Generalized distances in image segmentation

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University
and
MIPG, Department of Radiology, University of Pennsylvania

Part 1: based mainly on two papers with R. Strand, P.K. Saha, and F. Malmberg
Part 2: based on a joint work with J.K. Udupa, A.X. Falcéo, and P.A.V. Miranda

90 minutes talk, Special Session on Asymmetric Topology
29th Summer Topology Conference
Staten Island, New York, July 26, 2014

Krzysztof Chris Ciesielski Generalized distances in image segmentation 1



Outline of Part I: distances in image segmentation

0 The problem of image segmentation, by examples

e Mathematical setting of image segmentation

e Segmentation via energy minimization and distances

e Computation of distance functions

@ True TorPoLOGICAL proof of correctness of algorithm AZ2T
Q Polynomial time algorithm for exact MBD

e Experiments: comparison of different algorithms for MBD
and other distances
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Problem

Outline of Part I: distances in image segmentation

0 The problem of image segmentation, by examples
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Example 1 of object segmentation/delineation

Delineation = segmentation of one object and the background

:

-

2D image of peppers Delineation version 1 (note seeds)
Small changes of parameters can cause big differences:

Delineation version 2 Delineation version 3
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Example 2: a CT image of patient’s cervical spine

A slice of an original 3D image Surface rendition of segmented
three vertebrae, together

Color surface rendition of the segmented three vertebra
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Problem

Example 3: An MR angiography image of the body
region from belly to knee.

Rendition of an original 3D, A surface rendition of the entire
contrast enhanced, image vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees
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Problem

Seeds: to help identifying “object of interest”

Which part of this image is
“the object?”

Commonly, “an operator” (human or automaton) indicates:

@ object via one set, S, of seeds

@ background via another set, T, of seeds
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Problem
General problem of segmentation of images

Find a procedure/algorithm which, given a digital image
(of some kind, e.g., 2D or 3D; terrain, medical, or faces; etc)
produces its segmentation. The procedure should satisfy

User expectation:
@ the resulted segmentations are close to what a user/expert
could expect, with as little human interaction as possible
(e.g., restricted to indication of the objects with seed sets);

Computational requirement:

@ there is an efficient algorithm that can perform the
computational part(s) of the procedure.

Goal of this talk: discuss some segmentation algorithms.
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Image

Outline of Part I: distances in image segmentation

9 Mathematical setting of image segmentation
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Digital image as a function

@ A nD digital image can be identified with a function f from
image scene C (finite, usually rectangular, subset of R")
into R¥

f: C— Rk

@ The elements c of C are pixels (in 2D), voxels (in 3D), or, in
general, spels (for space elements).

@ The value f(c) represents image intensity at ¢, a
k-dimensional vector each component of which indicates a
measure of some aspect of the signal, like color.

@ Later, we will talk on continuous (idealized) images,
defined on open regions Q in R".
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Image
Image

Typically, scene is of rectangular character, as

@ It comes with a topological/graph structure:
@ asagraph G = (C, E), edges connecting “nearby” spels;
@ topologically, such these edges form adjacency relation.
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Image

Typical edges (2D scenes) and cost functions

. N
| RN
edges for 4 adjacency edges for 8 adjacency

Adjacency relation need not be symmetric; it can be considered
as a closure operator (inducing pre-topology).

Information of image is often coded via edge cost/weight
function w(c, d) for each edge (c, d) (i.e., ¢ adjacent to d).

E.g. proto-distance cost w(c, d) = ||f(c) — f(d)||.
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Distances & Segmentation

Outline of Part I: distances in image segmentation

e Segmentation via energy minimization and distances
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Distances & Segmentation

Segmentation via energy minimization

Given animage f: C — RX and sets S = {S;,..., S,} of seeds:
allowable segmentations IP(S) constitute of

the families P = {Py,..., Py} of sets with S; ¢ P; C C;

usually (not always) sets P; need to be pairwise disjoint;

in this talk: 2 must cover C.

If for any such P we associate its cost ¢(P) > 0
a “good” segmentation is one minimizing an energy ¢, i.e.,

arg min (P
gPeIPI’(S) (P)
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Distances & Segmentation

Distance-based energy & Voronoi-like segmentation

Letd: C x C — [0, 00) be a generalized distance
(i.e., symmetric and satisfying the triangle inequality)
associated with an image f: C — RX.

For P ={Ps,...,Pn} fromP(S), S = {Sy,..., Sn}, let
e(x,S) = max{d(x, S;): x € P;} forany x € C, and put

E(3/(73) - ZXECE(X7 S)

A Voronoi diagram (for d and S)
isaPs=1{Pq,...,Pn} € P(S), where

Pi={xec C:d(x,S;) <d(x,S;) foranyj#i}.
Example of Pg

P € P(S) minimizes e iff it refines Ps.
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Distances & Segmentation

Note on asymmetry

In some cases, the definition: Ps = {Py,..., P} € P(S),
makes sense also with

Pi={x e C: di(x,S;) < di(x,S;) foranyj#i},

where each d; is a different generalized distance (possibly,
even not symmetric).

This works for the Fuzzy Connectedness distance (discussed
below) as shown in a 2003 paper of Carvalho, Herman, Kong.

