Problems

Lineability and additivity cardinals for real-valued functions: old results and new developments

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Partially based on a joint work with J.L. Gámez-Merino, D. Pellegrino, and J.B. Seoane-Sepúlveda

14th Conference on Function Theory on Infinite Dimensional Spaces, Madrid, Spain, February 8–11, 2016

1

1 Lineability in terms of cardinal coefficients $\mathcal L$

Additivity number A vs lineability coefficients L

4 Different levels of surjectivity: the newest results

1 Lineability in terms of cardinal coefficients $\mathcal L$

- 2 Additivity number A vs lineability coefficients \mathcal{L}
- 3 Darboux-like functions
- 4 Different levels of surjectivity: the newest results
- 5 Some interesting open problems

▲ 同 ▶ ▲ 臣 ▶

 #s L
 # A
 D-like maps
 Surjectivity
 Problems

 General lineability problem, studied in the last decade

Given a vector space W and $M \subset W$ let

 $\mathcal{V}(M) = \{ V \subset M \cup \{0\} \colon V \text{ is a subspace of } W \}$

How big dim(V) can be, when $V \in \mathcal{V}(M)$?

Inconvenience: $\lambda(M) \stackrel{\text{df}}{=} \max\{\dim(V) : V \in \mathcal{V}(M)\}\ \text{may not exist.}$

Problem better expressed via lineability number

 $\mathcal{L}(M) = \min\{\kappa \colon \neg \exists V \in \mathcal{V}(M)(\kappa = \dim(V))\} \stackrel{\text{if } \lambda(M) \text{ exists}}{=} \lambda(M)^+$

Clearly $0 < \mathcal{L}(M) \leq \dim(M)^+$ for any $M \subset W$.

M is μ -lineable when $\mu < \mathcal{L}(M)$.

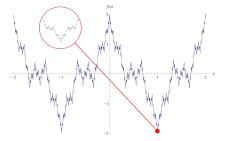
The systematic investigation of lineability started around 2004.

Warming up examples: # 1

For W = C([0, 1]) and ND – the Weierstrass' monsters:

 $ND = \{f \in W : f \text{ is nowhere differentiable}\}$

Surjectivity



Jiménez-Rodríguez, Muñoz-Fernández, Seoane-Sepúlveda 2013: $\mathcal{L}(ND)$ has the maximal possible value of dim $(W)^+$:

 $\mathcal{L}(ND) = \mathfrak{c}^+$

Problems

For $W = \mathbb{R}^{\mathbb{R}}$ and sSZ – surjective Sierpiński-Zygmund (i.e., surjective with $f \upharpoonright X$ discontinuous for every $X \in [\mathbb{R}]^{c}$)

K. Płotka 2015, implicitly: under GCH sSZ is 2^c-lineable: $\mathcal{L}(sSZ) = (2^c)^+$ (Balcerzak, KC, Natkaniec 1997) it is consistent with ZFC that $sSZ = \emptyset$: $\mathcal{L}(sSZ) = 1$ (KC, Pawlikowski 2004) under *Covering Property Axiom* CPA $sSZ = \emptyset$: $\mathcal{L}(sSZ) = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Problems

 $\mathcal{V}_{\tau}(M) = \{ V \subset M \cup \{ 0 \} : V \text{ is a } \tau \text{-closed subspace of } W \}$

 $\mathcal{L}_{\tau}(M) = \min\{\kappa \colon \neg \exists V \in \mathcal{V}_{\tau}(M)(\kappa = \dim(V))\}$

M is μ -spacable when $\mu < \mathcal{L}_{\tau}(M)$.

For $W = \mathbb{R}^X$ with $X = \mathbb{R}^n$: τ_u and τ_p are topologies of uniform and pointwise convergence; $\mathcal{L}_u = \mathcal{L}_{\tau_u}$ and $\mathcal{L}_p = \mathcal{L}_{\tau_p}$

Clearly

$$\mathcal{L}_{p}(M) \leq \mathcal{L}_{u}(M) \leq \mathcal{L}(M)$$

Define also

 $m\mathcal{L}(M) = \min\{\dim(V): V \text{ is a maximal linear subspace of } M \cup \{0\}\}$ Clearly $m\mathcal{L}(M) < \mathcal{L}(M)$

4

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 $oldsymbol{1}$ Lineability in terms of cardinal coefficients $\mathcal L$

