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Abstract

Definition (#6)

A selfmap f : X → X on a metric space 〈X , d〉 is Pointwise
Contractive, (PC) if for any x ∈ X there exist an εx > 0 and a
λx ∈ [0, 1) such that

d(f (x), f (y)) ≤ λxd(x , y) for every y ∈ B(x , εx).
The class PC is also known as Local Radial Contractions.

We discuss the following:

Theorem (KC & JJ, 2016)

If X is a compact rectifiably path connected space and
f : X → X is a pointwise contractive map then f has a unique
fixed point, that is, there exists a unique point ξ ∈ X such that
f (ξ) = ξ .

We will present it in the context of classical fixed point results
for other classes of local and pointwise contractive maps.
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Global Classics

Definition (#1)

A function f : X → X is called Contractive, (C), if there exists a
constant 0 ≤ λ < 1 such that for any two elements x , y ∈ X we
have d(f (x), f (y)) ≤ λd(x , y).

Theorem (Banach, 1922)

If (X , d) is a complete metric space and f : X → X is (C), then f
has a unique fixed point.
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Global Classics

Definition (#2)

A function f : X → X is called Shrinking, (S), if for any two
elements x , y ∈ X , x 6= y we have d(f (x), f (y)) < d(x , y).

Theorem (Edelstein, 1962)

If 〈X , d〉 is compact and f : X → X is (S), then f has a unique
fixed point.
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Local Classics

Definition (#3)

A function f : X → X is called Locally Shrinking, (LS), if for any
element z ∈ X there exists an εz > 0 such that f |̀B(z, εz) is
shrinking, i.e. for any two x 6= y ∈ B(z, εz) we have
d(f (x), f (y)) < d(x , y).

Theorem (Edelstein, 1962)

Let 〈X , d〉 be compact and let f : X → X.

(i) If f is (LS), then f has a periodic point.

(ii) If f is (LS) and X is connected, then f has a unique fixed
point.
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Local Classics

Definition (#4)

A function f : X → X is called uniformly Pointwise Contracting,
(uPC), (a.k.a. uniform Local Radial Contractions) if there exists
a λ ∈ [0, 1) such that for every z ∈ X there exists an εz > 0
such that for any element x ∈ B(z, εz) we have
d(f (x), f (z)) ≤ λd(x , z).

Theorem (Hu and Kirk, 1978; proof corrected by Jungck, 1982)

If 〈X , d〉 is a rectifiably path connected complete metric space
and a map f : X → X is (uPC), then f has a unique fixed point.
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Local Classics

Definition (#5)

A function f : X → X is called Uniformly Locally Contracting,
(ULC), if there exist a λ ∈ [0, 1) and an ε > 0 such that for every
z ∈ X the restriction f |̀B(z, ε) is contractive with that λ.

Theorem (Edelstein, 1961)

Assume that 〈X , d〉 is complete and that f : X → X is (ULC)
If X is connected, then f has a unique fixed point.
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Local Properties

Classes of Locally, (L) (two variables) OR Pointwise, (P) (one
variable)
AND Contractive, (C) (with λ) OR Shrinking, (S) (no λ)
make the following diagram:

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(UPC) (uPC) (PC)

(UPS) (PS)

Remark: (ULS)=(UPS) and (ULC)=(UPC).
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Local Properties

Therefore,

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)

is the real picture.
So where are the fixed point theorems?
Of course it depends on the space X .

Krzysztof Chris Ciesielski and Jakub Jasinski Locally contractive maps and fixed point theorems



Summary of Local Properties with Fixed Points

All spaces X are assumed to be complete.

(Edelstein (LS) + X compact and connected

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)comp.
&conn.

(uPC) (PC)

(PS)
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Summary of Local Properties with Fixed Points

(Edelstein (LS) + X compact and connected

Edelstein (ULC) + X connected

(C) (ULC)conn. (uLC) (LC)

(S) (ULS) (LS)comp.
&conn.

