Differentiability versus continuity: monstrous examples and extension theorems

Krzysztof Chris Ciesielski

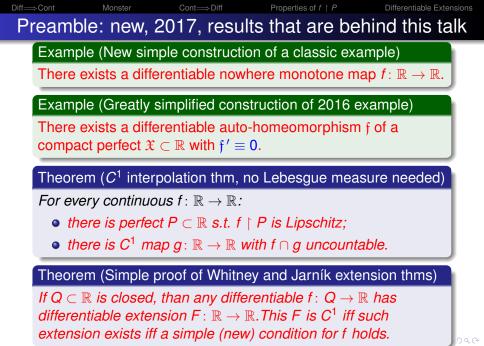
Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on papers/notes with links 121, 129, S21, S22 see also http://www.math.wvu.edu/~kcies/publications.html. These notes are here.

Summer Symposium in Real Analysis XLI The College of Wooster, Wooster, OH, June 20, 2017.

Krzysztof Chris Ciesielski

Differentiability versus continuity: monstrous examples 1



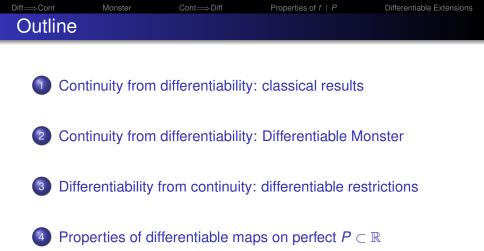
Krzysztof Chris Ciesielski

Differentiability versus continuity: monstrous examples

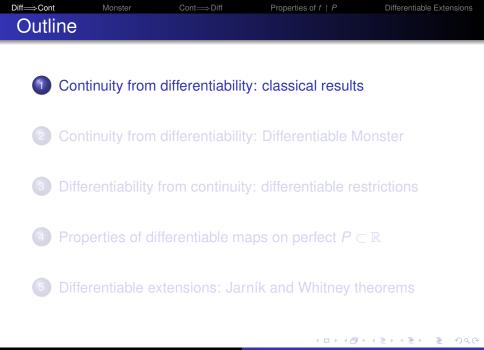
No familiarity with Lebesgue measure is needed to follow the proofs sketched in this talk

Krzysztof Chris Ciesielski

Differentiability versus continuity: monstrous examples 2



5 Differentiable extensions: Jarník and Whitney theorems



Clearly any differentiable function $F \colon \mathbb{R} \to \mathbb{R}$ is continuous.

True question: To what extend f = F' must be continuous?

Theorem (Classic)

The set C_f of points of continuity of f = F' is a dense G_{δ} -set.

Pr.
$$F'$$
 is Baire 1: $F'(x) = \lim_{n \to \infty} F_n(x)$, $F_n(x) = \frac{f(x+1/n)-f(x)}{1/n}$ cont.

Density of C_f : C_f contains a residual set

 $\bigcap_{n=1}^{\infty} \bigcup_{N=1}^{\infty} \operatorname{int}(\{x \in \mathbb{R} : |F_k(x) - F_m(x)| \le 1/n \text{ for all } m, k \ge N\}).$ *C_f* is a *G*_{δ}-set:

 $C_f = \bigcap_{n=1}^{\infty} \bigcup_{\delta > 0} \{ x \colon |f(s) - f(t)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta) \}.$

Diff⇒⇒Cont	Monster	Cont⇒Diff	Properties of $f \upharpoonright P$	Differentiable Extensions
This is it:				

Theorem (Classic)

For any dense G_{δ} -set G there is a derivative f with $C_f = G$.

Pr. Enough to prove for maps on (0, 1).

Let $(0,1) \setminus G = \bigcup_{n=1}^{\infty} P_n$, each P_n closed nowhere dense.

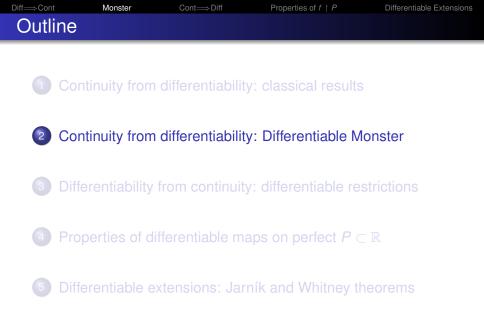
Define $f_n \colon (0, 1) \to \mathbb{R}$ as 0 on P_n and as

$$f_n(x) = \frac{(x-a)^2(x-b)^2}{(b-a)^2} \left[\sin\left(\frac{1}{x-a}\right) + \sin\left(\frac{1}{x-b}\right) \right]$$

on any component (a, b) of $(0, 1) \setminus P_n$.