Additivity number A vs lineability coefficients L

- 3 Darboux-like functions
- 4 Different levels of surjectivity: the newest results
- 5 Some interesting open problems

A (1) > (1) > (1)

 #s L
 #A
 D-like maps
 Surjectivity
 Problems

 Additivity number A(M), studied extensively in 1990s

For a vector space *W* over field *K* (usually $K = \mathbb{R}$) and $M \subset W$:

 $A(M) = \min(\{|F|: F \subset W \& (\forall w \in W)(w + F \not\subset M)\} \cup \{|W|^+\})$

 $\operatorname{st}(M) = \{ w \in W \colon (K \setminus \{0\}) w \subset M \}$

Proposition

If $\emptyset \neq M \subsetneq W$, then

- $2 \leq A(M) \leq |W|$ and $m\mathcal{L}(M) < \mathcal{L}(M) \leq \dim(W)^+$
- 2 if st(M) = M and A(M) > |K|, then

 $A(M) \le \mathsf{m}\mathcal{L}(M) < \mathcal{L}(M) \le \dim(W)^+$

ъ

・ロト ・ 理 ト ・ ヨ ト ・

Full comparison of A, m \mathcal{L} , and \mathcal{L}

#s £.

Theorem (K.C, Gámez-Merino, Pellegrino, Seoane-Sepúlveda)

Surjectivity

For a vector space W over K with $\dim(W) \ge \omega$

• if $\emptyset \neq \operatorname{st}(M) = M \subsetneq W$ (commonly satisfied), then

D-like maps

 $A(M) \le \mathsf{m}\mathcal{L}(M) < \mathcal{L}(M) \le \dim(W)^+$

• Conversely, for any cardinals α , μ , and λ with

 $|K| < \alpha \leq \mu < \lambda \leq \dim(W)^+$

there exists $M \subsetneq W$ with $0 \in M = st(M)$ such that

 $A(M) = \alpha$, m $\mathcal{L}(M) = \mu$, and $\mathcal{L}(M) = \lambda$

Little else is known about $m\mathcal{L}$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Problems

#s <i>L</i>	# A	D-like maps	Surjectivity	Problems
Outline				

1) Lineability in terms of cardinal coefficients ${\cal L}$

2 Additivity number A vs lineability coefficients \mathcal{L}

4 Different levels of surjectivity: the newest results

5 Some interesting open problems

(E)

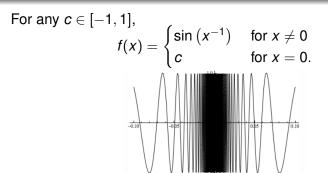
These maps have some properties of continuous functions

- D(X): *f* is *Darboux* (has the Intermediate Value Property) if f[K] is connected for every connected $K \subseteq X$
- Conn(X): *f* is a *connectivity* map if $f \upharpoonright Z$ is connected in $Z \times \mathbb{R}$ for any connected $Z \subseteq X$
 - AC(X): *f* is *almost continuous* if for each open $U \subseteq X \times \mathbb{R}$ with $f \subset U$ there is a $g \in C(X)$ with $g \subset U$
 - Ext(X): *f* is *extendable* provided there is an $F \in \text{Conn}(X \times [0, 1])$ such that f(x) = F(x, 0) for every $x \in X$
 - PC(X): f is *peripherally continuous* if for every $x \in X$, open $U \ni x$, and open $V \ni f(x)$, there is open $W \subset U$ with $x \in W$ and $f[bd(W)] \subset V$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Example of discontinuous Darboux $f : \mathbb{R} \to \mathbb{R}$

D-like maps



Actually, this f belongs to all Darboux-like classes of functions

since it is Baire class one, \mathcal{B}_1 , and (on \mathbb{R})

Brown, Humke, Laczkovich, 1988:

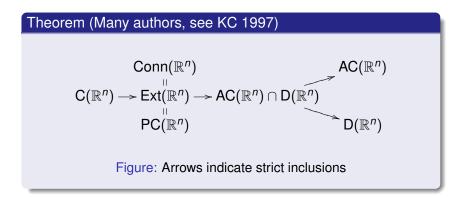
#s (

 $\mathsf{Ext} \cap \mathcal{B}_1 = \mathsf{AC} \cap \mathcal{B}_1 = \mathsf{Conn} \cap \mathcal{B}_1 = \mathsf{D} \cap \mathcal{B}_1 = \mathsf{Ext} \cap \mathcal{B}_1 = \mathsf{PC} \cap \mathcal{B}_1$

Problems

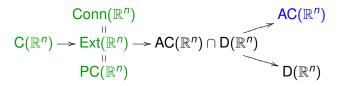
Surjectivity

(More important case of n = 1 we discuss latter.)



