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Example 1 of object segmentation/delineation

Delineation = segmentation of one object and the background
134 J Math Imaging Vis (2009) 35: 128–142

Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
with increasing power values, 2
and 5, respectively

image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

2D image of peppers
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image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.
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∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 1 (note seeds)
Small changes of parameters can cause big differences:
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image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 2
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image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 3
Krzysztof Chris Ciesielski Generalized distances in image segmentation 2



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Example 2: a CT image of patient’s cervical spine

A slice of an original 3D image Surface rendition of segmented
three vertebrae, together

Color surface rendition of the segmented three vertebra

Krzysztof Chris Ciesielski Generalized distances in image segmentation 3
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Example 3: An MR angiography image of the body
region from belly to knee.

Rendition of an original 3D,
contrast enhanced, image

A surface rendition of the entire
vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees

Krzysztof Chris Ciesielski Generalized distances in image segmentation 4
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Seeds: to help identifying “object of interest”

Which part of this image is
“the object?”

Commonly, “an operator” (human or automaton) indicates:

object via one set, S, of seeds

background via another set, T , of seeds

Krzysztof Chris Ciesielski Generalized distances in image segmentation 5
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General problem of segmentation of images

Find a procedure/algorithm which, given a digital image
(of some kind, e.g., 2D or 3D; terrain, medical, or faces; etc)
produces its segmentation. The procedure should satisfy

User expectation:

the resulted segmentations are close to what a user/expert
could expect, with as little human interaction as possible
(e.g., restricted to indication of the objects with seed sets);

Computational requirement:

there is an efficient algorithm that can perform the
computational part(s) of the procedure.

Goal of this talk: discuss some segmentation algorithms.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 6
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Outline of Part I: distances in image segmentation

1 The problem of image segmentation, by examples

2 Mathematical setting of image segmentation

3 Segmentation via energy minimization and distances

4 Computation of distance functions

5 True TOPOLOGICAL proof of correctness of algorithm Aappr
MBD

6 Polynomial time algorithm for exact MBD

7 Experiments: comparison of different algorithms for MBD
and other distances

Krzysztof Chris Ciesielski Generalized distances in image segmentation 6
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Digital image as a function

A nD digital image can be identified with a function f from
image scene C (finite, usually rectangular, subset of Rn)
into Rk

f : C → Rk

The elements c of C are pixels (in 2D), voxels (in 3D), or, in
general, spels (for space elements).

The value f (c) represents image intensity at c, a
k -dimensional vector each component of which indicates a
measure of some aspect of the signal, like color.

Later, we will talk on continuous (idealized) images,
defined on open regions Ω in Rn.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 7



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Image scene

Typically, scene is of rectangular character, as

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

It comes with a topological/graph structure:
as a graph G = 〈C,E〉, edges connecting “nearby” spels;
topologically, such these edges form adjacency relation.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 8
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Typical edges (2D scenes) and cost functions

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

edges for 4 adjacency

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

edges for 8 adjacency

Adjacency relation need not be symmetric; it can be considered
as a closure operator (inducing pre-topology).

Information of image is often coded via edge cost/weight
function w(c,d) for each edge 〈c,d〉 (i.e., c adjacent to d).

E.g. proto-distance cost w(c,d) = ‖f (c)− f (d)‖.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 9
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Segmentation via energy minimization

Given an image f : C → Rk and sets S = {S1, . . . ,Sn} of seeds:

allowable segmentations P(S) constitute of

the families P = {P1, . . . ,Pn} of sets with Si ⊂ Pi ⊂ C;

usually (not always) sets Pi need to be pairwise disjoint;

in this talk: P must cover C.

If for any such P we associate its cost ε(P) ≥ 0

a “good” segmentation is one minimizing an energy ε, i.e.,

arg min
P∈P(S)

ε(P)

Krzysztof Chris Ciesielski Generalized distances in image segmentation 10
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Distance-based energy & Voronoi-like segmentation

Let d : C × C → [0,∞) be a generalized distance
(i.e., symmetric and satisfying the triangle inequality)
associated with an image f : C → Rk .