Subject of forthcoming paper of KC, G. Herman, and Y. Kong.

However, for P;’s to be connected, definition is more involved
(related to IRFC, unlike Pgs, which is basically RFC).
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Distances & Segmentation

From path strength to generalized distance

M — all paths p = {cy,...,cx) iIn G=(C,E),i.e, {ci,ci.1} € E.
Meq—allpaths fromc e Ctod € C.

For a fixed path strength map A: N — [0, o0)

a “distance” is dy(c, d) = min{A(7): 7 € M¢ g}.

Example. If w: E — [0, c0) is an edge weight map on G,

with w({c, d}) being a (geodesic) distance from c to d,

then ds is the geodesic metric, where

E((m(0), w(1),...,w(K))) = iy w({m(i —1),x(i)}).
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Distances & Segmentation

Generalized distance: what is needed from \?

d: C? — [0, 00) is a generalized distance mappings if
it is symmetric and satisfies the triangle inequality.

(We allow possibility that d(c, ¢) > 0 for some ¢ € C.)

Theorem
Assume that for every path m = (7(0),7(1),...,n(k))
(i) M) = A({(n(k),m(k—1),...,7(0))), and

(i) A7) < A({(7(0),...,7(7)) + A({(=(i),...,n(k))) for every
0<i<k.

Then d,, is a generalized distance.

All maps d, we consider (below) are generalized distances.
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Distances & Segmentation

Generalized distances used in imaging

@ Geodesic Distance, dy, including the “Euclidean” Distance

@ Fuzzy Connectedness, FC: if u is FC connectivity strength
for affinity : E — [0, M] and weight w(e) = M — x(e), then
dy(c,d) =M — pu(c, d), where \((c;)) = max; w({ci_1, Ci})

® Watershed: itis d;:, where 8 ((c;)) = max; w(c;)

@ New Minimum Barrier Distance, ds, to be defined below

@ Fuzzy Distance, FD: itis ds, where for w: C — [0, 00)

(e, d) = 0D and £((c)) = 2 w({ci-1,6})
For distance d and seed sets S, T C C (two objects case) put:
P(S,T)={ce C:d(c,S)<d(c, T}
Then P(S,T) ={P(S,T),C\ P(S, T)} minimizes 4.

We compare P(S, T) for dy, FC, MBD, FD.
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Distances & Segmentation

Definition of the Minimum Barrier Distance, MBD

Let w: C — [0, o) be vertex weight map, e.g., w(c) = ||f(c)]|.

For apath p = (c;) € Nlet Buw(p) = B,,(P) — 5, (p), where

Bw(p) = max; w(c;) and Sy, (p) = min; w(c)).

By is the barrier cost. : \ /
The Minimum , \
Barrier Distance, MBD \

1 ) OW0)
between x and y in C \

! A(x.¥)
is ds, (x,y),i.e., 5t e

Yx ] o - ? Vy

dﬁw(th) - mln{/gw(p) p € I—IX,Y}' ﬁ = dﬁw
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Distances & Segmentation
MBD vs geodesic distance

ds, (X,y) = min{cp(p): pis a pathin Gfrom x to y}

ds, (X, y)is, in a way, : \x‘ /f

i { f
a vertical component of : \\\ //

o L) T oo

the geodesic distance dys T B

§ \ px.y)

\ |

between x and . e | +

ds,, is a pseudo-metric: it is symmetric,
satisfies the triangle inequality, and dg, (x, x) = 0.

(However, ds,, (X, y) can be equal 0 for x # y.)
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Dijkstra alg.

Outline of Part I: distances in image segmentation

e Computation of distance functions

Krzysztof Chris Ciesielski Generalized distances in image segmentation 17



Dijkstra alg.

Standard , for cost function A

Algorithm 1 Dijkstra (Jarnik, Prim) algorithm DA(X, R)

Input: Path cost function A on G = (C, E), non-empty R C C.

Output: For every c € C, a \-“shortest” path 7 from r € Rto c.

Auxiliary: Queue Q: if ¢ precedes d in Q, then A(m¢) < A(7q).
1: Init: p, = (r)forr e R, p =0 forc ¢ R,pushallr € Rto Q;
2: while Q is not empty do
3: Pop d from Q;

4 for every ¢ € C connected by an edge to d do

5 if \(mg"c) < A(7¢) then

6: Put 7. = 74 "c, place c into a proprer place in Q;

7 end if

8 end for

9: end while

Runs in O(nln n), where nis the image size.
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Dijkstra alg.
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Dijkstra alg.

Can Dijkstra Algorithm, DA, find (exact) MBD?

DA returns correctly distances: Geodesic, FC, FD, Watershed,
as their paths strengths are smooth in sense of Falcao et al.

DA does not work properly for MBD:

Example: MBD value dj, (s, c) = .8 — .5 for the indicated w.