ヘロト ヘアト ヘヨト

A and \mathcal{L} values for Darboux-like maps on \mathbb{R}^n , n > 1



Theorem

• $A(\operatorname{Conn}(\mathbb{R}^n)) = A(\operatorname{Ext}(\mathbb{R}^n)) = A(\operatorname{PC}(\mathbb{R}^n)) = A(\operatorname{D}(\mathbb{R}^n)) = 1$

• $\mathfrak{c}^+ \leq A(AC(\mathbb{R}^n)) \leq 2^{\mathfrak{c}}$ is all that can be proved in ZFC

Theorem (K.C, Gámez-Merino, Pellegrino, Seoane-Sepúlveda)

•
$$\mathcal{L}_{u}(\mathcal{F}) = \mathcal{L}_{\rho}(\mathcal{F}) = \mathcal{L}(\mathcal{F}) = \mathfrak{c}^{+}$$
 for $\mathcal{F} \in {C(\mathbb{R}^{n}), PC(\mathbb{R}^{n})}$

• $\mathcal{L}_{\rho}(\mathcal{F}) = \mathcal{L}(\mathcal{F}) = (2^{\mathfrak{c}})^+$ for $\mathcal{F} \in \{\mathsf{AC}(\mathbb{R}^n), \mathsf{D}(\mathbb{R}^n)\}$

Problem: Find precise value of $\mathcal{L}(AC(\mathbb{R}^n) \cap D(\mathbb{R}^n))$

 $\begin{array}{cccc} \text{H} & \text{Index} & \text{H} & \text{Index} & \text{Surjectivity} \\ \hline \text{More Darboux-like functions } f \colon \mathbb{R} \to \mathbb{R} \\ \end{array}$

- CIVP *f* has *Cantor intermediate value property* if for every x < y and perfect *K* between f(x) and f(y) there is a perfect set $C \subset (x, y)$ with $f[C] \subset K$
- SCIVP *f* has *strong* CIVP if for every x < y and perfect *K* between f(x) and f(y) there is a perfect set $C \subset (x, y)$ such that $f[C] \subset K$ and $f \upharpoonright C$ is continuous
- WCIVP *f* has *weak* CIVP if for every $x, y \in \mathbb{R}$ with f(x) < f(y) there exists a perfect set *C* between *x* and *y* such that $f[C] \subset (f(x), f(y))$

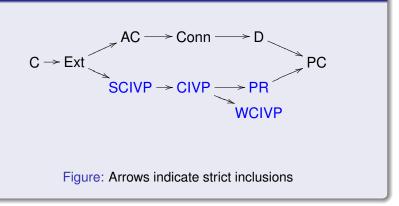
PR *f* has *perfect road* if for every $x \in \mathbb{R}$ there is a perfect set $P \subset \mathbb{R}$ having *x* as a bilateral limit point for which $f \upharpoonright P$ is continuous at *x*.

ヘロト 人間 ト ヘヨト ヘヨト

Problems

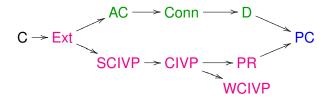
 $\begin{array}{cccc} \text{Burger L} & \text{Burger L} & \text{Burger L} & \text{Burger L} & \text{Surjectivity} \\ \hline \text{Darboux-like maps } f: \mathbb{R} \to \mathbb{R} \text{: inclusions} \\ \end{array}$

Theorem (Many authors, see KC 1997)



Problems

 $\begin{array}{cccc} \text{# A} & \text{ D-like maps $Surjectivity $Problems$} \\ \hline \textbf{A} \text{ and } \mathcal{L} \text{ values for Darboux-like maps } f \colon \mathbb{R} \to \mathbb{R} \\ \end{array}$



Theorem (K.C, Gámez-Merino, Pellegrino, Seoane-Sepúlveda)

• $\mathcal{L}_{p}(\mathcal{F}) = (2^{\mathfrak{c}})^{+}$ for all Darboux-like classes \mathcal{F} except C.

