Differentiable pointwise contractive minimal dynamical systems

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on a joint work with Jakub Jasinski

see http://www.math.wvu.edu/~kcies/publications.html

Dynamical Systems session of the 51st Spring Topology and Dynamical Systems Conference, March 10, 2017

Krzysztof Chris Ciesielski & Jakub Jasinski

Vifferentiable pointwise contractive minimal dynamics

- K.C. Ciesielski and J. Jasinski, On closed subsets of ℝ and of ℝ² admitting Peano functions, Real Anal. Exchange 40(2) (2015), 309–317.
- K.C. Ciesielski and J. Jasinski, An auto-homeomorphism of a Cantor set with zero derivative everywhere, J. Math. Anal. Appl. 434(2) (2016), 1267–1280.
- K.C. Ciesielski and J. Jasinski, On fixed points of locally and pointwise contracting maps, Topology Appl. 204 (2016), 70–78;
- K.C. Ciesielski and J. Jasinski, *Fixed point theorems for* maps with local and pointwise contraction properties, 57 pages, Canad. J. Math., in print.

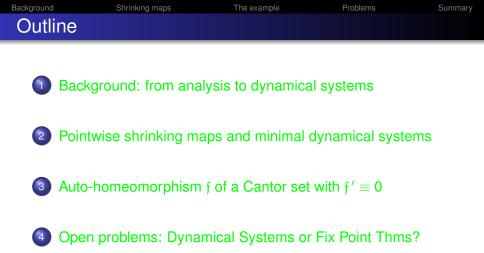
Warning!

In this lecture *differential dynamical systems* means

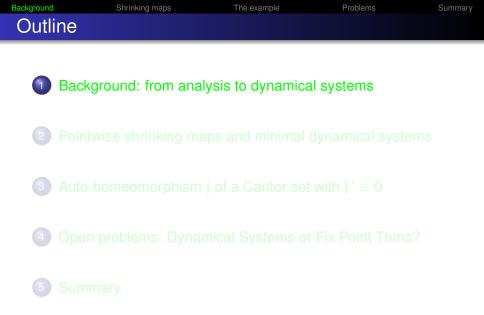
a study of any self-map f of a metric space $\langle X, d \rangle$ s.t.

 $D^*f(x) = \lim_{y \to x} rac{d(f(y), f(x))}{d(y, x)} \in \mathbb{R}$ exists for every $x \in X$.

- $\langle X, d \rangle$ need not be a manifold!
- The "derivative" D^*f need not be continuous.



< 同 > < 臣 > < 臣



For perfect $P \subset \mathbb{R}$,

(Q1) Can surjective continuous map $f: P \rightarrow P^2$ be differentiable?

- No for P of positive Lebesgue measure, e.g., for P = [0, 1].
- [KC & JJ 2014]: Yes, if we allow unbounded sets *P*.
 Such an *f* can even have a C[∞] extension *F* : ℝ → ℝ².
- [KC & JJ 2014]: No, if *P* is compact and *f* is extendable to a C^1 map $F \colon \mathbb{R} \to \mathbb{R}^2$.

Still Open Problem

Pr1: Question (Q1) when P is compact of measure 0.

 Background
 Shrinking maps
 The example
 Problems

 From Peano problem Pr1 to dynamical systems
 Theorem (KC & JJ 2014)
 Theorem (KC & JJ 2014)

If $\langle f, g \rangle \colon P \to P^2$ is a differentiable surjection, then f[K] = P, where $K = \{x \in P \colon f'(x) = 0\}$.

Proof.

f is countable-to-one on the F_{σ} set $P \setminus K$.

K need not be compact. But can it be?