DA(Bw,{s}) returns suboptimal 7¢, with 5y (7¢) = .8 — .4.
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Fast algorithms approximating \Y/|=1D)

Algorithm 2 Double-Dijkstra AE0({s})

Input: A vertex weight map w ona graph G= (C,E),ans € C.
Output: A map ¢(-, {s})).
begin
1: Run DA(By, {s})); record dj: (¢, {s})) = Bw(7¢) for c € C;
2: Run DA(By,{s})), where v = M—w and M = max.cc w(c),
and record dj- (¢, {s})) = M — 3/ (mc) for every ¢ € C;
3: Return (-, {s})) = dj:(c,{s})) — dB;(c, {s})) for c € C;
end

The output of AZE5({s}) approximates MBD dj,, (-, {s})):
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Topol. thm

Outline of Part I: distances in image segmentation

@ True TorPoLOGICAL proof of correctness of algorithm AZ2T
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Topol. thm

»(-,{s})) ~ True MBD d;, (-, {S}))

G = (C, E,w) — graph of a rectangular k-D image f, w = ||f||,

e = max{|w(x) — w(y)|: x,y € C are (2 — 1)-adjacent]}.

Theoren{oc9)=du (0ol <elcahaa) |

Proof is based on deep result on continuous equivalent of MBD:

For f being continuous on a simple connected domain,
Main Lemma: continuous-¢(c, d) = continuous-ds,, (c, d).

Proof of Thm:

(1) Extend f to continuous f via k-linear interpolation.
(2) Find continuous path p € My, with By (p) ~ ¢(X, y).
(3) Digitize p.
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Topol. thm

continuous-¢(c, d) = continuous-dj, (¢, d): definitions

Input: Continuous function f: D — R, considered as an image,
where D = Hf-(:1 [a,-, b,‘] (a,-, b € R).
For a (continuous) path p: [0,1] — D its barrier cost is

cp(p) = max;w(p(t)) —min;w(p(t)), here w = f.

(Note that max and min are attained, as w o p is continuous.)

The continuous-dj,, barrier dist. p, | | /

between x,y € D is given by: Lo T g/

p(x,y) =inf{cy(p): pfrom xtoy} . \
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Topol. thm
Difficulties: Topologists sine curve example

In p(x, y), operation inf cannot be replaced with min:

g(t) =sin(1/t)fort #0, g(0) =0

Above|g:
W(p)=dist(p,g)

\\"X\J

p(x,y) =inf{cp(p): p € Nxy}

,N Put ¢cmin(p) = min w(p(t))

Below g:
w(p)=—dist(p.g)

and Cmax(p) = max; w(p(t))

Cmin(P1) = 0 < Cmax(p1)

e

Cmax(P2) = 0 > Cmin(p2)

For 99(Xv y) = minPEHX‘y Cmax(p) - maxpéﬂx,y Cmin(p)

Cmax(P2) — Cmin(

) =0=p(x,y) = p(x,y) < ch(p)
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Topol. thm

Proof of: continuous-¢(c, d) = continuous-ds, (c, d)

Using Alexander’s lemma we prove:

Lemma

If Fo, Fy C [0, 1]? are closed disjoint s.t. ﬁol,/]

Fo\ (0,1)2 c (0,1) x {1} and (0,0.5) (1,0.5)
Fi\ (0,1)2 c (0,1) x {0}, then, there is /\N\
7:[0,1] = [0,1]2\ (Fo U Fy), R

continuous from (0, .5) to (1,.5).

F

Theorem (Non-trivial result on simple connected domains)

If there are p1, po € Ny, with a < cmin(P1) and cmax(p2) < b,
then there is a single p € Ny , with the range in (a, b).

Corollary (continuous case)
o(x,y) = p(x,y) for aw on a simple connected domain D.
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Exact MBD alg

Outline of Part I: distances in image segmentation

e Polynomial time algorithm for exact MBD
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Exact MBD alg

AYEL(S) and DA(Bw, S): pros and cons

@ Both fast, in order between O(n) and O(ninn), n=|C|.

e APN(S) underestimates MBD, with known error rate «;

needs to run “simple” DA |S|-many times, slowing for large S.

@ DA(Bw, S) overestimates MBD with unknown error bound,;

complexity is (essentially) independent of the size of S;

The error of DA(Sw, S) does not exceed 2¢, maybe even e.

So far, no theoretical proof for this.
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Simple algorithm for exact MBD

Algorithm 3 AS7P(5)

Input: A vertex weight w on G = (C, E), non-empty S C C.
Output: The paths p; from S to ¢ with Sw(pc) = ds,(c, S).
begin

1: Init: U = max{w(s): s € S} and p; = 0 for every c € C;

2: Push all numbers from {w(c) < U: ¢ € C} to a queue Q;

3: while Q is not empty do

4: Pop a from Q, run DA(B;, S) with v = wj, return 7.’s;

(wa(c) = w(e) if w(c) > a, wa(c) = oo otherwise)

5 for every c € Cdo

6: if Bv(7c) < Bw(pc) then

7 Put pc = 7¢;

8 end if

9: end for

10: end while
end
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Faster algorithm for exact MBD

Algorithm 4 Ayzp(S)

Auxiliary: 5,-optimal 7. from S to c; a queue Q: if ¢ < d then
Bu(me) < Bu(ma) or Buy(me) = Bu(mg) and By (me) > Bu(7q)-
begin

1: Init: ps =g =(s)forse Sand pc = =0force C\ S;

2: Pushalls e Sto Q;

3: while Q is not empty do

4: Pop ¢ from Q;
5: for every d € C connected by an edge to ¢ do
6: if 8y, (7¢"d) > By (7q) then
7: Set 174 + w."d and place d into Q;
8: if ﬂw(ﬂ'd) < ﬁw(pd) then
9: Set py + 7g;
10: end if
11: end if

End everything;
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Exact MBD alg

Correctness of the algorithms for exact MBD

Let n be the size of the graph and m be the size of a fix set Z,
containing W = {w(c): ¢ € C}. The algorithm computational
complexity is either

(BH) O(m nln n), if we use binary heap as Q, or

(LS) O(m(n+ m)), if we use as Q a list structure.
After Avsp(S) terminates, we indeed have G (pc) = dw(c, S)

for all c € C. The same s true for ASTP(S).