Theorem

KC & Recław 1995: $A(PC) = 2^{c}$ and $A(\mathcal{F}) = c^{+}$ for $\mathcal{F} \in \{\text{Ext, SCIVP, CIVP, WCIVP, PR}\}$ KC & A. Miller 1994: $c^{+} \leq A(AC) = A(\text{Conn}) = A(D) \leq 2^{c}$ is all that can be proved in ZFC

・ 同 ト ・ ヨ ト ・ ヨ ト

#s \mathcal{L} # A D-like maps Surjectivity Problems A vs \mathcal{L} : connection deeper than just $\mathcal{A}(M)^+ \leq \mathcal{L}(M)$

 $A(Ext)^+ = \mathfrak{c}^{++}$ needs not be equal $\mathcal{L}(Ext) = (2^{\mathfrak{c}})^+$.

Still, proof of $\mathcal{L}(Ext) = (2^{\mathfrak{c}})^+$ is based on proof of $A(Ext) = \mathfrak{c}^+$:

Proposition (Basis for proving A(Ext) > c)

There is a family $\mathcal{F} \in \mathbb{R}^{\mathbb{R}}$ of cardinality \mathfrak{c} and a family $\{M_f \colon f \in \mathcal{F}\}$ of pairwise disjoint subsets of \mathbb{R} such that • if $g \upharpoonright M_f = f \upharpoonright M_f$, for some $f \in \mathcal{F}$, then $g \in \mathsf{Ext}$.

Proof of $\mathcal{L}(\mathsf{Ext}) > 2^{\mathfrak{c}}$: Can assume f(x) = 0 for $f \in \mathcal{F}$ & $x \notin M_f$.

Then $V = \{\sum_{f \in \mathcal{F}} h(f) \cdot f : h \in \mathbb{R}^{\mathcal{F}}\}$ proves 2^c-lineability of Ext.

イロト 不得 とくほ とくほ とうほ

#s <i>L</i>	# A	D-like maps	Surjectivity	Problems
Outline	;			
1 Lir	eability in te	rms of cardinal coe	efficients $\mathcal L$	
2 Ad	ditivity numb	er A vs lineability c	coefficients \mathcal{L}	
3 Da	rboux-like fu	nctions		

4 Different levels of surjectivity: the newest results

ъ

★ E → ★ E →

< 🗇 >

 $\begin{array}{cccc} \text{Hall Problems} & \text{Surjectivity} & \text{Problems} \\ \hline \textbf{Classes of surjective maps } f \colon \mathbb{R} \to \mathbb{R} \text{: definitions} \\ \end{array}$

S: f is surjective if $f[\mathbb{R}] = \mathbb{R}$;

ES: *f* is *everywhere surjective* if $f[(a, b)] = \mathbb{R}$ for every a < b;

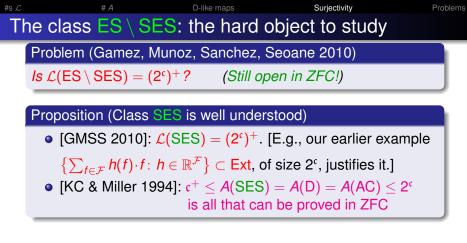
SES: *f* is *strongly everywhere surjective* if $|(f^{-1}(y) \cap (a, b)| = c$ for every a < b and $y \in \mathbb{R}$;

 $F_{<\mathfrak{c}}$: $f \in F_{<\mathfrak{c}}$ if $|(f^{-1}(y)| < \mathfrak{c}$ for every $y \in \mathbb{R}$;

SZ: *f* is *Sierpiński-Zygmund* if $f \upharpoonright X \notin C(X)$ for every $X \in [\mathbb{R}]^{c}$;

Basic interrelations:

- SES \subseteq ES \subseteq S, ES \subseteq D, SZ \subseteq $F_{<\mathfrak{c}}$;
- SES \cap SZ = \emptyset , ES \cap SZ \subset ES \setminus SES;
- It is independent of ZFC that $ES \cap SZ = S \cap SZ = \emptyset$;
- $\mathsf{ES} \cap F_{<\mathfrak{c}} \subsetneq \mathsf{ES} \setminus \mathsf{SES}$.



Results from [Bartoszewicz, Bienias, Głąb, Natkaniec, 2016?] and (implicitly) [Płotka 2015] imply that

 $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) = (2^{\mathfrak{c}})^+$ is consistent with ZFC.