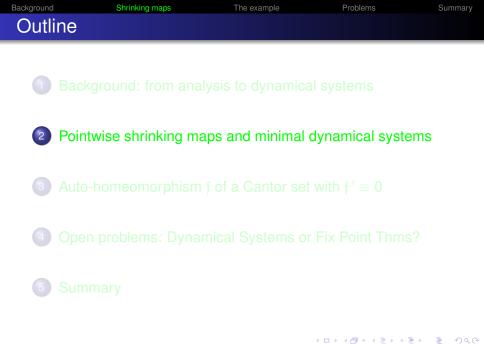
(Q2) Does there exist $f \colon K \to \mathbb{R}$, with $K \subset \mathbb{R}$ compact perfect, such that $f' \equiv 0$ and $K \subseteq f[K]$?

Fact (corollaries from the theorems we will discuss)

 For every f as in (Q2) there is a perfect P ⊂ K s.t. f ↾ P is a minimal dynamical system (i.e., the orbit of every x ∈ P is dense in P = f[P]).

• There exist a minimal system $f: P \rightarrow P$ with $f' \equiv 0$.

Summary



Background Shrinking maps The example Problems Summary
From shrinking maps to minimal dynamics

For a metric space $\langle X, d \rangle$ and a map $f \colon X \to X$

- *f* is *pointwise shrinking*, *PS*, if for every $x \in X$ there is open $U \ni x$ such that d(f(x), f(y)) < d(x, y) for all $y \in U$, $y \neq x$.
- If $X \subset \mathbb{R}$ and |f'| < 1 everywhere, then *f* is *PS*.

Theorem (KC & JJ 2014)

If $f: X \to X$ is onto, PS, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \rightarrow X$ is LS and X is compact, then f has a periodic point,

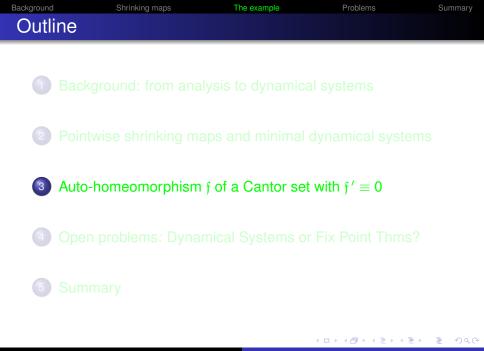
f is *locally shrinking, LS*, provided for every *y* ∈ *X* there is open *U* ∋ *y* s.t. *f* ↾ *U* is *shrinking*, that is, *d*(*f*(*x*), *f*(*x'*)) < *d*(*x*, *x'*) for every distinct *x*, *x'* ∈ *U*.

 $\langle X, d \rangle$ is infinite compact, $f: X \to X$ is pointwise shrinking

Thm: There is perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamics.

This is proved by showing the following facts:

- $T \subseteq X$ infinite compact & $T \subset f[T]$, imply T is uncountable. ($T \subset f[T]$ for no countable T of Cantor-Bendixon rank $\alpha < \omega_1$.)
- 2 $F_m = \{x \in P : f^{(m)}(x) = x\}$ is finite for every $m \in \mathbb{N}$.
- So For every orbit O(x) of $x \in F = \bigcup_{m \in \mathbb{N}} F_m$, $f[B(O(x), \varepsilon)] \subseteq B(O(x), \varepsilon)$ for every small enough $\varepsilon > 0$.
- There is open $U \supset F$ s.t. $T = X \setminus U$ is infinite & $T \subset f[T]$.
- Sind minimal P in {P ⊂ T: compact ≠ Ø s.t. P ⊂ f[P]}. (Exists by Zorn's Lemma—Birkhoff's argument.) Such P is as needed.



(Q2) Does there exist $f: K \to \mathbb{R}$, with $K \subset \mathbb{R}$ compact perfect, such that $f' \equiv 0$ and $K \subseteq f[K]$?

Yes to (Q2) implies that

there is minimal dynamics \mathfrak{f} on a Cantor set $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0.$

Would you believe, that such f could exist?

