An auto-homeomorphism of a Cantor set with zero derivative everywhere

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on a joint work with Jakub Jasinski
see http://www.math.wvu.edu/kcies/publications.html

Summer Symposium in Real Analysis XXXIX St. Olaf College, MN, June 8-13, 2015.

Outline

(1) The example and why do we care
(2) The construction of the main example
(3) Why the construction works? Sketch of a proof

Outline

(1) The example and why do we care

2 The construction of the main example

(3) Why the construction works? Sketch of a proof

The main result

Theorem ([KC \& JJ])

There exists a compact perfect set $\mathfrak{X} \subset \mathbb{R}$ and a differentiable bijection $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{X}$ such that $\mathfrak{f}^{\prime} \equiv 0$ on \mathfrak{X}. Moreover,
(i) \mathfrak{f} is a minimal dynamical system (i.e., the f -orbit $O(x)=\left\{f^{(n)}(x): n \in \omega\right\}$ of every $x \in \mathfrak{X}$ is dense in $\left.\mathfrak{X}\right)$;
(ii) \mathfrak{f} can be extended to a differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$.

Fact: $\mathfrak{f}^{\prime} \equiv 0$ implies that \mathfrak{f} is locally radially contractive:
(LRC) for every $x \in \mathfrak{X}$ there are $\varepsilon_{x}>0$ and $\lambda_{x} \in[0,1)$ such that $|\mathfrak{f}(x)-\mathfrak{f}(y)| \leq \lambda_{x}|x-y|$ for any $y \in \mathfrak{X}$ with $|x-y|<\varepsilon_{x}$.

Radially \equiv only one variable, y, can vary near x.

seems paradoxical!

Fact: Assume that $X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$.
(i) $X \nsubseteq f[X]$ when X is a bounded closed interval and $\left|f^{\prime}\right| \leq \lambda<1$ on X since then, by the Mean Value Theorem, $|f(y)-f(z)| \leq \lambda|y-z|$ for every $y, z \in X$, so that the diameter of $f[X]$ is strictly smaller than the diameter of X. If $\mathfrak{f}^{\prime} \equiv 0$, then f is constant.
(ii) $X \nsubseteq f[X]$ when X has a positive finite Lebesgue measure $m(X)$ and $\left|f^{\prime}\right| \leq \lambda<1$ on X since then $m(f[X]) \leq \lambda m(X)$.
(iii) $X \nsubseteq f[X]$ when $\left|f^{\prime}\right|<1$ on X and f can be extended to a continuously differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$.
This has been proved by the authors, RAEx 39(1), 2014.

Figure: The result of the action of $\mathfrak{f}^{2}=\langle\mathfrak{f}, \mathfrak{f}\rangle$ on $\mathfrak{X}^{2}=\mathfrak{X} \times \mathfrak{X}$

The example vs Banach Fixed Point Theorem: where Banach Theorem meets Dynamical Systems

Convexity assumed?	$f: X \rightarrow X$ has fixed or periodic point when f is		
	contractive (C)	(LC)	(LRC)
Yes	fixed point,	fixed point,	fixed point,
	Banach 1922	Edelstein 1962	Hu \& Kirk 1978
No	fixed point,	periodic point,	
	Edelstein 1962	KC \& JJ 2015	

Table: Fixed/periodic point properties of $f: X \rightarrow X ; X$ is compact and either arbitrary, or a convex subspace of a Banach space
(C) $\exists \lambda \in[0,1)$ s.t. $d(f(y), f(z)) \leq \lambda d(y, z)$ for every $y, z \in X$.
(LC) for every $x \in X$ there is $\varepsilon_{x}>0$ s.t. $f \upharpoonright B\left(x, \varepsilon_{x}\right)$ is (C), i.e.
for every $x \in X$ there are $\varepsilon_{x}>0$ and $\lambda_{x} \in[0,1)$ s.t.
$|f(y)-f(z)| \leq \lambda_{x}|y-z|$ for any $y, z \in B\left(x, \varepsilon_{x}\right)$.
(LRC) for every $x \in X$ there are $\varepsilon_{x}>0$ and $\lambda_{x} \in[0,1)$ s.t.

$$
|f(x)-f(y)| \leq \lambda_{x}|x-y| \text { for any } y \in B\left(x, \varepsilon_{x}\right)
$$

(LRC) map which is not (LC)

$1=b_{1}>a_{1}>b_{2}>a_{2}>\cdots>\lim _{n} a_{n}=0$ and $X=\{0\} \cup \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$.

Figure: $f(0)=0$; for any $n=1,2,3, \ldots$,
$f\left(a_{n}\right)-f\left(b_{n+1}\right)=a_{n}-b_{n+1}$ and $f(x)=\left(a_{n}\right)^{2}$ for any $x \in\left[a_{n}, b_{n}\right]$.

f is minimal, does it have to be?