Then $f = \sum_{n=1}^{\infty} 3^{-n} f_n$ is as needed.

イロト イポト イヨト イヨト 三日



Monster Differentiable monster

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

Simple construction of a differentiable monster follows.

 Diff
 Cont
 Monster
 Cont
 Properties of f | P
 Differentiable Extensions

 A variant of Pompeiu function, of 1907
 Differentiable Extensions

Fix $r \in (0, 1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \le i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

(i) g(x) = ∑_{i=1}[∞] rⁱ(x - q_i)^{1/3} is continuous, "differentiable," strictly increasing, onto ℝ, with g'(q) = ∞ for all q ∈ Q.
(ii) h = g⁻¹: ℝ → ℝ is everywhere differentiable with h' ≥ 0 and Z = {x ∈ ℝ: h'(x) = 0} being a dense G_δ-set.
(iii) Z^c = ℝ \ Z is also dense in ℝ.

Pr. (i) Continuity follows from $|g(x)| \le \sum_{i=1}^{\infty} r^i (|x| + i + 1)$. Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y - x} \le 6\psi'_i(x)$.

(ii) and (iii) easily follow from (i).

 Diff
 Cont
 Monster
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions

 New simple construction of a differentiable monster

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If *h* is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

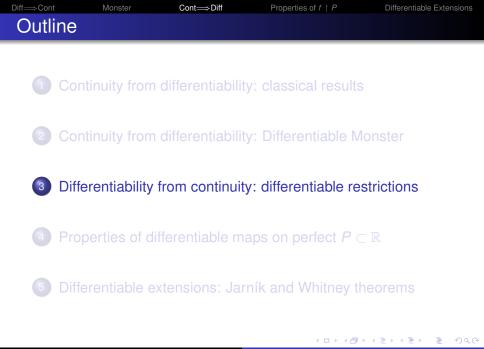
Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. h' > 0 on D.

Any *t* in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

Clearly *f* is differentiable with f'(x) = h'(x - t) - h'(x).

f' > 0 on t + D: f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0, as $t + d \in Z$.

 $f' < 0 \text{ on } D: f'(d) = h'(d-t) - h'(d) = -h'(d) < 0, \text{ as } d-t \in Z.$



 Diff
 Cont
 Monster
 Cont
 Properties of f | P
 Differentiable Extensions

 How much differentiability continuous map must have

None?

Example (Weierstrass Monster)

There exists continuous $F : \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Proof.

Put
$$F(x) = \sum_{n=0}^{\infty} 4^n \min\{|x - \frac{k}{8^n}| : k \in \mathbb{Z}\}.$$

Continuous at each $x \in \mathbb{R}$, since for every $y \in \mathbb{R}$ and $n \in \mathbb{N}$ $|f(y) - f(x)| \leq \left|\sum_{i=0}^{n} 4^{i} f_{i}(y) - \sum_{i=0}^{n} 4^{i} f_{i}(x)\right| + \frac{1}{2^{n}}.$

Not differentiable at $x \in \mathbb{R}$, since for every $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ with $x \in \left[\frac{k}{8^n}, \frac{k+1}{8^n}\right]$ there exists a $y_n \in \left\{\frac{k}{8^n}, \frac{k+1}{8^n}\right\} \setminus \{x\}$ such that $\left|\frac{f(x)-f(y_n)}{x-y_n}\right| \ge \left|\frac{f(\frac{k+1}{8^n})-f(\frac{k}{8^n})}{\frac{k+1}{8^n}-\frac{k}{8^n}}\right| = \left|\sum_{i=0}^{n-1} \frac{f_i(\frac{k+1}{8^n})-f_i(\frac{k}{8^n})}{\frac{k+1}{8^n}-\frac{k}{8^n}} 4^i\right| = \left|\sum_{i=0}^{n-1} \pm 4^i\right| \ge \frac{2}{3}4^{n-1}.$

 Diff
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions

 Differentiable restriction theorem
 Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f : \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f : \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) : [0, 1] \rightarrow [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.
 Diff
 Cont
 Monster
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions

 New proof of differentiable restriction theorem

Goal: If $f : \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new simple proof, by KC)

For every continuous increasing $f : [a, b] \to \mathbb{R}$ there is perfect P such that $f \upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma, proof is an easy exercise)

If $g : [a, b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c, d) of $\{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.$

Fact (Proved by induction)

Let a < b and \mathcal{J} be a family of open intervals with $\bigcup \mathcal{J} \subset (a, b)$. (i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{I \in \mathcal{J}} \ell(I) > \beta - \alpha$. (ii) If $I \in \mathcal{J}$ are pairwise disjoint, then $\sum_{I \in \mathcal{I}} \ell(I) \le b - a$.

Monster Proof of Lipschitz part

Diff ⇒Cont

Goal: If $f : \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P. Have: If $g: [a, b] \to \mathbb{R}$ is cont, then $g(c) \leq g(d)$ for every comp. (c, d) of $\{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a, b) : g(y) > g(x) \text{ for some } y \in (x, b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

Cont → Diff

 $\bar{a} = \sup\{x : [a, x) \subset U\}$. Fix $X = \{x_n : n \in \mathbb{N}\}$. Need $P \setminus X \neq \emptyset$.

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) > L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii), $\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$. So,

 $\sum_{J \in \mathcal{T}} \ell(J) \leq \frac{1}{I} \sum_{J \in \mathcal{T}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{I} < b - \bar{a}$, and by Fact (i), $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} . (□) (□)

Differentiable Extensions

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f | P
 Differentiable Extensions

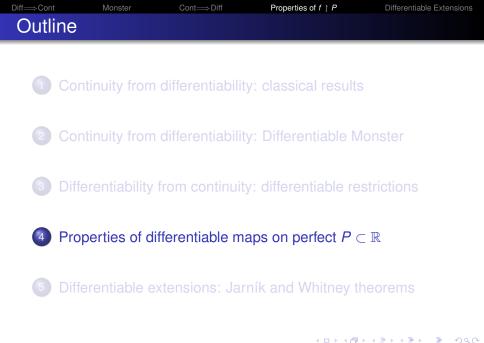
 End of proof of differentiable restriction theorem

Goal: If $f : \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q. Have: If $f : \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

f is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function $f \upharpoonright P$ use Morayne theorem to find perfect $Q \subset P$ such that the quotient map for $f \upharpoonright Q$ is uniformly continuous. Then Q is as needed.



Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good?

Not at all!

Monster

Example (Ciesielski & Jasinski 2016 example simplified)

There exists differentiable auto-homeomorphism \mathfrak{f} of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}' \equiv 0$.

Counterintuitive, as f is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y|$ for every $y \in \mathfrak{X}$ with small |x - y| > 0) but it maps compact \mathfrak{X} onto itself.

Actually, Lip $f(x) < \varepsilon$ for all $\varepsilon > 0$ and $x \in \mathfrak{X}$.

 $\mathfrak{f} = h \circ \sigma \circ h^{-1}$, where $h: 2^{\omega} \to \mathbb{R}$ is embedding and $\sigma: 2^{\omega} \to 2^{\omega}$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_{k} = 0 \text{ and } s_i = 1 \text{ for } i < k. \end{cases}$$

Diff \Rightarrow Cont Monster Cont \Rightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions Definition of $h: 2^{\omega} \rightarrow \mathbb{R}$ with $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

 $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}, \text{ where } N(s \upharpoonright 0) = 1 \text{ and } \\ N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1})2^{n-1} + 2^n \text{ for } n > 0.$

Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \restriction n)} \stackrel{(i)}{\leq} |h(s) - h(t)| \stackrel{(ii)}{\leq} 3 \cdot 3^{-(n+1)N(s \restriction n)}.$

Proof. For $h_n(s) = \sum_{k < n} 2s_k 3^{-(k+1)N(s|k)}$ we have $h_n(s) + 2s_n 3^{-(n+1)N(s|n)} \le h(s) \le h_n(s) + (2s_n + 1)3^{-(n+1)N(s|n)}$, as $h(s) = h_n(s) + 2s_n 3^{-(n+1)N(s|n)} + 2\sum_{k > n} 3^{-(k+1)N(s|k)}$ and $0 \le 2\sum_{k > n} 3^{-(k+1)N(s|k)} \le 2\sum_{i=1}^{\infty} 3^{-[(n+1)N(s|n)+i]} = 3^{-(n+1)N(s|n)}$ So, (i): $|h(s) - h(t)| \ge 3^{-(n+1)N(s|n)}$; and (ii): $|h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s|n)}$. Diff \Rightarrow Cont Monster Cont \Rightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def: $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \mid n)}$, Have: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \mid n)} < |h(s) - h(t)| < 3 \cdot 3^{-(n+1)N(s \mid n)}$.