For P = {P1, . . . ,Pn} from P(S), S = {S1, . . . ,Sn}, let

ε(x ,S) = max{d(x ,Si) : x ∈ Pi} for any x ∈ C, and put

εd (P) =
∑

x∈C ε(x ,S).

A Voronoi diagram (for d and S)
is a PS = {P1, . . . ,Pn} ∈ P(S), where

Pi = {x ∈ C : d(x ,Si) ≤ d(x ,Sj) for any j 6= i}.
Example of PS

Theorem
P ∈ P(S) minimizes εd iff it refines PS .

Krzysztof Chris Ciesielski Generalized distances in image segmentation 11
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Note on asymmetry

In some cases, the definition: PS = {P1, . . . ,Pn} ∈ P(S),
makes sense also with

Pi = {x ∈ C : di(x ,Si) ≤ dj(x ,Sj) for any j 6= i},

where each di is a different generalized distance (possibly,
even not symmetric).

This works for the Fuzzy Connectedness distance (discussed
below) as shown in a 2003 paper of Carvalho, Herman, Kong.

Subject of forthcoming paper of KC, G. Herman, and Y. Kong.

However, for Pi ’s to be connected, definition is more involved
(related to IRFC, unlike PS , which is basically RFC).

Krzysztof Chris Ciesielski Generalized distances in image segmentation 12
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From path strength to generalized distance

Π — all paths p = 〈c0, . . . , ck 〉 in G = 〈C,E〉, i.e., {ci , ci+1} ∈ E .

Πc,d — all paths from c ∈ C to d ∈ C.

For a fixed path strength map λ : Π→ [0,∞)

a “distance” is dλ(c,d) = min{λ(π) : π ∈ Πc,d}.

Example. If w : E → [0,∞) is an edge weight map on G,

with w({c,d}) being a (geodesic) distance from c to d ,

then dΣ is the geodesic metric, where

Σ(〈π(0), π(1), . . . , π(k)〉) =
∑k

i=1 w({π(i − 1), π(i)}).

Krzysztof Chris Ciesielski Generalized distances in image segmentation 13
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Generalized distance: what is needed from λ?

d : C2 → [0,∞) is a generalized distance mappings if

it is symmetric and satisfies the triangle inequality.

(We allow possibility that d(c, c) > 0 for some c ∈ C.)

Theorem
Assume that for every path π = 〈π(0), π(1), . . . , π(k)〉

(i) λ(π) = λ(〈π(k), π(k − 1), . . . , π(0)〉), and
(ii) λ(π) ≤ λ(〈π(0), . . . , π(i)〉) + λ(〈π(i), . . . , π(k)〉) for every

0 ≤ i ≤ k.
Then dλ is a generalized distance.

All maps dλ we consider (below) are generalized distances.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 14
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Generalized distances used in imaging

Geodesic Distance, dΣ, including the “Euclidean” Distance
Fuzzy Connectedness, FC: if µ is FC connectivity strength
for affinity κ : E → [0,M] and weight w(e) = M − κ(e), then
dλ(c,d) = M − µ(c,d), where λ(〈ci〉) = maxi w({ci−1, ci})
Watershed: it is dβ+

w
, where β+

w (〈ci〉) = maxi w(ci)

New Minimum Barrier Distance, dβw to be defined below
Fuzzy Distance, FD: it is dΣ̂, where for w : C → [0,∞)

ŵ(c,d) = w(c)+w(d)
2 and Σ̂(〈ci〉) =

∑
i ŵ({ci−1, ci})

For distance d and seed sets S,T ⊂ C (two objects case) put:

P(S,T ) = {c ∈ C : d(c,S) < d(c,T )}.

Then P(S,T ) = {P(S,T ),C \ P(S,T )} minimizes εd .

We compare P(S,T ) for dΣ, FC, MBD, FD.
Krzysztof Chris Ciesielski Generalized distances in image segmentation 15
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Definition of the Minimum Barrier Distance, MBD

Let w : C → [0,∞) be vertex weight map, e.g., w(c) = ‖f (c)‖.

