Characterization of the path cost functions for which Dijkstra algorithm returns desired optimal mapping

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

work in progress

MIPG Seminar, UPenn, December 17, 2015

A Thm 1 DA* [FSL] Remarks Summary

Dijkstra Algorithm, DA: Why should you care?

- It is one of the fastest algorithms used in image precessing, including image segmentation:
 (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking tasks
- Any other uses?

Q: In what other situations DA can be used?

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable
- I started search for necessary and sufficient conditions
- Indeed, I found such conditions
- In the process, I found also that
 - "sufficient" conditions in [FSL] are not sufficient!
 - (Practical conclusions from [FSL] seem to be intact.)

DA Thm 1 DA* [FSL] Remarks Summary

What's ahead: Talk's outline

- 1 The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- 6 Summary

Outline

- The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- Final Remarks
- 6 Summary

Definitions and notation needed for DA

- G = ⟨V, E⟩ finite directed graph
 (Applications and our examples use simple grids.)
- Path (in G): $p = \langle v_0, \dots, v_\ell \rangle$, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$; $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$; $\Pi_G - \text{all paths in } G$.
- Path cost function: a map $\hat{\psi}$ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$, \prec is either < or >.
- DA for $\hat{\psi}$ tries to find, for every $v \in V$, the $\hat{\psi}$ -maximizer:

$$\bar{\psi}(v) = \max_{\leq} \{\hat{\psi}(p) \colon p \text{ is a path to } v\}$$

Examples of path cost functions $\hat{\psi}$

 $\textit{G} = \langle \textit{V}, \textit{E} \rangle$ and non-empty $\textit{S} \subset \textit{V}$ are fixed

- Fuzzy connectedness: given affinity map $\psi \colon E \to [0,1]$, $\hat{\psi}_{\max}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} \psi(v_{j-1}, v_j)$ for $\ell > 0$ $\hat{\psi}_{\max}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\hat{\psi}_{\max}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$ seeks for maximizers (i.e., \preceq -maximizers with \preceq being \leq)
- Shortest path (classic DA): given distance $\psi \colon E \to [0, \infty)$, $\hat{\psi}_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \leq j \leq \ell} \psi(v_{j-1}, v_j) \quad \text{for } \ell > 0$ $\hat{\psi}_{\text{sum}}(\langle v_0 \rangle) = 0 \text{ if } v_0 \in S, \quad \hat{\psi}_{\text{sum}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$ seeks for minimizers (i.e., \preceq -maximizers with \preceq being \geq)

More examples of path cost functions $\hat{\psi}$

• Watershed transform: given altitude map $w: V \to [0, \infty)$, $\hat{\psi}_w(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le i \le \ell} w(v_i)$

seeks for minimizers (i.e.,
$$\leq$$
-maximizers with \leq being \geq)

• Barrier Distance transform: given map $w: V \to [0, \infty)$,

$$\hat{\psi}_B(\langle v_0,\ldots,v_\ell\rangle) = \max_{0 \le j \le \ell} w(v_j) - \min_{0 \le j \le \ell} w(v_j) \text{ for } \ell > 0$$

$$\hat{\psi}_B(\langle v_0 \rangle) = 0 \text{ if } v_0 \in S, \quad \hat{\psi}_B(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$$

seeks for minimizers (i.e., \leq -maximizers with \leq being \geq)

Dijkstra Algorithm, DA

4

5

6

Algorithm 1: DA, aiming to find the $\hat{\psi}$ -optimal map

```
Data: G = \langle V, E \rangle and \hat{\psi} from \Pi_G to \langle [-\infty, \infty], \preceq \rangle
   Result: an array \sigma[], aiming for being \hat{\psi}-optimal map
   Additional: an array \pi[] of paths, such that, at any time,
                    for any v \in V, \pi[v] is a path to v with \sigma[v] = \hat{\psi}(\pi[v])
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \hat{\psi}(\pi[v]) /* init.
2 H ← V
3 while H \neq \emptyset do
                                                          /* the main loop
        remove an element w of arg \leq-max<sub>u \in H</sub> \sigma[u] from H
        foreach x such that \langle w, x \rangle \in E do
          | \sigma' \leftarrow \hat{\psi}(\pi[w]^{\hat{}}x)  if \sigma[x] \prec \sigma' then \sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^{\hat{}}x
```

Outline

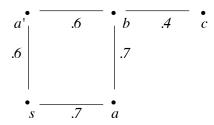
- The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- 6 Summary

Special paths

For fixed $\hat{\psi} \colon \Pi_G \to \mathbb{R}$, a path $p = \langle v_0, \dots, v_\ell \rangle \in \Pi_G$ to $v \colon$

