteq X$ infinite compact & $T \subset f[T]$, imply T is uncountable. ($T \subset f[T]$ for no countable T of Cantor-Bendixon rank $\alpha < \omega_1$.)
- 2 $F_m = \{x \in P : f^{(m)}(x) = x\}$ is finite for every $m \in \mathbb{N}$.
- So For every orbit O(x) of $x \in F = \bigcup_{m \in \mathbb{N}} F_m$, $f[B(O(x), \varepsilon)] \subseteq B(O(x), \varepsilon)$ for every small enough $\varepsilon > 0$.
- There is open $U \supset F$ s.t. $T = X \setminus U$ is infinite & $T \subset f[T]$.
- Sind minimal P in {P ⊂ T: compact ≠ Ø s.t. P ⊂ f[P]}. (Exists by Zorn's Lemma—Birkhoff's argument.) Such P is as needed.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト



 Example
 Construction
 Shrinking maps
 Problems
 Motivation

 Can X from main example be (path) connected?

Open Problem (Pr1)

Let $\langle X, d \rangle$ be compact & either **connected** or **path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point? What if *f* is *PC* or *uPC*, where

f is *pointwise contractive, PC*, if for every $x \in X$ there are open $U \ni x$ and $\lambda \in [0, 1)$ s.t. $d(f(x), f(y)) \le \lambda d(x, y)$ for all $y \in U$;

f is *uPC*, if there is $\lambda \in [0, 1)$ s.t. for every $x \in X$ there is open $U \ni x$ for which $d(f(x), f(y)) \le \lambda d(x, y)$ for all $y \in U$.

What is known on Problem Pr1

Pr1: For X compact & either **connected** or **path connected**, if $f: X \rightarrow X$ is *PS/PC/uPC*, must *f* have fix/periodic point?

- $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ shows that connectedness is essential;
- True, when X is rectifiably path connected and f is PC:

Theorem (KC & JJ 2016)

Assume that $\langle X, d \rangle$ is compact rectifiably path connected metric space. If $f: X \to X$ is PC, then f has a unique fixed point.

This is variant of 1978 theorem of Hu and Kirk 1978 (corrected by Jungck in 1982) proved without compactness of X, but with a stronger assumption that f is *uniformly PC, UPC*.

Compactness is essential: Hu and Kirk 1978 gave an example of path connected X and uPC map $f: X \to X$ with no periodic point.

Problems

Open Problem (Pr2)

Let $\langle X, d \rangle$ be compact and **rectifiably path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point?

Pr1 and Pr2 are the only open problems in our comprehensive study of ten classes of self-maps on metric spaces $\langle X, d \rangle$ with the local and pointwise (a.k.a. local radial) contraction properties.

The relations among the classes, assuming different topological properties of X, are represented as graphs, a sample of which is shown below.

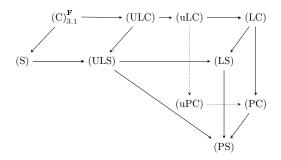
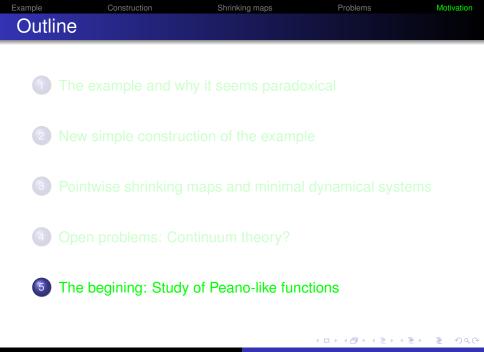


Figure: The relations between the local contractive and shrinking properties for the maps $f: X \to X$, with X being an arbitrary complete metric space.



For perfect $P \subset \mathbb{R}$,

(Q1) Can surjective continuous map $f: P \rightarrow P^2$ be differentiable?

- No for P of positive Lebesgue measure, e.g., for P = [0, 1].
- [KC & JJ 2014]: Yes, if we allow unbounded sets *P*.
 Such an *f* can even have a C[∞] extension *F* : ℝ → ℝ².
- [KC & JJ 2014]: No, if *P* is compact and *f* is extendable to a C^1 map $F \colon \mathbb{R} \to \mathbb{R}^2$.

Still Open Problem

Pr3: Question (Q1) when *P* is compact of measure 0.

Example Construction Shrinking maps Problems From Peano problem Pr1 to dynamical systems Theorem (KC & JJ 2014) Theorem (KC & JJ 2014)

If $\langle f, g \rangle$: $P \to P^2$ is a differentiable surjection, then f[K] = P, where $K = \{x \in P : f'(x) = 0\}$.

Proof.

f is countable-to-one on the F_{σ} set $P \setminus K$.

K need not be compact. But can it be?

(Q2) Does there exist $f: K \to \mathbb{R}$, with $K \subset \mathbb{R}$ compact perfect, such that $f' \equiv 0$ and $K \subseteq f[K]$?

Fact (corollaries from the theorems we discussed)

 For every f as in (Q2) there is a perfect P ⊂ K s.t. f ↾ P is a minimal dynamical system (i.e., the orbit of every x ∈ P is dense in P = f[P]).

• There exist a minimal system $f: P \rightarrow P$ with $f' \equiv 0$.

Motivation

 Example
 Construction
 Shrinking maps
 Problems
 Motivation

 Summary: open problems on self maps

- Let $\langle X, d \rangle$ be compact and **rectifiably path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point?.
- So For X compact & either connected or path connected, if $f: X \to X$ is *PS/PC/uPC*, must *f* have fix/periodic point?

We do not even know, what happens in the problems when *X* is a (topologically) manifold!

(Though, the maps must have fix points when the metric on X is convex.)

That is all!

Thank you for your attention!

Krzysztof Chris Ciesielski

< 🗇 🕨

э - < ≣ → <