Our new results show considerably more!

 $\frac{\mathcal{L}}{\mathcal{A}(\mathsf{ES} \setminus \mathsf{SES})} \text{ and more on } \mathcal{L}(\mathsf{ES} \setminus \mathsf{SES})$

Theorem (Ciesielski & Gamez & Seoane 2016)

ES \ SES is \mathfrak{c}^+ -lineable, that is, $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) > \mathfrak{c}^+$

So, $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) = (2^{\mathfrak{c}})^+$ follows from $2^{\mathfrak{c}} = \mathfrak{c}^+$

Theorem (Ciesielski & Gamez & Seoane 2016)

If c is regular, then $A(ES \setminus SES) \le c$. In particular,

 $A(ES \setminus SES)^+ < \mathcal{L}(ES \setminus SES)$ in "almost all" models of ZFC.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Problems

$\frac{\# A}{Proof of A(ES \setminus SES)} \leq \mathfrak{c}, \text{ assuming } \mathfrak{c} \text{ is regular}$

Put
$$\mathbb{R} = \{ \mathbf{r}_{\xi} \colon \xi < \mathfrak{c} \}$$
 and $\mathbf{A}_{\xi} = \{ \mathbf{r}_{\zeta} \colon \zeta < \xi \}.$

Then $F = \{ r \chi_{A_{\varepsilon}} + y : r, y \in \mathbb{R} \& \xi < \mathfrak{c} \}$ justifies the result.

To see this, an fix $g \in \mathbb{R}^{\mathbb{R}}$. Need to show $g + F \not\subset \mathsf{ES} \setminus \mathsf{SES}$.

Indeed, $g = g + \chi_{A_0} \in g + F$. If $g \in SES$, we are done.

So, assume not. Fix a, b, y with $A = g^{-1}(y) \cap (a, b) \in [\mathbb{R}]^{<\mathfrak{c}}$.

Pick $\xi < \mathfrak{c}$ with $A \subset A_{\xi}$ and $0 \neq r \in \mathbb{R} \setminus (g - y)[A_{\xi}]$.

Then $g - y - r\chi_{A_{\varepsilon}} \in g + F$.

But $(a, b) \cap (g - y - r\chi_{A_{\xi}})^{-1}(0) = \emptyset$, that is, $g - y - r\chi_{A_{\xi}} \notin \mathsf{ES}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\begin{array}{c|cccc} \text{ # } A & & \text{ D-like maps $Surjectivity P roblems P roof of $\mathcal{L}(ES \setminus SES) > \mathfrak{c}^+$ is based on two results: $$ \end{tabular}$

Fact (easy remark)

 $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) > \mathfrak{c}^{\kappa}$ for every $\kappa < \mathfrak{c}$.

Proof: Use
$$\left\{\sum_{f\in\mathcal{F}} h(f) \cdot f : h \in \mathbb{R}^{\mathcal{F}}\right\}$$
, for natural $\mathcal{F}, |\mathcal{F}| = \kappa$.

Lemma (seems easy and natural; it is natural, but ...)

If \mathfrak{c} is regular, then $\mathcal{L}(\mathsf{ES} \cap F_{<\mathfrak{c}}) > \mathfrak{c}^+$.

Proof of $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) > \mathfrak{c}^+$:

• If \mathfrak{c} is regular, then $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) \ge \mathcal{L}(\mathsf{ES} \cap F_{<\mathfrak{c}}) > \mathfrak{c}^+$

• If c is singular, then $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) > \mathfrak{c}^{\mathsf{cof}(\mathfrak{c})} \ge \mathfrak{c}^+$

イロト 不得 とくほ とくほ とうほ

$\begin{array}{c|cccc} \text{Proof of } \mathcal{L}(ES \cap F_{<\mathfrak{c}}) > \mathfrak{c}^+, \text{ assuming } \mathfrak{c} \text{ is regular} \end{array} \\ \end{array} \\ \end{array}$

Enough to show that if $\mathcal{G} \subset (\mathsf{ES} \cap F_{<\mathfrak{c}}) \cup \{0\}$ is linear with $|\mathcal{G}| \le \mathfrak{c}$, then \mathcal{G} can be further extended.

By induction we find $f \in \mathbb{R}^{\mathbb{R}}$ with $f - \mathcal{G} \subset \mathsf{ES} \cap F_{<\mathfrak{c}}$. (So, $f \notin \mathcal{G}$.)