Also (a): $\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1$ for all n > k

as it fails only for
$$s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle.$$

Proof of $\mathfrak{f}' \equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ . \Box

Diff \Rightarrow Cont Monster Cont \Rightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions Must every orbit of f be dense in \mathfrak{X} ?

For a metric space $\langle X, d \rangle$ and a map $f \colon X \to X$

f is *pointwise contractive*, *PC*, if for every *x* ∈ *X* there is open *U* ∋ *x* and *L* ∈ [0, 1) s.t. Lip *f*(*x*) ≤ *L* for all *x* ∈ *U*.

Theorem (KC & JJ 2014: YES, essentially)

If $f: X \to X$ is onto, PC, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system, i.e., every orbit of $f \upharpoonright P$ is dense in P.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

f is *locally contractive, LC*, provided for every *x* ∈ *X* there is open *U* ∋ *x* s.t. *f* ↾ *U* is Lipschitz with constant < 1.

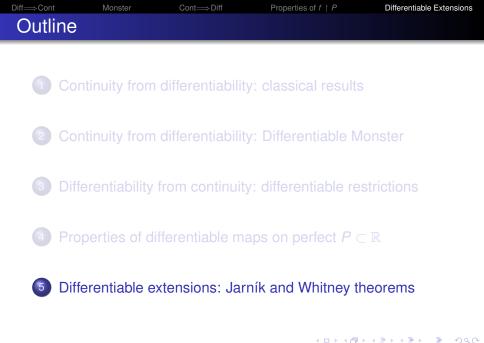
- $f: \mathfrak{X} \to \mathfrak{X}$ shows that connectedness is essential;
- True, when X is rectifiably path connected and f is PC:

Theorem (KC & JJ 2016)

Assume that $\langle X, d \rangle$ is compact rectifiably path connected metric space. If $f: X \to X$ is PC, then f has a unique fixed point.

(Variant of 1978 Hu and Kirk thm, corrected by Jungck in 1982.)

Compactness is essential, Hu and Kirk 1978: there is path connected X and PC map $f: X \to X$ with no periodic point.



 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↑ P
 Differentiable Extensions

 Notation

For J = (a, a + h) let $I_J = [a + h/3, a + 2h/3]$, middle third of J.

For closed $Q \subset \mathbb{R}$ and $f \colon Q \to \mathbb{R}$ let

 $\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$

 $\overline{f}: \mathbb{R} \to \mathbb{R}$ — "the" linear interpolation of $f, \hat{f} = \overline{f} \upharpoonright \hat{Q}$.

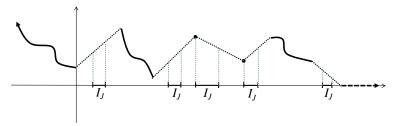


Figure: The linear interpolation \overline{f} of f, represented by thick curves.

Diff Cont Monster Cont Diff Properties of *f* \ *P* Differentiable Extensions

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f : Q \to \mathbb{R}$ has differentiable extension $F : \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné, přičemž zůstává zachována derivabilita funkce* (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

Independently proved in 1974 by Petruska and Laczkovich.

 Diff
 Cont
 Monster
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions

 Jarník and Whitney differentiable extension theorems

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f : Q \to \mathbb{R}$ has differentiable extension $F : \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff \hat{f} is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f : \mathbb{R} \to \mathbb{R}$ there is C^1 map $g : \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such *h*.

Diff \rightarrow Cont \rightarrow Diff Properties of f | P Differentiable Extensions Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: \mathbb{Q} \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then the unilateral derivatives of \overline{f} exist and are finite everywhere.

So, \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not in the set E of the end-points of connected components of $\mathbb{R} \setminus \tilde{Q}$.

Proof.