- is $\hat{\psi}$ -optimal if it is \leq -maximal, that is, provided $\hat{\psi}(p) \succeq \hat{\psi}(q)$ for any other path $q \in \Pi_G$ to v;
- is *hereditarily* $\hat{\psi}$ -*optimal* provided every initial segment $\langle v_0, \dots, v_k \rangle$, $k \leq \ell$, of p is $\hat{\psi}$ -optimal;
- is *monotone* provided $\hat{\psi}(\langle v_0, \dots, v_i \rangle) \succeq \hat{\psi}(\langle v_0, \dots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is hereditarily $\hat{\psi}$ -optimal monotone, HOM, provided it is both hereditarily $\hat{\psi}$ -optimal and monotone;
- has the replacement property provided $\hat{\psi}(\langle v_0, \dots, v_i \rangle) = \hat{\psi}(q^{\hat{}}v_i)$ for every $i \in \{1, \dots, \ell\}$ and every HOM path $q \in \Pi_G$ to v_{i-1} .

Examples: for FC cost $\hat{\psi}_{max}$ with $S = \{s\}$



- $\langle s, a, b \rangle$ is hereditarily $\hat{\psi}_{\text{max}}$ -optimal
- $\langle s, a', b \rangle$ is not $\hat{\psi}_{\text{max}}$ -optimal
- ullet $\langle oldsymbol{s}, oldsymbol{a}, oldsymbol{b}, oldsymbol{c}
 angle$ is hereditarily $\hat{\psi}_{ extsf{max}}$ -optimal
- ullet $\langle oldsymbol{s}, oldsymbol{a}', oldsymbol{b}, oldsymbol{c}
 angle$ is $\hat{\psi}_{ extsf{max}}$ -optimal but not hereditarily

A **Thm 1 DA*** [FSL] Remarks Summary

Facts related to special paths

For costs $\hat{\psi}_{\text{max}}$, $\hat{\psi}_{\text{sum}}$, and $\hat{\psi}_{W}$ there is a map f s.t.

(I) $\hat{\psi}(p \hat{v}) = f(\hat{\psi}(p), a, v)$ for any path p to a and edge $\langle a, v \rangle$.

Any $\hat{\psi}$ -optimal path has replacement property if $\hat{\psi}$ satisfies (I).

 $\hat{\psi}_{\rm max},\,\hat{\psi}_{\it sum},$ and $\hat{\psi}_{\it W}$ have strong replacement property:

(R*)
$$\hat{\psi}(\langle v_0, \dots, v_{\ell} \rangle) \preceq \hat{\psi}(q \hat{v}_{\ell})$$
 all paths $\langle v_0, \dots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\hat{\psi}(\langle v_0, \dots, v_{\ell-1} \rangle) \preceq \hat{\psi}(q)$.

For $\hat{\psi}_{\text{max}}$, $\hat{\psi}_{\text{sum}}$, $\hat{\psi}_{\text{W}}$, and $\hat{\psi}_{\text{B}}$: (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for $\hat{\psi}_{\text{max}}$, $\hat{\psi}_{\text{sum}}$, and $\hat{\psi}_{W}$, every ν admits HOM path

DA **Thm 1 DA*** [FSL] Remarks Summary

The theorem for **DA**

Theorem

Let $\hat{\psi} \colon \Pi_{G} \to [-\infty, \infty]$ be a path cost function. If

(E) for every $v \in V$ there exists an HOM path to v with the replacement property,

then $\sigma[]$ returned by **DA** is guaranteed to be $\hat{\psi}$ -optimal;

$$\pi[]$$
 returned by **DA**: $\pi[v] = \langle v_0, \dots, v_\ell \rangle$ is HOM path to v ; $\pi[v_i] = \langle v_0, \dots, v_i \rangle$ for every $i \in \{0, \dots, \ell\}$.

Conversely, if

(M) $\hat{\psi}(q) \succeq \hat{\psi}(p)$ for every path p and its initial segment q, then $\sigma[]$ returned by **DA cannot be** $\hat{\psi}$ -optimal,

unless for every ${\sf v}$ there is a hereditarily $\hat{\psi}$ -optimal path to ${\sf v}$.

DA Thm 1 DA* [FSL] Remarks Summary

Corollary: First Characterization Theorem

Corollary

If $\hat{\psi} \colon \Pi_G \to \mathbb{R}$ satisfies (M) and

(R)
$$\hat{\psi}(p) = \hat{\psi}(q\hat{\ }v)$$
 for every HOM $p = \langle v_0, \dots, v_\ell \rangle$ & q to $v_{\ell-1}$,

then $\sigma[]$ returned by **DA** is the $\hat{\psi}$ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily $\hat{\psi}$ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

Practical consequences

Corollary

 $\hat{\psi}_{\text{sum}}$, $\hat{\psi}_{\text{max}}$, and $\hat{\psi}_{\text{W}}$ satisfy (E).