We did not:

・ 同 ト ・ ヨ ト ・ ヨ ト

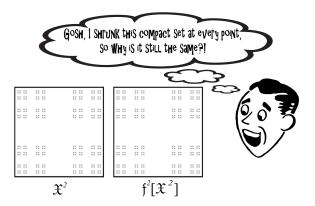


Figure: The result of the action of $\mathfrak{f}^2=\langle\mathfrak{f},\mathfrak{f}\rangle$ on $\mathfrak{X}^2=\mathfrak{X}\times\mathfrak{X}$

イロト イポト イヨト イヨト

э

Background Shrinking maps The example Problems Summary ... Nevertheless, we proved: Theorem (KC & JJ 2016) There exists a compact perfect set $\mathfrak{X} \subset \mathbb{R}$ and a differentiable bijection $\mathfrak{f}: \mathfrak{X} \to \mathfrak{X}$ such that $\mathfrak{f}' \equiv 0$ on \mathfrak{X} . Moreover, (i) \mathfrak{f} is a minimal dynamical system (i.e., the \mathfrak{f} -orbit $O(x) = \{\mathfrak{f}^{(n)}(x): n \in \omega\}$ of every $x \in \mathfrak{X}$ is dense in \mathfrak{X}); (ii) \mathfrak{f} can be extended to a differentiable function $F: \mathbb{R} \to \mathbb{R}$.

Format of \mathfrak{f} : For some continuous injection $h: 2^{\omega} \to \mathbb{R}$,

$$\mathfrak{X} = h[2^{\omega}]$$
 and $\mathfrak{f} = h \circ \sigma \circ h^{-1} \colon \mathfrak{X} \to \mathfrak{X}$, where

 $\sigma\colon \mathbf{2}^\omega\to\mathbf{2}^\omega$ is an "add one and carry," odometer-like action:

for
$$s = \langle s_0, s_1, s_2, \ldots \rangle \in 2^{\omega}$$
, $\sigma(s) = s + \langle 1, 0, 0, \ldots \rangle$, i.e.

 $\sigma(1,1,1,\ldots) = \langle 0,0,0,\ldots \rangle$

 $\sigma(1,\ldots,1,0,\boldsymbol{s}_{k+1},\boldsymbol{s}_{k+2},\ldots) = \langle 0,\ldots,0,1,\boldsymbol{s}_{k+1},\boldsymbol{s}_{k+2},\ldots\rangle.$

Background Shrinking maps The example Problems Summary Properties of $\mathbf{f} = \mathbf{h} \circ \sigma \circ \mathbf{h}^{-1} : \mathfrak{X} \to \mathfrak{X}$.

- (i) f is minimal since f⁽ⁿ⁾ = h ∘ σ⁽ⁿ⁾ ∘ h⁻¹: density of the orbits of σ implies the same for f.
- (ii) f can be extended to a differentiable function $F : \mathbb{R} \to \mathbb{R}$: follows immediately from a theorem of Jarník.

Delicate part: to choose *h* which ensures that $f' \equiv 0$.

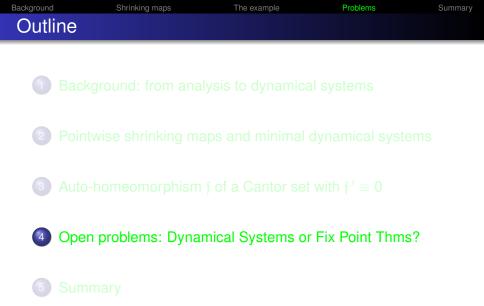
For appropriately chosen $c_{\tau} \in \mathbb{R}, \tau \in 2^{<\omega}$, it is of the form

$$h(s) = \sum_{n < \omega} s_n c_{s \restriction n}$$
 for every $s \in 2^\omega$.

Choice: tricky, based on 3 series with different convergence rates.

Checking $f' \equiv 0$: a bit tedious, but elementary.