Proof for Aysp(S) is quite intricate; for ASTPP(S) is quite easy.

However, Aypp(S) executes the main while loop considerably
fewer times than ASP¢(S) does.
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Experiments

Outline of Part I: distances in image segmentation

Q Experiments: comparison of different algorithms for MBD
and other distances
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Experiments

Step 1: Comparison of different algorithms for MBD

@ the exact MBD algorithm Aygp(S);
@ the interval algorithm DA(,, S) overestimating MBD;

e AVEL(S) executed ones for each seed point;
it underestimates MBD, with an error < 2¢;

o A}FR(S) executed only ones even for multiple seeds.

Experiments were conducted on a computer: HP Proliant
ML350 G6 with 2 Intel X5650 6-core processors (2.67Hz) and
104GB memory.

The used 2D images, from the grabcut dataset, came with the
true segmentations. Their sizes range from 113032 pixels (for
284 x 398 image) to 307200 (for 640 x 480 image).
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Experiments

2D images from the grabcut dataset

Figure: Images from the grabcut dataset used in the experiments.
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Experiments
Results

Foreach s =1,...,25, the following was repeated 100 times:
(1) extract a random image from the database;

(2) generate randomly the set S of s seed points in the image;
(3) run each algorithm on this image with the chosen set S.
Graphs display averages.

18
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Experiments

More results and conclusions

© We declared as “winners,”
= L used in the segmentation ex-
&5 60 .
g periments:
540 ——DAG@, . S) o
21 —— A Ausp(S) asitis exact and
- fieo© reasonably fast;
S
z p e
o - - DA(Bw, S) as itis the fastest and
number of seed points has the smallest error
Figure: The mean number pixels from approximations.

with incorrect value of MBD
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Experiments

Step 2: algorithms used in the segmentation valuation

For gray-scale digital images f: C — [0, o0):

@ The exact MBD computed with Aysp(S), where

w(c) = f(c).
@ An approximate MBD computed with DA(Bw, S), where
w(c) = f(c).

@ The geodesic distance computed with DA(X, S), where, for
adjacent ¢, d € C, w(c, d) = |f(c) — f(d)|.

@ The fuzzy distance computed with DA(3, S), where
w(c) = f(c).

@ The fuzzy connectedness computed with DA(w, S), where,
for adjacent ¢,d € C, w(c,d) = M—k(c,d) = |f(c) — f(d)|.

We start with the 2D grabcut images.
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Experiments
Speed w.r.t. image size

—A&— exact MBD

—+— approximate MBD
—@— geodesic distance
fuzzy connectedness
fuzzy distance

Mean execution time (s)

0 20000 40000 60000
Image size (pixels)

Figure: Mean execution time on small images obtained by cutting out
grabcut images. A single seed point is used for each image.

The actual execution time of Aygp(S) depends on the image
size in a linear manner, rather than in the (worst case scenario
proven) quadratic manner.
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Experiments

Seeds chosen by erosion, no noise or blur

[
)

e

—
n
=
) &
Q =)
= a = 2
g exact MBD o —A— exact MBD
—+— approximate MBD = iy
3 —e— geodesic distance 2 A approximate MBD
205 9 + 1 —e— geodesic distance
=3 fuzzy connectedness| =
5] fuzzy connectedness|
=] fuzzy distance o) )
=] fuzzy distance
5] 5ot
ot o
=] <} NV
<
$ 05
=1
0 0
1 10 20 30 1 10 20 30
erosion radius erosion radius

Figure: The value for each algorithm for the seeds chosen for
indicated erosion radius represent average over the 17 images.

All algorithms performed well, with just a slight better accuracy
for MBD algorithms.
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Experiments

Seeds chosen by the users, no noise or blur

Figure: Example of seed points, users 1-4, respectively.
il HBE? Hﬁ HHQB
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Figure: Boxplots of Dice coefficient, seeds from users 1—4.
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Seeds chosen by the users, smoothing added

1 18
L‘L e s N N A —&— exact MBD
T g a —+— approximate MBD
~ —@— geodesic distance
o g fuzzy connectedness
= § fuzzy distance
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8 05 —A— exact MBD 8
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<} —@— geodesic distance 8
< fuzzy connectedness 5 6
é fuzzy distance =
T e ———
=
0 0
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Gaussian smoothing (o) Gaussian smoothing (o)

Figure: The performance of the five algorithms as a function of
smoothing the images.

MBD algorithms handled smoothing a lot better than FC and FD

Smoothing improves execution time for exact MBD algorithm
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Experiments

Seeds chosen by the users, noise added

1
A A A —&— exact MBD
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Figure: The performance of the five algorithms as a function of
adding noise to the images.