DA works correctly for these functions.

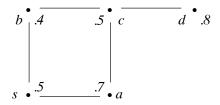
PROOF. (R*) implies:

• $\hat{\psi}(\langle v_0, \dots, v_\ell \rangle) = \hat{\psi}(q \hat{v}_\ell)$ for all optimal paths $\langle v_0, \dots, v_\ell \rangle$ and q to $v_{\ell-1}$ with $\hat{\psi}(\langle v_0, \dots, v_{\ell-1} \rangle) \leq \hat{\psi}(q)$.

So, (E) holds.

DA Thm 1 DA* [FSL] Remarks Summary

Another consequence



Corollary

DA need not return optimal map for Barrier Distance $\hat{\psi}_B$.

PROOF. No hereditarily $\hat{\psi}_B$ -optimal path from $S = \{s\}$ to d.

As $\hat{\psi}_B$ satisfies (M), the result follows from the Theorem.

Outline

- The algorithm
- Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- Final Remarks
- 6 Summary

DA Thm 1 DA* [FSL] Remarks Summary

Problems with **DA** for general path costs

Consider graph $s \longleftrightarrow a$

Put
$$\hat{\psi}(\langle s \rangle) =$$
 .2, $\hat{\psi}(p) =$ 1 for any other path from s , and

$$\hat{\psi}(p) = 0$$
 for p from a. For maximization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 $\hat{\psi}$ satisfies (R), in void, since there are no HOM paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL]

DA returns optimal $\sigma[]$

4

5

6

Algorithm 2: DA*, aiming to find the $\hat{\psi}$ -optimal map

```
Data: G = \langle V, E \rangle and \hat{\psi} from \Pi_G to \langle [-\infty, \infty], \preceq \rangle
   Result: an array \sigma[], aiming for being \hat{\psi}-optimal map
   Additional: an array \pi[] of paths, such that, at any time,
                    for any v \in V, \pi[v] is a path to v with \sigma[v] = \hat{\psi}(\pi[v])
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \hat{\psi}(\pi[v]) /* init.
2 H ← V
3 while H \neq \emptyset do
                                                         /* the main loop
        remove an element w of arg \leq-max<sub>u \in H</sub> \sigma[u] from H
        foreach x such that \langle w, x \rangle \in E and x \in H do
            \sigma' \leftarrow \hat{\psi}(\pi[\mathbf{w}] \hat{\mathbf{x}})
         if \sigma[x] \prec \sigma' then \sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^x
```

A Thm 1 DA* [FSL] Remarks

Main Theorem for DA*: no cycles

Theorem

Let $\hat{\psi} \colon \Pi_G \to [-\infty, \infty]$ be a path cost function.

- If $\pi[]$ is returned by **DA***, then, for every $v \in V$, $\pi[v] = \langle v_0 \dots, v_\ell \rangle$ is a path to v such that $\pi[v_i] = \langle v_0 \dots, v_i \rangle$ for every $i \in \{0, \dots, \ell\}$.
- If (E) holds, then $\sigma[]$ returned by **DA*** is guaranteed to be the $\hat{\psi}$ -optimal map. Moreover, the returned map $\pi[]$ consists of HOM paths.
- Conversely, $\sigma[]$ returned by **DA*** cannot be $\hat{\psi}$ -optimal, unless for every $v \in V$ there exists a HOM path to v.

Summary

Corollary: Second Characterization Theorem

We need to assume only (R), rather than (R)&(M):

Theorem

Assume that $\hat{\psi} \colon \Pi_G \to \mathbb{R}$ satisfies

(R)
$$\hat{\psi}(p) = \hat{\psi}(q^{\hat{}}v)$$
 for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$.

Then $\sigma[]$ returned by **DA*** is the $\hat{\psi}$ -optimal map if, and only if, for every $v \in V$ there exists a HOM path to v.

Outline

- The algorithm
- Characterization Theorem for DA
- BA*: a slight modification of DA
- 4 What is in [FSL] paper
- Final Remarks
- Summary

A Thm 1 DA* [FSL] Remarks Summary

Smooth functions from [FSL]

A path cost map $\hat{\psi}$ is a smooth function provided

for any v there exists $\hat{\psi}$ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q \hat{\ } v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\hat{\psi}(q) \succeq \hat{\psi}(p)$,
- C2. q is $\hat{\psi}$ -optimal,
- C3. for any $\hat{\psi}$ -optimal path r to w, $\hat{\psi}(r) = \hat{\psi}(p)$.

