Path-value functions for which Dijkstra's algorithm returns optimal mapping

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

Based on a joint work with Alexandre Xavier Falcão and Paulo A. V. Miranda

MIPG Seminar, UPenn, December 15, 2016

Dijkstra Algorithm, DA: Why should you care?

- It is one of the fastest algorithms used in image precessing, including image segmentation:
 (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform.
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

Q: In what other situations DA can be used?

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable
- I started search for necessary and sufficient conditions
- Indeed, I found such conditions
- In the process, I found also that
 - "sufficient" conditions in [FSL] are not sufficient!
 - (Practical conclusions from [FSL] seem to be intact.)

What's ahead: Talk's outline

- 1 The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- Final Remarks
- 6 Summary

Outline

- The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- Summary

Definitions and notation needed for DA

- G = ⟨V, E⟩ finite directed graph
 (Applications and our examples use simple grids.)
- Path (in G): $p = \langle v_0, \dots, v_\ell \rangle$, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$; $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$; $\Pi_G - \text{all paths in } G$.
- Path cost function: a map ψ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$, \prec is either < or >.
- DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(v) = \min_{\leq} \{ \psi(p) \colon p \text{ is a path to } v \}$$

Examples of path cost functions ψ

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

• Fuzzy connectedness: given affinity map $\psi \colon E \to [0,1]$, seeks for maximizers (i.e., \leq -minimizers with \leq being \geq): $\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \leq j \leq \ell} \psi(v_{j-1}, v_j) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1 \text{ if } v_0 \in S, \quad \psi_{\min}(\langle v_0 \rangle) = 0 \text{ if } v_0 \notin S$

• Shortest path (classic DA): given distance $\omega_E \colon E \to [0, \infty)$,

$$\begin{aligned} & \psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \le j \le \ell} \omega_E(v_{j-1}, v_j) & \text{for } \ell > 0 \\ & \psi_{\text{sum}}(\langle v_0 \rangle) = 0 & \text{if } v_0 \in S, & \psi_{\text{sum}}(\langle v_0 \rangle) = \infty & \text{if } v_0 \notin S \end{aligned}$$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

More examples of path cost functions ψ

- Watershed transform: given altitude map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{peak}}(\langle v_0, \dots, v_\ell \rangle) = \max_{1 \le j \le \ell} \{h(v_0), \omega_V(v_j)\} \quad \text{for } \ell > 0$ $\psi_{\text{peak}}(\langle v_0 \rangle) = h(v_0) \text{ for some } h, \ h(v_0) \ge \omega_V(v_0) \text{ for } v_0 \in V$ seeks for minimizers (i.e., \preceq -minimizers with \preceq being \le)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\mathrm{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\mathrm{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\mathrm{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$ seeks for minimizers (i.e., \preceq -minimizers with \preceq being \leq)

Yet another example of a path cost function ψ

• The last value: given a map $\omega_V \colon V \to [0, \infty)$,

$$\psi_{\mathrm{last}}(\langle v_0,\ldots,v_\ell\rangle)=\omega_V(v_\ell) \quad \text{for } \ell>0$$
 $\psi_{\mathrm{last}}(\langle v_0\rangle)=\omega_V(v_0) \text{ if } v_0\in\mathcal{S}, \quad \psi_{\mathrm{last}}(\langle v_0\rangle)=\infty \text{ if } v_0\notin\mathcal{S}$ seeks for minimizers (i.e., \prec -minimizers with \prec being $<$)

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

Dijkstra Algorithm, DA, aiming to find ψ -optimal map

```
Data: G = \langle V, E \rangle and \psi from \Pi_G to \langle [-\infty, \infty], \prec \rangle
   Result: an array \sigma[], aiming for being \psi-optimal map
   Additional: an array \pi[] of paths, such that, at any time,
                   for any v \in V, \pi[v] is a path to v with \sigma[v] = \psi(\pi[v])
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \psi(\pi[v]) / \star \text{ init.}
2 H ← V
3 while H \neq \emptyset do
                                                  /* the main loop
        remove an element w of arg \leq-min<sub>u\in H</sub> \sigma[u] from H
        foreach x such that \langle w, x \rangle \in E do
            \sigma' \leftarrow \psi(\pi[\mathbf{w}]^{\hat{}}\mathbf{x})
         if \sigma[x] \succ \sigma' then \sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^x
```

5

6

Outline

- The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- 4 What is in [FSL] paper
- 5 Final Remarks
- Summary

Special paths

For fixed $\psi \colon \Pi_G \to \mathbb{R}$ and a path $p = \langle v_0, \dots, v_\ell \rangle \in \Pi_G$ to v, let

$$\Psi(\langle v_0,\ldots,v_\ell\rangle)=\max_{\leq}\{\psi(\langle v_0,\ldots,v_i\rangle)\colon i=0,1,\ldots,\ell\}.$$