MBD algorithms handled noise better than other algorithms for
not very noisy images
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Experiments

Blur added to the images with fixed level of noise

—A— exact MBD

—+— approximate MBD
—@— geodesic distance
fuzzy connectedness
fuzzy distance
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5 5
Gaussian smoothing (o) Gaussian smoothing (o)

Figure: The performance of the five algorithms as a function of
smoothing, applied to the images with added fixed level of noise.
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Experiments

Noise added to the smoothed images
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Figure: The performance of the five algorithms as a function of
adding noise, applied to the smoothed images.
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Experiments

3D experiments: the image

Figure: The 3D T1-weighted MRI image of the brain, smoothed by
Gaussian blur with sigma value 0.5. (a) three perpendicular slices; (b)
reference segmentation of the same slices; (c) surface rendering of
the reference segmentation.
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Experiments

3D experiments: the results

30

—A— exact MBD

—+— approximate MBD
—&— geodesic distance
fuzzy connectedness
fuzzy distance

N
S

—&— exact MBD
—+— approximate MBD
—e— geodesic distance
fuzzy connectedness
fuzzy distance

dice value
o
execution time (s)

.
=)

o

1 10
erosion radius

1o

10
erosion radius

Figure: The performance of the five algorithms on the image for the
asymmetrically chosen seeds at the indicated erosion radius.

MBD algorithms compare favorably with the other algorithms
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Experiments
Conclusions

Minimum Barrier Distance:

@ Can be efficiently computed: (a) exactly; (b) approximately.

@ The segmentations associated with MBD compare
favorably with those associates with: geodesic distance
(GD), fuzzy distance (FD), and relative fuzzy
connectedness (RFC).

@ The segmentations associated with MBD are more robust
to smoothing and to noise than GD, FD, and RFC.
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Part 2: Delineating objects in images
via minimization of ¢, energies;
spanning forests via Dijkstra’s and
Kruskal’s algorithms
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Outline of Part 2: Delineating objects via ¢, energies

e !y distances and related energies
e Comparison of GC and FC image segmentations
@ Spanning forests, Dijkstra algorithm, IRFC and PW objects

Q Relation between MSF vs OPF: proof
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Lp-energies

Outline of Part 2: Delineating objects via ¢, energies

e {,, distances and related energies
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Lp-energies

Heuristic and the definition of boundary

Heuristic: The objects boundary areas JO;

should be identifiable in the image, as the %/%\ ,

areas of sharp image intensity change. (2 IX\? 4) ]
‘0.

1
1
4

What constitutes boundary bd(P) of P? V\%

——>ie——>ie——>

Desired object

Need graph (or topological) structure G = (V, E) on C:

@ Pixels ¢ € C are its vertices, V = C;

@ Edges {c,d} € E are “nearby” vertices (e.g. as in figure).

bd(P) is the set of all edges {c,d} € Ewithce Pandd ¢ P
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Lp-energies

Weighted graphs and ¢, cost functions, 1 < p < oo

Assume that with every edge e = J\
{c,d} € E of an image f we have as- )
sociated its weight/cost w(e) > 0, which 2 g\ !
is low, for big ||f(c) — f(d)]|. ("\ ) ,
\KQ}AA 1
Typically, w(e) = e IO~1(@)1/o* seefig. 4/ .k

Desired object
If Fp: E — [0,00), Fp(e) = w(e) for e € bd(P) and Fp(e) =0
for e ¢ bd(P), then ¢, cost is defined as

: (2 W(e)p)1/p it p < oo
p(P) = || Fpllp = § \zeehilP) e
MaXecha(P) W(€) if p= oc.
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Lp-energies

FC and GC algorithms as minimizers of ¢,

def (Zeebd(P) W(e)p)1/p if p < o0
ep(P) = [IFpllp = ,
MaXeepa(p) W(€) if p= o0.

p=1:1(P)=>gcoap) W(€);
Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ¢1.

p = 00! oo(P)=MaXecpa(p) W(€);
Optimization solved by (versions of) Dijkstra algorithm.
€00 Optimized objects are returned by the algorithms:
Relative Fuzzy Connectedness, RFC, lterative RFC, IRFC,
and [C. Couprie et al, 2011].
p = 2: related to Random Walker, RW, algorithm [Grady, 2006],
see next slides.
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Lp-energies
Fuzzy sets

Amap x: C — [0,1] (i.e., x € [0, 1]°) can be considered as a
fuzzy set, with x(c) giving the degree of membership of c in it.

A hard set P c C is identified with a fuzzy set (binary image)
xp € {0,1}¢ € [0,1]¢, xp(c) = 1iff c € P.

For x € [0,1]€ let £5(x) = ||Fx||p, Where Fyx: E — [0, 00),
Fe({c,d}) = [x(c) - x(d)|w({c.d}) for {c,d} € E.
Then 5(P) = £p(xp). We can minimize £, on

P(S, T)={x:x(c)=1force S& x(c)=0force T}

instead of e, on P(S, T) = P(S, T) N {0,1}°.
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'pRandom Walker, RW, algorithm

@ RW finds (the unique) £, minimizer on (S, T).
@ Defines its output as P = {c: x(c) > .5}.