白マ イビマ イビン 一切



- 4 同 ト 4 回 ト 4 回 ト

The example

Can \mathfrak{X} from main example be (path) connected?

Open Problem (Pr2)

Let $\langle X, d \rangle$ be compact & either **connected** or **path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point? What if *f* is *PC* or *uPC*, where

f is *pointwise contractive, PC*, if for every $x \in X$ there are open $U \ni x$ and $\lambda \in [0, 1)$ s.t. $d(f(x), f(y)) \le \lambda d(x, y)$ for all $y \in U$;

f is *uPC*, if there is $\lambda \in [0, 1)$ s.t. for every $x \in X$ there is open $U \ni x$ for which $d(f(x), f(y)) \le \lambda d(x, y)$ for all $y \in U$.

The example

What is known on Problem Pr2

Pr2: For X compact & either **connected** or **path connected**, if $f: X \rightarrow X$ is *PS/PC/uPC*, must *f* have fix/periodic point?

- $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ shows that connectedness is essential;
- True, when X is rectifiably path connected and f is PC:

Theorem (KC & JJ 2016)

Assume that $\langle X, d \rangle$ is compact rectifiably path connected metric space. If $f: X \to X$ is PC, then f has a unique fixed point.

This is variant of 1978 theorem of Hu and Kirk 1978 (corrected by Jungck in 1982) proved without compactness of X, but with a stronger assumption that f is *uniformly PC, UPC*.

Compactness is essential: Hu and Kirk 1978 gave an example of path connected X and uPC map $f: X \to X$ with no periodic point.

Open Problem (Pr3)

Let $\langle X, d \rangle$ be compact and **rectifiably path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point?

Pr2 and Pr3 are the only open problems in our comprehensive study of ten classes of self-maps on metric spaces $\langle X, d \rangle$ with the local and pointwise (a.k.a. local radial) contraction properties.

The relations among the classes, assuming different topological properties of X, are represented as graphs, a sample of which is shown below.

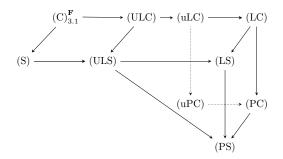
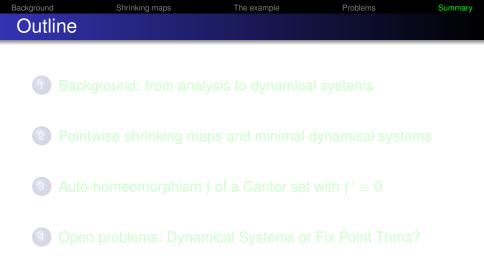


Figure: The relations between the local contractive and shrinking properties for the maps $f: X \to X$, with X being an arbitrary complete metric space.



 If surjection *f*: X → X is *PS* and X is infinite compact, then there is a perfect *P* ⊂ X s.t. *f* ↾ *P* is a minimal dynamical system.

- There exist compact perfect X ⊂ R and bijection f: X → X
 s.t. f' ≡ 0 on X and f is a minimal dynamical system.
- If ⟨X, d⟩ is compact rectifiably path connected and f: X → X is PC, then f has a unique fixed point.

 Background
 Shrinking maps
 The example
 Problems
 Summary

 Summary:
 open problems on self maps
 Summary

- Let $\langle X, d \rangle$ be compact and **rectifiably path connected**. If $f: \langle X, d \rangle \rightarrow \langle X, d \rangle$ is *PS*, must *f* have fix/periodic point?.
- So For X compact & either connected or path connected, if $f: X \to X$ is *PS/PC/uPC*, must *f* have fix/periodic point?

We do not even know, what happens in the problems when *X* is a (topologically) manifold!

(Though, the maps must have fix points when the metric on X is convex.)

That is all!

Thank you for your attention!

Krzysztof Chris Ciesielski & Jakub Jasinski

< 🗇 🕨

- ∢ ⊒ →

ъ