Yes, our example must be based on a minimal dynamics:

Theorem (KC \& JJ)

Let X be an infinite compact metric space and assume that $f: X \rightarrow X$ is an (LRC) surjection. Then there exists a perfect subset $Y \subseteq X$ such that $f \upharpoonright Y$ is a minimal dynamical system.

Open problem

Question (KC \& JJ)

Assume that $f: X \rightarrow X$ is (LRC) (or even that $f^{\prime} \equiv 0$ on X). If X is compact and connected (or even path connected), must f has a fixed point?

What is known:

- True if assumption that f is (LRC) is strengthen of (LC) Edelstein result.
- False if assumption that X is compact is weakened to complete - Hu \& Kirk result requires that X is rectifiable path connected; without rectifiability the result is false, KH .
- False if assumption that X is connected is removed - our new example.

Outline

(1) The example and why do we care

(2) The construction of the main example
(3) Why the construction works? Sketch of a proof

Adding machine: a minimal dynamics on Cantor set 2^{ω}

"Add one and carry," odometer-like action $\sigma: 2^{\omega} \rightarrow 2^{\omega}$: for $s=\left\langle s_{0}, s_{1}, s_{2}, \ldots\right\rangle \in 2^{\omega}, \sigma(s)=s+\langle 1,0,0, \ldots\rangle$, i.e.
$\sigma(s)= \begin{cases}\langle 0,0,0, \ldots\rangle & \text { if } s_{i}=1 \text { for all } i<\omega, \\ \left\langle 0,0, \ldots, 0,1, s_{k+1}, s_{k+2}, \ldots\right\rangle & \text { if } s_{k}=0, s_{i}=1 \text { for all } i<k .\end{cases}$
Alternatively

$$
\begin{aligned}
\sigma(1,1,1, \ldots) & =\langle 0,0,0, \ldots\rangle \\
\sigma\left(1, \ldots, 1,0, s_{k+1}, s_{k+2}, \ldots\right) & =\left\langle 0, \ldots, 0,1, s_{k+1}, s_{k+2}, \ldots\right\rangle
\end{aligned}
$$

Fact: σ is bijective and minimal on 2^{ω}.

Format of the example

- We construct continuous injection $h: 2^{\omega} \rightarrow \mathbb{R}$.
- Put $\mathfrak{X}=h\left[2^{\omega}\right\rceil$ and $\mathfrak{f}=h \circ \sigma \circ h^{-1}: \mathfrak{X} \rightarrow \mathfrak{X}$.

Figure: $\mathfrak{f}=h \circ \sigma \circ h^{-1}$

What can be said on

Difficult part:

- to ensure that $f^{\prime} \equiv 0$.

Easy consequences:

(i) \mathfrak{f} is minimal since $\mathfrak{f}^{(n)}=h \circ \sigma^{(n)} \circ h^{-1}$: density of the orbits of σ implies the same for \mathfrak{f}.
(ii) \mathfrak{f} can be extended to a differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$: follows immediately from a theorem of Jarník.

Format of the injection $h: 2^{\omega} \rightarrow \mathbb{R}$

$$
h(s)=\sum_{n<\omega} s_{n} c_{s \mid n} \text { for every } s \in 2^{\omega}
$$

for appropriately chosen numbers $c_{\tau} \in \mathbb{R}$ for $\tau \in 2^{<\omega}$.
To ensure that $\mathfrak{f}^{\prime}(x)=0$ for $x=h(s)$ with $s \in 2^{\omega}$, we need

$$
\Delta_{s t}=\frac{|\mathfrak{f}(x)-\mathfrak{f}(y)|}{|x-y|}=\frac{|h(\sigma(s))-h(\sigma(t))|}{|h(s)-h(t)|} \rightarrow_{\ell \rightarrow \infty} 0
$$

where $\ell=\min \left\{i<\omega: s_{i} \neq t_{i}\right\}$; that is, eventually,

$$
|h(\sigma(s))-h(\sigma(t))| \ll|h(s)-h(t)| .
$$

d_{τ} 's, related to $\sum_{n} \frac{1}{n^{2}}$, - first approximation of c_{τ} 's

$d_{s \mid n}=\frac{1}{n+2} L_{s \mid n}=\frac{1}{n+2}\left|I_{s|n|}\right|$ from Cantor-like set construction:

$I_{\text {ด }}=[0,1] ; I_{\tau^{\wedge}}$ — the terminal $\frac{n+1}{n+2}$-th part of I_{τ};
$I_{\tau 0}$ — the initial $\frac{\xi_{n}}{n+2}$-th part of I_{τ}, with $\xi_{n}=\frac{1}{2} \frac{1}{(n+4)^{1 / 2}}$.