Problems with RW:

@ Output need not be connected (even when S and T are).
@ P need not minimize e, on P(S, T).

Neither of this happens for ¢¢ (i.e. GC) or e, (i.e. RFC or PW):

Thm: For p € {1, 00}, any minimizer of £, on P(S, T) actually
belongs to P(S, T).
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Lp-energies

(Non)-uniquness of the minimizers for €1 and e

Let Pp(S, T) = {P € P(S, T): P minimizes ¢, on P(S, T)}.
Both P¢(S, T) and P (S, T) may have more than one element.

However, the outputs of the standard versions of the algorithms:

@ GC, from P4(S, T),
@ RFC, from P (S, T), and
@ IRFC, from Po(S, T)

are unique in the sense of the next theorem.
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Lp-energies

GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)
Forp € {1,<}, P.(S, T) contains the C-smallest object.

@ GC algorithm returns the smallest set in P1(S, T).
@ RFC algorithm returns the smallest set in Poo(S, T).
@ /RFC algorithm returns the smallest set in a refinement
P:i(S, T)of Puo(S, T).
Moreover, if n is the size of the image (scene), then
@ GC runs in time of order O(n®) (the best known algorithm)
or O(n??®) (the fastest currently known algorithm)

@ Both RFC and IRFC run in time of order O(n) (for standard
medical images — the intensity range size not too big) or
O(nlIn n) (the worst case scenario)
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Lp-energies

GC & FC — asymptotic equivalence

Theorem (Asymptotic equivalence of GC and FC)

Let PJ'(S, T) be the family Pp(S, T) for the edge weight
function w replaced by its m-th power w™. Then

@ PT(S, T) =P(S, T) and similarly for IRFC algorithm.
So, the outputs of RFC and IRFC are unchanged by m.
@ P{"(S,T) C Px(S, T) for m large enough.
In particular, if P~.(S, T) has only one element, then

the output of GC coincides with the outputs of RFC and IRFC
for m large enough.
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GCvs FC

Outline of Part 2: Delineating objects via ¢, energies

Q Comparison of GC and FC image segmentations
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GCvs FC

Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms:
O(n) (or O(nIn n)) versus O(n3) (or O(n?3)).

Robustness: RFC & IRFC are unaffected by small seed changes.
GC is sensitive for even small seed changes.

Shrinking: GC chooses objects with small size boundary
(often with edges with high weights);
No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of
multiple objects, same running time and robustness.
GC in such setting leads to NP-hard problem,
so (for precise delineation) it runs in exponential time

lterative approach: RFC has an iterative approach refinement;
No such refinement methods exist for GC at present.
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Advantages of GC over FC

Boundary smoothness: GC chooses small boudary, so it
naturally smooths it; in many (but not all) medically
important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing;
if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity:
GC naturally combines information on image
homogeneity (binary relation on voxels)
with information on expected object intensity
(unary relation on voxels);

Combining such informations is difficult to achieve
in the FC framework.
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Setup of experiments:

@ In each experiment we used 20 MR BrainWeb phantom
images (simulated T1 acquisition); graphs show averages.

@ Sets of seeds were generated, from known true binary
segmentations, by applying erosion operation:
the bigger erosion radius, the smaller the seed sets.

@ The weight map w(c, d), same for FC and GC, was
defined from the image intensity function f as
w(c, d) = —|G(f(c)) — G(f(d))],
where G is an appropriate Gaussian.
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Setup of experiments:

Data parameters: the simulated T1 acquisition were as follows:

Computer:

spoiled FLASH sequence with TR=22ms and
TE=9.2ms, flip angle = 30°, voxel size

=1 x 1 x Tmm3, noise = 3%, and background
non-uniformity = 20%.

Experiments were run on PC with an AMD Athlon
64 X2 Dual-Core Processor TK-57, 1.9 GHz,
2x256 KB L2 cache, and 2 GB DDR2 of RAM.
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Robustness & shrinking for FC & GC: White Matter

(d) RFC (e) IRFC (f) GC
Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f)
GC: dramatic change of output; seeds choice same as in the FC case

Krzysztof Chris Ciesielski Generalized distances in image segmentation 56



GCvs FC

Time & accuracy of FC & GC: segmentation of WM
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GCvs FC
FC vs GC: Conclusions

@ FC and GC quite similar,
yet FC has many advantages over GC:
- FC runs considerably faster than GC
- FC is robust (seed), while GC has shrinkage problem
- FC, unlike GC, easily handles multiple-object segmentation

@ unless the application requires, in an essential way, the
simultaneous use of
- homogeneity (binary) info on image intensity;
- expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC)
segmentation algorithm, rather than GC algorithm
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Forests

Outline of Part 2: Delineating objects via ¢, energies

@ Spanning forests, Dijkstra algorithm, IRFC and PW objects
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Forests

Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph G= (C,E,w) and ) # W c C.

Definition (Spanning Forest w.r.t. W)

A forest for G is any subgraph F = (C, E’) of G free of cycles.
F = (C, E’) is spanning with respect to W when any connected
component of F contains precisely one element of W.