Clear, unless $x \in \tilde{Q} \setminus E$. Estimate is clear, unless $y \in (a, b)$ for a component of \tilde{Q}^c , when

$$\frac{|\overline{f}(y)-\overline{f}(x)|}{y-x}$$
 is between $\frac{|f(a)-f(x)|}{a-x}$ and $\frac{|f(b)-f(x)|}{b-x}$, so

$$f'(x) - \frac{|\overline{f}(y) - \overline{f}(x)|}{y - x} \bigg| \le \max\left\{ \left| f'(x) - \frac{|f(a) - f(x)|}{a - x} \right|, \left| f'(x) - \frac{|f(b) - f(x)|}{b - x} \right| \right\}$$

Diff Cont Monster Cont Properties of f | P Differentiable Extensions From linear interpolation to differentiable extension

Goal: Differentiable $f: Q \to \mathbb{R}$ has differ. extension $F: \mathbb{R} \to \mathbb{R}$. Have: Linear interpolation almost works. Solution: Small modification of linear interpolation, $F = \overline{f} + g$:

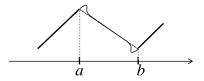


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

g must satisfy: $g \upharpoonright [a, b]$ is C^1 ,

(*) $D^+g(a) = \tilde{f}'(a) - \frac{\tilde{f}(b)-\tilde{f}(a)}{b-a}$ and $D^-g(b) = \tilde{f}'(b) - \frac{\tilde{f}(b)-\tilde{f}(a)}{b-a}$

Monster Format of a modifier g

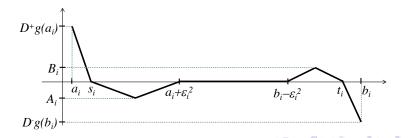
Diff ⇒Cont

 $\{(a_i, b_i): 1 < i < \kappa\}$ enumeration of components of Q^c ; need

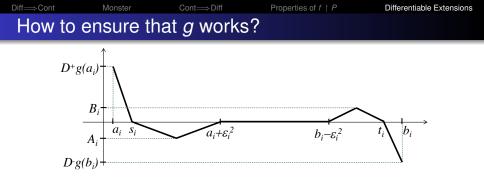
(*)
$$D^+g(a_i) = f'(a_i) - \frac{f(b_i) - f(a_i)}{b_i - a_i}, D^-g(b_i) = f'(b_i) - \frac{f(b_i) - f(a_i)}{b_i - a_i}$$

and g is small enough to preserve differentiability at Q.

 $g \upharpoonright [a_i, b_i]$ defined as $g(x) = \int_{a_i}^x h_i(r) dr$, where h_i is as in figure



Differentiable Extensions



For $\ell_i = \min\{1, b_i - a_i\}$ let $\varepsilon_i \in (0, 3^{-i}\ell_i)$ be such that

(a)
$$\left| \begin{array}{c} f'(a_i) - rac{f(x) - f(a_i)}{x - a_i} \end{array} \right| < 3^{-i} ext{ for every } x \in Q \cap [a_i - \varepsilon_i, a_i);$$

(b) $\left| \begin{array}{c} f'(b_i) - rac{f(x) - f(b_i)}{x - b_i} \end{array} \right| < 3^{-i} ext{ for every } x \in Q \cap (b_i, b_i + \varepsilon_i].$

Pick $s_i \in (a_i, a_i + \varepsilon_i^2)$ s.t. $\int_{a_i}^{s_i} |h_i(r)| dr = \frac{1}{2} |h_i(a_i)| (s_i - a_i) < \varepsilon_i^2$; A_i so that $\int_{a_i}^{a_i + \varepsilon_i^2} h_i(r) dr = 0$; similarly for t_i and B_i . Prove it works.

Diff ⇒Cont	Monster	Cont⇒Diff	Properties of $f \upharpoonright P$	Differentiable Extensions
Summary	/			

- $f: \mathbb{R} \to \mathbb{R}$ differentiable implies f' is continuous on big set.
- This is it: there is a Differentiable Monster.
- *f* : ℝ → ℝ continuous implies *f* ↾ *P* differentiable for a perfect *P* ⊂ ℝ.
- $f \upharpoonright P$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$.
- Differentiable *f* | *P* can be **very weird**!

That is all!

Thank you for your attention!

Krzysztof Chris Ciesielski

▲ 同 ▶ ▲ 臣 ▶ Differentiability versus continuity: monstrous examples

э