The fun begins: full definition of $c_{\tau}{ }^{\prime}$ s

$$
c_{s \mid n}=a_{s \mid n} \beta_{n}^{-b_{s \mid n}} d_{s \mid n},
$$

where $\beta_{n}=\ln (n+3)>1$,

$$
a_{s \mid n}= \begin{cases}-1 & \text { when } s \upharpoonright n=\langle 1,1, \ldots, 1\rangle \\ 1 & \text { otherwise }\end{cases}
$$

$b_{s \mid n}=\sum_{i<\nu_{n}} s_{i} 2^{i}$ with $\nu_{n}=\max \left\{m<\omega:\left(\beta_{n}\right)^{2^{m}-1}<\sqrt{n+2}\right\}$.
The definition is complicated to ensure an intricate comparison of different rates of convergence of the components.

Outline

(1) The example and why do we care

2 The construction of the main example
(3) Why the construction works? Sketch of a proof

For $\ell=\min \left\{i<\omega: s_{i} \neq t_{i}\right\}$ large enough, some work gives (using essentially $a_{s \mid n}$ and $d_{s \mid n}$ from $c_{s \mid n}=a_{s \mid n} \beta_{n}^{-b_{s \mid n}} d_{s \mid n}$)

$$
\begin{gather*}
|h(\sigma(s))-h(\sigma(t))| \leq \frac{1}{\ell+1} \frac{1}{\ell} \tag{1}\\
|h(s)-h(t)| \geq \sum_{n \geq \ell}\left|c_{s \mid n}\right| \geq \sum_{n \geq \ell} \frac{1}{(n+2)^{1 / 2}} \frac{1}{n+2} \frac{1}{n+1} . \tag{2}
\end{gather*}
$$

Since $\sum_{n \geq \ell} \frac{1}{(n+2)^{1 / 2}} \frac{1}{n+2} \frac{1}{n+1} \geq \sum_{n \geq \ell} \frac{1}{(n+2)^{2.5}} \geq \int_{\ell+2}^{\infty} x^{-2.5} d x=$ $\frac{1}{1.5} \frac{1}{(\ell+2)^{1.5}},(1)$ and (2) imply the required convergence:

$$
\Delta_{s t}=\frac{|h(\sigma(s))-h(\sigma(t))|}{|h(s)-h(t)|} \leq \frac{\frac{1}{\ell(\ell+1)}}{\frac{1}{1.5} \frac{1}{(\ell+2)^{1.5}}}=1.5 \frac{(\ell+2)^{1.5}}{\ell(\ell+1)} \rightarrow_{\ell \rightarrow \infty} 0 .
$$

For ℓ large enough and $u \in\{s, t\}$ with $u_{\ell}=1$, some work gives (using $\beta_{n}^{-b_{s \mid n}}$ and $d_{s \mid n}$, but not $a_{s \mid n}$ from $c_{s \mid n}=a_{s \mid n} \beta_{n}^{-b_{s \mid n}} d_{s \mid n}$)

$$
\begin{align*}
|h(\sigma(s))-h(\sigma(t))| & \leq \frac{3}{2} \sum_{n \geq \ell} u_{n}\left|c_{\sigma(u) \mid n}\right| \tag{3}\\
|h(s)-h(t)| & \geq \frac{1}{2} \sum_{n \geq \ell} u_{n}\left|c_{u \mid n}\right|>0
\end{align*}
$$

Also there is a constant $E_{k}>0$ depending only on k such that

$$
\begin{equation*}
\frac{\left|c_{\sigma(u)\lceil n}\right|}{\left|c_{u \mid n}\right|}=\frac{\left|a_{\sigma(u)\lceil n} \beta_{n}^{-b_{\sigma(u) \mid n}} d_{\sigma(u)\lceil n}\right|}{\left|a_{u \upharpoonright n} \beta_{n}^{-b_{u \upharpoonright n}} d_{u\lceil n}\right|}=E_{k} \beta_{n}^{-1} \leq E_{k} \beta_{\ell}^{-1} \text { for } n \geq \ell \tag{4}
\end{equation*}
$$

This guarantees the desired convergence, as then

$$
\Delta_{s t}=\frac{|h(\sigma(s))-h(\sigma(t))|}{|h(s)-h(t)|} \leq \frac{\left.\frac{3}{2} \sum_{n \geq \ell} u_{n} \right\rvert\, c_{\sigma(u)|n|}}{\frac{1}{2} \sum_{n \geq \ell} u_{n}\left|c_{u \mid n}\right|} \leq 3 E_{k} \beta_{\ell}^{-1} \rightarrow_{\ell \rightarrow \infty} 0
$$

Which details of the proof were left?

- The proofs of estimates (1), (2), and (3).
(Each takes a short paragraph of an argument.)
- A proof that $\frac{\left|d_{\sigma(u) \mid n}\right|}{\left|d_{u \mid n}\right|}=E_{k}, k$ being the first 1 in u, part of (4). (A short paragraph of an argument.)
- A proof that h is actually an injection. (An argument is easy, but takes about a page of explanations.)

That is all!

Thank you for your attention!