(uPC) (PC)

(PS)
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Summary of Local Properties with Fixed Points

(Edelstein (LS) + X compact and connected
Edelstein (ULC) + X connected
Hu & Kirk (uPC) & X rectifiably path connected (r.p.c.)

(C) (ULC)conn. (uLC) (LC)

(S) (ULS) (LS)comp.
&conn.

(uPC)r .p.c. (PC)

(PS)
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Recent

Recall,

Definition (#6)

A function f : X → X is called Pointwise Contractive, (PC), if for
every z ∈ X there exist λz ∈ [0, 1) and an εz > 0 such that
d(f (x), f (z)) ≤ λd(x , z) whenever x ∈ B(z, ε).

Theorem (C & J, Top. and its App. 204 2016 70-78)

Assume that 〈X , d〉 is compact and rectifiably path connected.
If f : X → X is (PC), then f has a unique fixed point.
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Local Properties with Fixed Points

(Edelstein (LS) and X compact and connected
Edelstein (ULC) and X connected
Hu & Kirk (uPC) and X rectifiably path connected.

KC & JJ (PC) and X rectifiably path connected and compact

(C) (ULC)conn.
E (uLC) (LC)

(S) (ULS) (PC)comp.
&conn.

(uPC)r .p.c. (PC)r .p.c.
&comp.

(PS)
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Necessity of compactness of X

Recall,

Theorem (KC & JJ, 2016)

If X is a compact rectifiably path connected space and
f : X → X is a (PC) map then f has a unique fixed point, that is, there
exists a unique pointξ ∈ X such thatf (ξ) = ξ .

Example (Munkres, 1974)

The map f : R→ R, f (x) = 1
2

(
x +

√
x2 + 1

)
has no periodic

points because f (x) > x for all x ∈ X . It is (PC), in fact, f is from
the class (S) ∩ (LC). This follows from the MVT because

f ′(x) = 1
2

(

1 + x√
x2+1

)

hence, for any a ∈ R,

f ′[(−∞, a]] = (0, c] for some c ∈ (0, 1).
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Necessity of compactness X

Definition (#7)

A map f : X → X is uniformly Locally Contractive, (uLC) if there
exists a λ ∈ [0, 1) such for every z ∈ X there is an εx > 0 so
that d(f (x), f (y)) ≤ λd(x , y) for any two x , y ∈ B(z, εx).

Example (Rakotch, 1962)

There exists a closed, connected subset X ⊂ R2 and a map
f : X → X which is (uLC) but every forward-orbit of f is
divergent. So f has no periodic points.
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Necessity of connectedness of X

For a selfmap f on 〈X , d〉 and a limit point x ∈ X , let

D∗f (x) = lim supy→x
d(f (x),f (y))

d(x ,y) ,

and for isolated point x we set D∗f (x) = 0. D∗ is called as
absolute derivative by Charatonik and Insall.

Remark

For f : X → X ,

f is (PC) iff D∗f (x) < 1 for all x ∈ X .

f is (uPC) iff sup{D∗f (x) : x | ∈ X} < 1

Example (KC & JJ, 2016)

There exists a compact perfect (Cantor-like) set X ⊆ R and an
auto-homeomorphism f : X→ X with D∗f′ ≡0 (so f is (uPC) with
any λ ∈ (0, 1)) and without periodic points.
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No periodic points Examples

(C) (ULC) (uLC)conn.
Rakotch (LC)

(S) (ULS) (LS)

(uPC)comp.
CJ (PC)

(PS)
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Open Problems

(C) (ULC) (uLC)conn.
R (LC)

(S) (ULS) (LS)

(uPC)comp.
CJ (PC)comp.

&conn.

(PS)comp.
&conn.