We say that p

- is ψ -optimal if it is \leq -minimal, that is, provided $\psi(p) \leq \psi(q)$ for any other path $q \in \Pi_G$ to ν ;
- is *hereditarily* ψ -optimal provided every initial segment $\langle v_0, \dots, v_k \rangle$, $k \leq \ell$, of p is ψ -optimal;
- is *hereditarily optimal, HO*, provided it is hereditarily ψ -optimal and $\Psi(\langle v_0, \dots, v_k \rangle) \leq \Psi(p)$ for every $k \leq \ell$ and hereditarily ψ -optimal p to v_k ;
- is Ψ -minimal (in a strong sense) provided $\Psi(p_v) \prec \Psi(q^*v)$ for every $q^*v \in \Pi_G$ such that $\psi(p_v) \prec \psi(q^*v)$ and q is either empty or HO.

More terminology

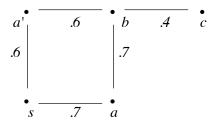
A path $p = \langle v_0, \dots, v_\ell \rangle \in \Pi_G$ to v

- has the replacement property (R) provided $\psi(\langle v_0, \dots, v_i \rangle) = \psi(q^{\hat{}}v_i)$ for every $i \in \{1, \dots, \ell\}$ and every HO path $q \in \Pi_G$ to v_{i-1} ;
- is *monotone* provided $\psi(\langle v_0, \dots, v_i \rangle) \leq \psi(\langle v_0, \dots, v_j \rangle)$ whenever $0 \leq i \leq j \leq \ell$;
- is *hereditarily* ψ -optimal monotone, HOM, provided it is both hereditarily ψ -optimal and monotone.

Remark

Every HOM path $p_V = \langle v_0, \dots, v_\ell \rangle \in \Pi_G$ is a Ψ -minimal HO path.

Examples: for FC cost ψ_{min} with $S = \{s\}$



- $\langle s, a, b \rangle$ is hereditarily ψ_{\min} -optimal
- ullet $\langle oldsymbol{s}, oldsymbol{a}', oldsymbol{b}
 angle$ is not ψ_{min} -optimal
- $\langle s, a, b, c \rangle$ is hereditarily ψ_{min} -optimal
- $\langle s, a', b, c \rangle$ is ψ_{min} -optimal but not hereditarily

Facts related to special paths

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map f s.t.

(I) $\psi(p\hat{\ }v) = f(\psi(p), a, v)$ for any path p to a and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

(R*)
$$\psi(\langle v_0, \dots, v_{\ell} \rangle) \leq \psi(q \hat{\ } v_{\ell})$$
 all paths $\langle v_0, \dots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \dots, v_{\ell-1} \rangle) \leq \psi(q)$.

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path

The theorem for **DA**

Theorem

Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function. If

(E) for every $v \in V$ there exists a Ψ -minimal HO path to v with the replacement property,

then $\sigma[]$ returned by **DA** is guaranteed to be ψ -optimal;

$$\pi[]$$
 returned by **DA**: $\pi[v] = \langle v_0, \dots, v_\ell \rangle$ is HO path to v ; $\pi[v_i] = \langle v_0, \dots, v_i \rangle$ for every $i \in \{0, \dots, \ell\}$.

Conversely, if

(M) $\psi(q) \leq \psi(p)$ for every path p and its initial segment q,

then $\sigma[]$ returned by **DA** cannot be ψ -optimal,

unless for every v there is a hereditarily ψ -optimal path to v.

 ψ_{last} satisfies (E) but is not monotone!

Corollary: Characterization Theorem

Corollary

If $\psi \colon \Pi_G \to \mathbb{R}$ satisfies (M) and

(R)
$$\psi(p) = \psi(q \hat{\ } v)$$
 for every HOM $p = \langle v_0, \dots, v_\ell \rangle$ & q to $v_{\ell-1}$,

then $\sigma[]$ returned by **DA** is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

Practical consequences

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

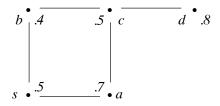
DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \dots, v_\ell \rangle) = \psi(q \hat{\ } v_\ell)$ for all optimal paths $\langle v_0, \dots, v_\ell \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \dots, v_{\ell-1} \rangle) \leq \psi(q)$.

So, (E) holds.

Another consequence



Corollary

DA need not return optimal map for Barrier Distance ψ_{dif} .

PROOF. No hereditarily ψ_{dif} -optimal path from $S = \{s\}$ to d.

As ψ_{dif} satisfies (M), the result follows from the Theorem.