For a path p = 〈ci〉 ∈ Π let βw(p) = β+
w (p)−β−w (p), where

β+
w (p) = maxi w(ci) and β−w (p) = mini w(ci).

βw is the barrier cost.

The Minimum
Barrier Distance, MBD

between x and y in C

is dβw (x , y), i.e.,

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) �min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 2
x! y!

dβw (x , y) = min{βw (p) : p ∈ Πx ,y}. ρ̂ = dβw
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MBD vs geodesic distance

dβw (x , y) = min{cb(p) : p is a path in G from x to y}

dβw (x , y) is, in a way,

a vertical component of

the geodesic distance dΣ

between x and y .

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) �min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 2
x! y!

dβw is a pseudo-metric: it is symmetric,

satisfies the triangle inequality, and dβw (x , x) = 0.

(However, dβw (x , y) can be equal 0 for x 6= y .)
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Outline of Part I: distances in image segmentation

1 The problem of image segmentation, by examples

2 Mathematical setting of image segmentation

3 Segmentation via energy minimization and distances

4 Computation of distance functions

5 True TOPOLOGICAL proof of correctness of algorithm Aappr
MBD

6 Polynomial time algorithm for exact MBD

7 Experiments: comparison of different algorithms for MBD
and other distances
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Standard Dijkstra algorithm, DA, for cost function λ

Algorithm 1 Dijkstra (Jarník, Prim) algorithm DA(λ,R)

Input: Path cost function λ on G = 〈C,E〉, non-empty R ⊂ C.
Output: For every c ∈ C, a λ-“shortest” path πc from r ∈ R to c.
Auxiliary: Queue Q: if c precedes d in Q, then λ(πc) ≤ λ(πd ).

1: Init: pr = 〈r〉 for r ∈ R, pc = ∅ for c /∈ R, push all r ∈ R to Q;
2: while Q is not empty do
3: Pop d from Q;
4: for every c ∈ C connected by an edge to d do
5: if λ(πd ĉ) < λ(πc) then
6: Put πc = πd ĉ, place c into a proprer place in Q;
7: end if
8: end for
9: end while

Runs in O(n ln n), where n is the image size.
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Dijkstra algorithm example

Example Networks1: Dijkstra's Algorithm for Shortest
Route Problems

Below is a network with the arcs labeled with their lengths.  The example will step though Dijkstra's Algorithm to find the
shortest route from the origin O to the destination T. 

Press the Start button twice to begin the example.
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Can Dijkstra Algorithm, DA, find (exact) MBD?

DA returns correctly distances: Geodesic, FC, FD, Watershed,

as their paths strengths are smooth in sense of Falcão et al.

DA does not work properly for MBD:

!!

! !

s!

c!

.5!

.5!

.7!

.4! !

.8!d!

Example: MBD value dβw (s, c) = .8− .5 for the indicated w .

DA(βw , {s}) returns suboptimal πc , with βw (πc) = .8− .4.
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Fast algorithms approximating MBD

Algorithm 2 Double-Dijkstra Aappr
MBD({s})

Input: A vertex weight map w on a graph G = 〈C,E〉, an s ∈ C.
Output: A map ϕ(·, {s})).
begin

1: Run DA(β+
w , {s})); record dβ+

w
(c, {s})) = β+

w (πc) for c ∈ C;
2: Run DA(β+

v , {s})), where v = M−w and M = maxc∈C w(c),
and record dβ−w (c, {s})) = M − β+

v (πc) for every c ∈ C;
3: Return ϕ(·, {s})) = dβ+

w
(c, {s}))− dβ−w (c, {s})) for c ∈ C;

end

The output of Aappr
MBD({s}) approximates MBD dβw (·, {s})):

Krzysztof Chris Ciesielski Generalized distances in image segmentation 20
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Outline of Part I: distances in image segmentation

1 The problem of image segmentation, by examples

2 Mathematical setting of image segmentation

3 Segmentation via energy minimization and distances

4 Computation of distance functions

5 True TOPOLOGICAL proof of correctness of algorithm Aappr
MBD

6 Polynomial time algorithm for exact MBD

7 Experiments: comparison of different algorithms for MBD
and other distances
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ϕ(·, {s})) ≈ True MBD dβw (·, {s}))
G = 〈C,E ,w〉— graph of a rectangular k -D image f , w = ‖f‖,

ε = max{|w(x)− w(y)| : x , y ∈ C are (2k − 1)-adjacent}.