Example of a spanning

forestw.r.t. W = {sq, s, t} 2 s 4 !
5 @e—
Each component A 1 1
. VI Smvantbr:
marked by different color 2 4 !
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Forests

Forest-generated (IRFC and PW) objects
G = (C, E, w) — weighted graph, 0#WcC, Scw

Definition (Forest-generated object)

For a spanning forest F w.r.t. Wand S c W,

P(S,F) is a union of all components of F intersecting S.
Note that P(S,F) € P(S,T) for T= W\ S.

Example (green vertices) of

Outputs of the algorithms we will
discuss, GCym and PW,

are in the P(S,F) format.
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Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)
Forapath p=(cy,..., k) in Glet u(p) = minjx w({Cx, Ck+1}),

A forest F w.r.t. W is path-optimal provided for every ¢ € C,
the unique path p; in F from W to c is u-optimal in G, i.e.,
wu(pc) > wp(p) for any path pin G from W to c.

For OPF F w.r.t. W, u(pc) = uC(c, W) for every c € C
(with 1€ in the Fuzzy Connectedness sense)

*d *d
/ P / . s
N
(9) OPF, W = {s, t} (h) another OPF (i) not OPF
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GCnax algorithm and IRFC

Theorem ([KC et al.] OPF object minimizing £MaX )

There exists the smallest Py € P(S, T) in form P(S,F),
where F s an OPF w.rt. SUT.

IF is found by GCmax, a version of Dijkstra’s shortest path
algorithm, in a linear time w.r.t. |C| + M,
where M is the size of the range of w.

In practice, O(|C| + M) = O(|C)).

The object Ppin, returned by GCnax, coincides with the lterative
Relative Fuzzy Connectedness, IRFC, object.
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Forests

Maximal Spanning Forest, MSF

Definition (Maximal Spanning Forest, MSF)

A forest F = (C, E') w.r.t. W is maximal spanning p[ovided
Y ecer W(€) = > . w(e) for every forest IF = (C, E') w.rt. W

Cce *d Ce *d
2 2
A ‘ A A A
) ) t ) ) t
() OPF w.r.t. {s, t}, not MSF (k) MSF and OPF

Theorem ([Audigier & Lotufo], [Cousty et al.])
Every MSF is OPF, but not the other way around.
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Forests

MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)
PW algorithm returns P(S,F) fora MSFTF w.rt. SUT.

F is found by PW via a complicated version of Kruskal’s
algorithm and, locally, Random Walker algorithm.

Since

@ IRFC object is indicated by OPF,
@ PW object is indicated by MSF, and
@ every MSF is OPF

What is the relation between IRFC and PW objects?
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Forests

New results on GChax, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If Pin is the output of GCmayx (the smallest PA(S, IF), with with IFA
is being OPF w.r.t. SUT), then Pyin, = P(S,F) for some MSFIF.

IfF isa MSF w.rt. SU T, then P(S,TF) minimizes energy ™
(inP(S,T)).

P(S,TF), with F being OPF w.r.t. SU T, need not minimize ™%,

In other words
Pmin € 7)I\ﬂS/—_(Sa T) - POPF(Sv T) N Psmax(S, T)7

where Pyse(S, T) = {P(S,F): F is MSF}, similarly for OPF,
and P.max (S, T) is the set of all e™#*-optimizers.
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Thm on MSF vs OPF: proof

Outline of Part 2: Delineating objects via ¢, energies

0 Relation between MSF vs OPF: proof
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Thm on MSF vs OPF: proof
Outline of the proof of Main Theorem

@ Describe Dijkstra’s algorithm that gives OPF F with
Prin = P(S,F). Notice, it is the smallest set in Popg(S, T).

@ Use Kruskal’s algorithm to find MSF & with Prin = P(S, ).

@ Show that P(S, ) € P.nax(S, T) whenever I is MSF.
An argument is a variant of a proof that Kruskal’s algorithm
indeed returns MSF.

@ Give examples, showing that no inclusion can be reversed.
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Thm on MSF vs OPF: proof

Dijkstra’s algorithm DA: standard vs our version

G=(C,E,w), F generatedforestw.rt. W, ScWcC
pc — unique path in F from Wtoce C

@ Standard DA “grows” tree from a single source set W.
We use DA to grow forest with a multiple sources set W.

@ In standard DA, path p; has the smallest length.
(It optimizes path measure “sum of weights of all links.”)
We use DA to optimize p; w.r.t. “weakest link measure” p.

@ Newest variation:
We insure that Py, = P(F, S) is the smallest possible.
No control of algorithm’s output among P.max(S, T) was
insurable before introduction of GCmax (as far as we know).
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Thm on MSF vs OPF: proof

GCnax (i.e., our DA) data structure

@ Fis grown from roots, W = SU T, via adding edges.