Problem (1)

Assume that 〈X , d〉 is compact and either connected or path
connected. If the map f : 〈X , d〉 → 〈X , d〉 is (PC), must f have
either fix or periodic point? What if f is (PS)?
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Open Problem

(C) (ULC) (uLC)conn.
R (LC)

(S) (ULS) (LS)

(uPC)comp.
&conn. (PC)comp.

&conn.

(PS)comp.
&conn.

Problem (2)

Assume that 〈X , d〉 is compact and either connected or path
connected. If the map f : 〈X , d〉 → 〈X , d〉 is (uPC), must f have
either fix or periodic point?
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Open Problem

(C) (ULC) (uLC)conn.
R (LC)

(S) (ULS) (LS)

(uPC)comp.
&conn. (PC)comp.

&conn.

(PS)comp.
&r .p.c.

Problem (3)

Assume that 〈X , d〉 is compact and rectifiably path connected.
If the map f : 〈X , d〉 → 〈X , d〉 is (PS), must f have either fix or
periodic point?
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Main Theorem Proof Outline

Recall,

Theorem (C & J, 2016)

Assume that 〈X , d〉 is compact and rectifiably path connected.
If f : X → X is (PC), then f has a unique fixed point.

PROOF (outline). For x , y ∈ X and a rectifiable path
p : [a, b] → X , p(a) = x , p(b) = y let
`(p) = sup{

∑
i<n d(ti , ti+1) : n < ω and

a = t0 < t1 < ... < tn = b}.
Define D0 : X 2 → [0,∞),
D0(x , y) = inf{`(p) : p is a rectifiable path from x to y}.
We need to show:

(1) D0 is a metric on X ;
(2) 〈X , D0〉 is complete;
(3) There exists x̄ ∈ X such that

D0(x̄ , f (x̄)) = L = inf{D0(x , f (x)) : x ∈ X};
(4) L = 0.
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(3)

Even when 〈X , d〉 is compact, 〈X , D0〉 does not need to be. Let
X be the Topologist’s Sine Curve with arc. Then 〈X , d〉 with
standard metric from R2, is compact but 〈X , D0〉 is not. It’s
actually homeomorphic with [0,∞). So (3) is not obvious.

Figure: Topologist’s Sine Curve with arc.
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Proof of (3)

(3) There exists x̄ ∈ X such that
D0(x̄ , f (x̄)) = L = inf{D0(x , f (x)) : x ∈ X}.

Let 〈xn ∈ X : n < ω〉 be a sequence with
limn→∞ D0(xn, f (xn)) = L. We have:

Theorem (Menger 1930)

In a metric space X, if there is a rectifiable path in X from x to
y, then there is a geodesic, i.e. a path with minimal length `, in
X from x to y.

so for every n < ω there exists a path pn : [0, 1] → X from xn to
f (xn) with range Pn ⊆ X and `(pn) = D0(xn, f (xn)).
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We have the following:

Theorem (Myers 1945)

Let 〈X , d〉 be a compact metric space and, for any n < ω, let
pn : [0, 1] → X be a rectifiable path such that
`(pn � [0, t ]) = t`(pn) for any t ∈ [0, 1]. If
L = lim infn→∞ `(pn) < ∞, then there exists a subsequence
〈pnk : k < ω〉 converging uniformly to a rectifiable path
p : [0, 1] → X with `(p) ≤ L.

WLOG, by reparametrizing our pn, we can assume that for any
t ∈ [0, 1], `(pn � [0, t ]) = t`(pn).
So by the Myers’ Theorem there exists a subsequence
〈pnk : k < ω〉 converging uniformly to a rectifiable path
p : [0, 1] → X with `(p) ≤ L.
Take x̄ = p(0) = limk→∞ pnk (0) = limk→∞ xnk , then p is from x̄
to p(1) = limk→∞ pnk (1) = limk→∞ f (xnk ) = f (x̄).
So, D0(x̄ , f (x̄)) ≤ `(p) ≤ L, that is, x̄ satisfies (3).
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Thank you
for your attention.
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