Theorem (ϕ(c, s) ≤ dβw (c, s) ≤ ϕ(c, s) + 2ε )

Proof is based on deep result on continuous equivalent of MBD:

For f being continuous on a simple connected domain,

Main Lemma: continuous-ϕ(c,d) = continuous-dβw (c,d).

Proof of Thm:
(1) Extend f to continuous f̂ via k -linear interpolation.
(2) Find continuous path p ∈ Πx ,y with βw (p) ≈ ϕ(x , y).
(3) Digitize p.
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continuous-ϕ(c,d) = continuous-dβw (c,d): definitions

Input: Continuous function f : D → R, considered as an image,

where D =
∏k

i=1[ai ,bi ] (ai ,bi ∈ R).

For a (continuous) path p : [0,1]→ D its barrier cost is

cb(p) = maxtw(p(t)) −mintw(p(t)), here w = f .

(Note that max and min are attained, as w ◦ p is continuous.)

The continuous-dβw , barrier dist. ρ,

between x , y ∈ D is given by:

ρ(x , y) = inf{cb(p) : p from x to y}

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) �min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 2
x! y!
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Difficulties: Topologists sine curve example

In ρ(x , y), operation inf cannot be replaced with min:

g(t) = sin(1/t) for t 6= 0, g(0) = 0

Above g:!
w(p)=dist(p,g)


Below g:!
w(p)=–dist(p,g)


y!

x!

p1!

p2!

ρ(x , y) = inf{cb(p) : p ∈ Πx ,y}

Put cmin(p) = mint w(p(t))

and cmax(p) = maxt w(p(t))

cmin(p1) = 0 < cmax(p1)

cmax(p2) = 0 > cmin(p2)

For ϕ(x , y) = minp∈Πx,y cmax(p)−maxp∈Πx,y cmin(p)

cmax(p2)− cmin(p1) = 0 = ϕ(x , y) = ρ(x , y) < cb(p)
for any p ∈ Πx ,y .
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Proof of: continuous-ϕ(c,d) = continuous-dβw (c,d)

Using Alexander’s lemma we prove:

Lemma

If F0,F1 ⊂ [0,1]2 are closed disjoint s.t.
F0 \ (0,1)2 ⊂ (0,1)× {1} and
F1 \ (0,1)2 ⊂ (0,1)×{0}, then, there is
π̄ : [0,1]→ [0,1]2 \ (F0 ∪ F1),
continuous from 〈0, .5〉 to 〈1, .5〉.

209
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211

212

213

214

215

216

217

218

219

220

221

222
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224

225
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227

228

229
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234

⇡̄0

F1

(0, 0.5) (1, 0.5)

F0

⇡̄

Figure 2: Illustration of Lemma 1. See the text for notation.

in R2 \ F̄0 (following the lower boundary of [0, 1]2) and in R2 \ F̄1 (following

the upper boundary of [0, 1]2). Therefore, by a version of Alexander’s lemma

from [22, p. 137], there exists a path ⇡̄0 : [0, 1]! R2 \ (F̄0 [ F̄1) ⇢ R⇥ (0, 1)

from h0, .5i to h1, .5i. Now, if r : R ⇥ (0, 1) ! [0, 1] ⇥ (0, 1) is such that

r(x) is the point in [0, 1] ⇥ (0, 1) closest to x, then the continuous mapping

⇡̄ = r � ⇡̄0 : [0, 1]! ([0, 1]⇥ (0, 1)) \ (F0 [ F1) is as desired.