It is claimed (incorrectly) in [FSL] that for smooth $\hat{\psi}$ **DA** must return $\hat{\psi}$ -optimal map $\sigma[$].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

A Thm 1 DA* [FSL] Remarks Summary

Properties C1*-C3*: hereditary versions of C1-C3

For any v there exists a $\hat{\psi}$ -optimal path $p = \langle v_0, \dots, v_{\ell} \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

C1*.
$$\hat{\psi}(\langle v_0, \ldots, v_k \rangle) \succeq \hat{\psi}(\rho)$$
,

- C2*. $\langle v_0, \ldots, v_k \rangle$ is $\hat{\psi}$ -optimal,
- C3*. for any $\hat{\psi}$ -optimal path q to v_k , $\hat{\psi}(q(v_{k+1},\ldots,v_{\ell})) = \hat{\psi}(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\hat{\psi}(q\hat{\ }v_{k+1})=\hat{\psi}(\langle v_0,\ldots,v_{k+1}\rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

A. The proof in [FSL], using C1*-C3*, is incorrect!

C1-C3 does not imply C1*-C3*

Example

Graph: $\{0, \dots, 5\} \times \{0, \dots, 5\}$ with 4-adjacency.

Seed: s = (0, 0). Problem: minimization, i.e., \leq is \geq .

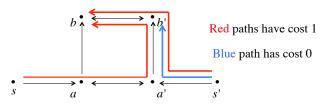
If **s** appears in $p = \langle v_0, \dots, v_{\ell} \rangle$ only as v_0 :

$$\hat{\psi}(p) = \ell$$
 when $\ell \leq 3$; $\hat{\psi}(p) = 0$ otherwise.

$$\hat{\psi}(p) = 100$$
 for all other paths p .

- $\bar{\psi}(v) = 0$ for every v
- C1-C3 are satisfied (by any path of length ≥ 5)
- C1*-C2* are not satisfied (only s admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

C1*-C3* do not imply good behavior of DA or DA*



 $S = \{s, s'\}$; maximization problem (i.e., \leq is \leq) $\hat{\psi}(p) = 1$ for any p from S of the form ($\hat{\psi}(p) = 0$ otherwise):

- to a $v \in \{s, s', a, a'\}$ or having repeated vertices;
- $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

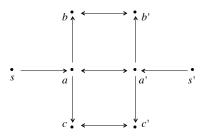
C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

May terminate with suboptimal σ : Starting with s, then s'

May terminate with optimal σ : Starting with s, a, and a'

A Thm 1 **DA* [FSL]** Remarks Summary

Stronger example: σ cannot be optimal



 $\hat{\psi}(p) = 1$ for any p from $\{s, s'\}$ of the form $(\hat{\psi}(p) = 0)$ otherwise):

- to a $v \in \{s, s', a, a'\}$ or having repeated vertices;
- $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.
- $\langle \ldots, a', c', c \rangle$, $\langle s', a', c' \rangle$, $\langle \ldots, a, c, c' \rangle$, or $\langle s, a, c \rangle$.

Outline

- The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- Final Remarks
- 6 Summary

DA Thm 1 DA* [FSL] Remarks Summary

Final tune-ups

If $\hat{\psi}$, like $\hat{\psi}_{\text{max}}$, $\hat{\psi}_{\text{sum}}$, and $\hat{\psi}_{\text{W}}$, satisfies

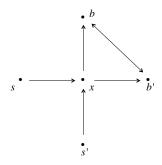
(I)
$$\hat{\psi}(p\hat{\ }v) = f(\hat{\psi}(p), a, b)$$
 for any path p to a and edge $\langle a, b \rangle$,

then, in **DA** and **DA***, there is no need to store paths in $\pi[]$. The similar trick can be used for $\hat{\psi}_{MBD}$.

If $\hat{\psi}$ satisfies (M), "x \in H" in line 5 of $\mathbf{DA^{\star}}$ is redundant.

For such $\hat{\psi}$ it makes sense to replace, both in **DA** and **DA***, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\hat{\psi}(\pi[w]^x)$.

Is the replacement requirement necessary?



$$S = \{s, s'\}$$
; maximization problem (i.e., \leq is \leq) $\hat{\psi}(p) = 1$ for any p from S of the form $(\hat{\psi}(p) = 0)$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and b' admits no optimal path with the replacement property.

DA and **DA*** return optimal maps:

with
$$\pi[b] = \langle s', x, b', b \rangle$$
 or $\pi[b'] = \langle s, x, b, b' \rangle$

Outline

- 1 The algorithm
- Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks
- Summary

A Thm 1 DA* [FSL] Remarks Summary

Summary

- For some classes of path cost functions $\hat{\psi}$, we found a necessary and sufficient conditions on $\hat{\psi}$, for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

Thank you for your attention!