Then $\mathbb{R}(f - \mathcal{G}) \subset (\mathsf{ES} \cap F_{<\mathfrak{c}}) \cup \{0\}$ is a desired extension of \mathcal{G} .

Finding *f*, an easy inductive argument? ... True. But wait! Doesn't this **CONTRADICT** $A(ES \cap F_{<c}) \leq \mathcal{L}(ES \setminus SES) \leq c$? It seems: there is $G \in [\mathbb{R}^{\mathbb{R}}]^{\mathfrak{c}}$ with $f - G \not\subset ES \cap F_{<\mathfrak{c}}$ for every $f \in \mathbb{R}^{\mathbb{R}}$ Luckily, our \mathcal{G} is special: is contained in $(ES \cap F_{<\mathfrak{c}}) \cup \{0\}$.

So, maybe construction of f is not that straightforward, after all?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $\begin{array}{cccc} \text{ ** } A & \text{ D-like maps } & \text{ Surjectivity } & \text{ Problems} \\ \hline \textbf{News on } A(\mathcal{F} \cap \textbf{Darboux-like}) \text{ for } \mathcal{F} \in \{\textbf{SES}, \textbf{ES}, \mathcal{S}\} \end{array}$

Theorem

For every $\mathcal{F} \in \{SES, ES, \mathcal{S}\}$ we have

•
$$A(\mathcal{F} \cap \mathcal{G}) = A(\mathcal{G}) = \mathfrak{c}^+$$
 for $\mathcal{G} \in \{\mathsf{Ext}, \mathsf{SCIVP}, \mathsf{CIVP}, \mathsf{PR}\};$

• $\mathfrak{c}^+ \leq A(\mathcal{F} \cap \mathcal{G}) = A(\mathcal{F}) = A(AC) = A(Conn) = A(D) \leq 2^{\mathfrak{c}}$ for every $\mathcal{G} \in \{AC, Conn, D, PC, \mathbb{R}^{\mathbb{R}}\}.$

Relatively new components: $A(SES \cap Ext) \ge c^+$

 $A(S) \le A(SES)$ & $A(SES) \le A(SES \cap AC)$

伺 とくき とくき とう

#s <i>L</i>	# A	D-like maps	Surjectivity	Problems
Outline	9			
🚺 Li	neability in ter	ms of cardinal coef	ficients $\mathcal L$	

- 2 Additivity number A vs lineability coefficients $\mathcal L$
- 3 Darboux-like functions
- 4 Different levels of surjectivity: the newest results
- 5 Some interesting open problems

(문)(문)

< 🗇 >

- Can $\mathcal{L}(\mathsf{ES} \setminus \mathsf{SES}) = (2^{\mathfrak{c}})^+$ be proved in ZFC?
- 2 Can we prove $A(ES \setminus SES) \le c$ in ZFC?

What else can be said about $A(ES \setminus SES)$ or $A(ES \cap F_{<c})$?

• Are numbers $A(D \cap SZ)$, $A(ES \cap SZ)$, and $A(S \cap SZ)$ provably (in ZFC) equal?

What about $\mathcal{L}(D \cap SZ)$, $\mathcal{L}(ES \cap SZ)$, and $\mathcal{L}(S \cap SZ)$?

• Under what conditions $A(M) = m\mathcal{L}(M)$?

ヘロン 人間 とくほ とくほ とう

That is all!

Thank you for your attention!

23

ъ

★ E → ★ E →

< 🗇 🕨

- K.C. Ciesielski, J.L. Gamez-Merino, D. Pellegrino, and J.B. Seoane-Sepulveda, Lineability, spaceability, and additivity cardinals for Darboux-like functions, Linear Algebra Appl. 440 (2014), 307-317.
- Survey: K.C. Ciesielski, Set Theoretic Real Analysis, J. Appl. Anal. 3(2) (1997), 143-190.
- K.C. Ciesielski, J.L. Gamez-Merino, and J.B. Seoane-Sepulveda, Darboux and Sierpiński-Zygmund functions and related lineability questions, draft.
- For the *existence* (non-constructive) of a c-dimensional linear uubspace of Weierstrass' monsters see also: Fonf, Gurariy, and Kadets (1999) or Rodriguez-Piazza (1999).

・ 回 ト ・ ヨ ト ・ ヨ ト