Lemma 2. Let D ⇢ Rn be simply connected. For every p, q 2 D and " > 0

there exists a ⇡ 2 ⇧p,q such that U0�" < fA(⇡(t)) < U1+" for every t 2 [0, 1],

where U0 = sup⇡02⇧p,q
mint fA(⇡0(t)) and U1 = inf⇡12⇧p,q maxt fA(⇡1(t)).

Proof. Choose the paths ⇡0, ⇡1 2 ⇧p,q for which maxt fA(⇡1(t)) < U1 + "

and mint fA(⇡0(t)) > U0 � ". Let h : [0, 1]2 ! D be a homotopy between

the paths ⇡0 and ⇡1. Define F0 = {z 2 [0, 1]2 : fA(h(z))  U0 � "} and

F1 = {z 2 [0, 1]2 : fA(h(z)) � U1 + "} and notice that they satisfy the

assumptions of Lemma 1. (Typical position of sets F0 and F1 is shown in

Figure 2. Function h is constant on each of the vertical segments of [0, 1]2.)

9

Theorem (Non-trivial result on simple connected domains)

If there are p1,p2 ∈ Πx ,y with a < cmin(p1) and cmax(p2) < b,
then there is a single p ∈ Πx ,y with the range in (a,b).

Corollary (continuous case)

ϕ(x , y) = ρ(x , y) for a w on a simple connected domain D.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 24



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Outline of Part I: distances in image segmentation

1 The problem of image segmentation, by examples

2 Mathematical setting of image segmentation

3 Segmentation via energy minimization and distances

4 Computation of distance functions

5 True TOPOLOGICAL proof of correctness of algorithm Aappr
MBD

6 Polynomial time algorithm for exact MBD

7 Experiments: comparison of different algorithms for MBD
and other distances
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Aappr
MBD(S) and DA(βw ,S): pros and cons

Both fast, in order between O(n) and O(n ln n), n = |C|.

Aappr
MBD(S) underestimates MBD, with known error rate ε;

needs to run “simple” DA |S|-many times, slowing for large S.

DA(βw ,S) overestimates MBD with unknown error bound;

complexity is (essentially) independent of the size of S;

Conjecture

The error of DA(βw ,S) does not exceed 2ε, maybe even ε.

So far, no theoretical proof for this.
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Simple algorithm for exact MBD

Algorithm 3 Asimple
MBD (S)

Input: A vertex weight w on G = 〈C,E〉, non-empty S ⊂ C.
Output: The paths pc from S to c with βw (pc) = dβw (c,S).
begin

1: Init: U = max{w(s) : s ∈ S} and pc = ∅ for every c ∈ C;
2: Push all numbers from {w(c) ≤ U : c ∈ C} to a queue Q;
3: while Q is not empty do
4: Pop a from Q, run DA(β+

v ,S) with v = wa, return πc ’s;
(wa(c) = w(c) if w(c) ≥ a, wa(c) =∞ otherwise)

5: for every c ∈ C do
6: if βv (πc) < βw (pc) then
7: Put pc = πc ;
8: end if
9: end for

10: end while
end
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Faster algorithm for exact MBD
Algorithm 4 AMBD(S)

Auxiliary: β−w -optimal πc from S to c; a queue Q: if c � d then
β+

w (πc) < β+
w (πd ) or β+

w (πc) = β+
w (πd ) and β−w (πc) > β−w (πd ).

begin
1: Init: ps = πs = 〈s〉 for s ∈ S and pc = πc = ∅ for c ∈ C \ S;
2: Push all s ∈ S to Q;
3: while Q is not empty do
4: Pop c from Q;
5: for every d ∈ C connected by an edge to c do
6: if β−w (πc ˆd) > β−w (πd ) then
7: Set πd ← πc ˆd and place d into Q;
8: if βw (πd ) < βw (pd ) then
9: Set pd ← πd ;

10: end if
11: end if
12: End everything;
13: end for
14: end while
end
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Correctness of the algorithms for exact MBD

Theorem
Let n be the size of the graph and m be the size of a fix set Z ,
containing W = {w(c) : c ∈ C}. The algorithm computational
complexity is either

(BH) O(m n ln n), if we use binary heap as Q, or
(LS) O(m(n + m)), if we use as Q a list structure.
After AMBD(S) terminates, we indeed have βw (pc) = dw (c,S)

for all c ∈ C. The same is true for Asimple
MBD (S).