Outline

- 1 The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- 6 Summary

Problems with **DA** for general path costs

Consider graph $s \longleftrightarrow a$

Put
$$\psi(\langle s \rangle) = .2$$
, $\psi(p) = 0$ for any other path from s , and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no hereditary ψ -optimal path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL]

DA returns optimal $\sigma[]$

<code>DA*</code>, which cannot return cycles for any ψ

Algorithm 1: DA*, aiming to find the ψ -optimal map

```
Data: G = \langle V, E \rangle and \psi from \Pi_G to \langle [-\infty, \infty], \preceq \rangle
   Result: an array \sigma[], aiming for being \psi-optimal map
   Additional: an array \pi[] of paths, such that, at any time,
                   for any v \in V, \pi[v] is a path to v with \sigma[v] = \psi(\pi[v])
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \psi(\pi[v]) /* init.
2 H ← V
3 while H \neq \emptyset do
                                                       /* the main loop
        remove an element w of arg \leq-min<sub>u \in H</sub> \sigma[u] from H
4
        foreach x such that \langle w, x \rangle \in E and x \in H do
5
            \sigma' \leftarrow \psi(\pi[\mathbf{w}]^{\hat{}}\mathbf{x})
         if \sigma[x] \succ \sigma' then \sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^x
```

Main Theorem for DA*: no cycles

Theorem

Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function.

- If $\pi[]$ is returned by **DA***, then, for every $v \in V$, $\pi[v] = \langle v_0 \dots, v_\ell \rangle$ is a path to v with no repetitions such that $\pi[v_i] = \langle v_0 \dots, v_i \rangle$ for every $i \in \{0, \dots, \ell\}$.
- If (E) holds, then $\sigma[]$ returned by **DA*** is guaranteed to be the ψ -optimal map. Moreover, the returned map $\pi[]$ consists of hereditary ψ -optimal paths.
- Conversely, $\sigma[]$ returned by **DA*** cannot be ψ -optimal, unless for every $v \in V$ there exists a hereditary ψ -optimal path to v.

Outline

- The algorithm
- Characterization Theorem for DA
- BA*: a slight modification of DA
- 4 What is in [FSL] paper
- 5 Final Remarks
- 6 Summary

Smooth functions from [FSL]

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^{\hat{}}v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \leq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path r to w, $\psi(r\hat{\ }v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Properties C1*-C3*: hereditary versions of C1-C3

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0,\ldots,v_k\rangle) \leq \psi(p)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q(v_{k+1}, \dots, v_{\ell})) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q\hat{\ }v_{k+1})=\psi(\langle v_0,\ldots,v_{k+1}\rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

A. The proof in [FSL], using C1*-C3*, is incorrect!

C1-C3 does not imply C1*-C3*

Example

Graph: $\{0, \dots, 5\} \times \{0, \dots, 5\}$ with 4-adjacency.

Seed: s = (0, 0). Problem: minimization, i.e., \leq is \leq .

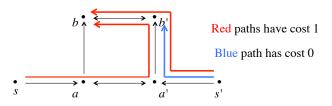
If **s** appears in $p = \langle v_0, \dots, v_{\ell} \rangle$ only as v_0 :

 $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise.

 $\psi(p) = 100$ for all other paths p.

- $\psi(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v}
- C1-C3 are satisfied (by any path of length ≥ 5)
- C1*-C2* are not satisfied (only s admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

C1*-C3* do not imply good behavior of DA or DA*



 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

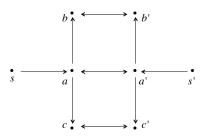
- to a $v \in \{s, s', a, a'\}$ or having repeated vertices;
- $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

May terminate with suboptimal σ : Starting with $\langle s, a \rangle$ and $\langle s', a' \rangle$

May terminate with optimal σ : Starting with $\langle s, a, a' \rangle$

Stronger example: σ cannot be optimal



 $\psi(p) = 1$ for any p from $\{s, s'\}$ of the form $(\psi(p) = 0$ otherwise):

- to a $v \in \{s, s', a, a'\}$ or having repeated vertices;
- $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.
- $\langle \ldots, a', c', c \rangle$, $\langle s', a', c' \rangle$, $\langle \ldots, a, c, c' \rangle$, or $\langle s, a, c \rangle$.

Outline

- 1 The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- Summary

Final tune-ups

If ψ , like ψ_{\min} , ψ_{sum} , and ψ_{peak} , satisfies

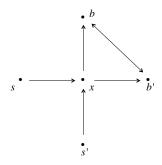
(I) $\psi(p\hat{\ }v) = f(\psi(p), a, b)$ for any path p to a and edge $\langle a, b \rangle$,

then, in **DA** and **DA***, there is no need to store paths in $\pi[]$. The similar trick can be used for $\psi_{\textit{dif}}$.

If ψ satisfies (M), " $x \in H$ " in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA***, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

Is the replacement requirement necessary?



$$S = \{s, s'\}$$
; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and b' admits no optimal path with the replacement property.

DA and **DA*** return optimal maps:

with
$$\pi[b] = \langle s', x, b', b \rangle$$
 or $\pi[b'] = \langle s, x, b, b' \rangle$

Outline

- The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- Summary

Summary

- For some classes of path cost functions ψ , we found a necessary and sufficient conditions on ψ , for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

Thank you for your attention!