F is indicated via path-predecessor map Pr:
Pr{W] = {0}, Pr(c) =predecessor of c in p. for c ¢ W

@ R(c) indicates root of c¢: the initial w € W belonging to p¢

We use preorder relation < on R x C:

(x,c) < (y,d) <= x<yor/( )

Initialize u(c) =1, R(c) =c, Pr(c) =0 force W
Initialize p(c) = —1, R(c) =c¢, Pr(c)=cforce C\ W
Insert every ¢ € C into queue Q according to priority <
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Thm on MSF vs OPF: proof
The GCpax algorithm

begin

1. while Q is not empty do

2. remove from Q a <-maximal spel c;

3 for every d with {c,d} € E do

4 if (u(d), R(d)) < (min{u(c), Wie.ay}, R(c)) then

5. set p(d) = min{u(c), Wicqy };

6. set R(d) = R(c) and Pr(d) = c;

7 remove temporarily d from Q;
8. push d to Q with the current values of © and R;

9. endif;
10. endfor;
11. endwhile;
12. return pu(-, W) = u(+), F indicated by Pr, Pmin = P(S,F);
end
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Thm on MSF vs OPF: proof
Properties of GCnax; correctness

line 2: Each c € C is removed precisely once from Q
e with u(c) = u(c, W)
e with <-maximal value of {u(c), R(c))

Proof: If the above fails for a ¢ € C and ¢ comes from the
fist execution of line 2 when this happens, then, in earlier
execution of lines 4-9, the value (u(c), R(c)) would have

been increased.

So, indeed F is OPF and
Prmin = P(S,F) is the C-smallest element of Pppe(S, T).

Next we show that Prin = P(S, ) for some MSF [
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Thm on MSF vs OPF: proof
Kruskal’s algorithm KA

Kruskal’s algorithm creates MSF [ for G = (C, E, w) as follows:

@ it lists all edges of the graph in a queue Q such that their
weights form a non-increasing sequence;

@ it removes consecutively the edges from Q, adding to I
those, which addition creates, in the expanded T, neither a
cycle nor a path between different vertices from W; other
edges are discarded.

This schema has a leeway in choosing the order of edges in Q:
those that have the same weight can be ordered arbitrarily.

This leeway will be exploited in the next proof.
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Thm on MSF vs OPF: proof

Construction of MSF I with Py = P(S,F)

Put B = bd(P(S,F)).
Insert every e € E into queue Q such that:

@ the weights of e € Q are in a non-increasing order;

@ among the edges with the same weight,
all those from E \ B precede all those from B.

Apply Kruskal’s algorithm to this Q to get MSF F.
[ is an MSF by the power of Kruskal’s algorithm.

To prove that P(S, ) = P(S,F) )
it is enough to show that F n B = 0.
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Thm on MSF vs OPF: proof

I is disjoint with B = bd(P(S, F))
Let e = {c,d} € B="1bd(P(S,F)), c € P(T,F). We show that:

In KA, adding e to ¥ would create a path from Sto T.

Let pc and py be the paths in F from W to ¢ and d. Then
1(Pc) = We and p(pg) = We. (1)

Proof: If u(pc) > p(pqg), then we < u(pg), since otherwise

m(pg) < min{u(pc), we} < pu(d, W),
contradicting optimality of py.

Similarly, p(pe) < 1(pg) implies we < p(pe)-

Finally, 1(pc) = 1u(pa) implies we < u(pc) = 1(pa), since
otherwise GCnax (during the execution of lines 6-8 for ¢ and d)
would reassign d to P(T,F), contradicting d € P(S,F).

So, (1) is proved.
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Thm on MSF vs OPF: proof

[ is disjoint with B = bd(P(S, F)), continuation

Fore={c,d} € B=0bd(P(S,F)),ce V\ P(S,F), we show:
In KA, adding e to ¥ would create a path from Sto T.
For paths p; and py in F from W to ¢ and d,

11(Pc) > We and ju(pg) > We.

Let E' = {€ € E: wo > we}\ B. Then, ' N E’ is already
constructed by KA.

In G = (V, ' n E') there is path pg from S to d and p from T to c.

Proof. The component C of d in G intersects S, as otherwise
there is an & € py C E’ only one vertex of which intersects C
and & € E’ would have been added to I, but was not. So,
indeed, there is py as claimed. Similarly, for p.. QED
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Thm on MSF vs OPF: proof

If F is an MSF, then P(S, F) minimizes M

Let F be an MSF and P = P(S,F). Note that

def

Emin = {eM*(P): P e P(S,T)} = max{u(p): pis from Sto T}
Assume it is not.

Then, thereisan e = {c,d} € E withc € P = P(S,F)Nbd(P)
for which we > enin. Let pc and pg be the paths in F from W to
c and d. Then either p(pc) < we or u(py) < we; otherwise there
is path p from Sto T with u(p) = we > emin, @ contradiction.

Assume that u(pe) < we. Then p; = (¢, ..., ck) with kK > 1 and
€ = {ck_1,ck} has weight < u(pc) < we. But then
F'=FU{e}\ {€} is a spanning forest w.r.t. W with

w(F') = w(F) + we — we > w(F), contradicting that F is MSF.
QED
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Thm on MSF vs OPF: proof
Summary

We proved that GCnax algorithm returns OPF T for which
P(S,F) minimizes ™(P) & maxecpy(p) w(e) in P(S, T).

Moreover,
Prin € Puse(S, T) C Pope(S, T) N Pemax(S, T),

where Pyse(S, T) = {P(S,F): F is MSF}, similarly for OPF,
and P.max (S, T) is the set of all e™#*-optimizers.

None of the inclusions can be reversed.
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Thm on MSF vs OPF: proof

Thank you for your attention!
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