Proof for AMBD(S) is quite intricate; for Asimple
MBD (S) is quite easy.

However, AMBD(S) executes the main while loop considerably
fewer times than Asimple

MBD (S) does.
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Outline of Part I: distances in image segmentation

1 The problem of image segmentation, by examples

2 Mathematical setting of image segmentation

3 Segmentation via energy minimization and distances

4 Computation of distance functions

5 True TOPOLOGICAL proof of correctness of algorithm Aappr
MBD

6 Polynomial time algorithm for exact MBD

7 Experiments: comparison of different algorithms for MBD
and other distances

Krzysztof Chris Ciesielski Generalized distances in image segmentation 28



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Step 1: Comparison of different algorithms for MBD

the exact MBD algorithm AMBD(S);
the interval algorithm DA(βw ,S) overestimating MBD;
Aappr

MBD(S) executed ones for each seed point;
it underestimates MBD, with an error ≤ 2ε;
A?appr

MBD (S) executed only ones even for multiple seeds.

Experiments were conducted on a computer: HP Proliant
ML350 G6 with 2 Intel X5650 6-core processors (2.67Hz) and
104GB memory.

The used 2D images, from the grabcut dataset, came with the
true segmentations. Their sizes range from 113032 pixels (for
284× 398 image) to 307200 (for 640× 480 image).

Krzysztof Chris Ciesielski Generalized distances in image segmentation 29



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

2D images from the grabcut dataset

Figure: Images from the grabcut dataset used in the experiments.
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Results

For each s = 1, . . . ,25, the following was repeated 100 times:
(1) extract a random image from the database;
(2) generate randomly the set S of s seed points in the image;
(3) run each algorithm on this image with the chosen set S.
Graphs display averages.
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More results and conclusions
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Figure: The mean number pixels
with incorrect value of MBD

We declared as “winners,”
used in the segmentation ex-
periments:

AMBD(S) as it is exact and
reasonably fast;

DA(βw ,S) as it is the fastest and
has the smallest error
from approximations.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 32



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Step 2: algorithms used in the segmentation valuation

For gray-scale digital images f : C → [0,∞):

The exact MBD computed with AMBD(S), where
w(c) = f (c).
An approximate MBD computed with DA(βw ,S), where
w(c) = f (c).
The geodesic distance computed with DA(Σ,S), where, for
adjacent c,d ∈ C, w(c,d) = |f (c)− f (d)|.
The fuzzy distance computed with DA(Σ̂,S), where
w(c) = f (c).
The fuzzy connectedness computed with DA(w ,S), where,
for adjacent c,d ∈ C, w(c,d) = M −κ(c,d) = |f (c)− f (d)|.

We start with the 2D grabcut images.
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Speed w.r.t. image size
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Figure: Mean execution time on small images obtained by cutting out
grabcut images. A single seed point is used for each image.

The actual execution time of AMBD(S) depends on the image
size in a linear manner, rather than in the (worst case scenario
proven) quadratic manner.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 34



Problem Image Distances & Segmentation Dijkstra alg. Topol. thm Exact MBD alg Experiments

Seeds chosen by erosion, no noise or blur
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Figure: The value for each algorithm for the seeds chosen for
indicated erosion radius represent average over the 17 images.

All algorithms performed well, with just a slight better accuracy
for MBD algorithms.
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Seeds chosen by the users, no noise or blur

Figure: Example of seed points, users 1–4, respectively.

0.6

0.8

1

ex
ac
t
M
B
D

ap
pr
ox
im
at
e
M
B
D

ge
od
es
ic
di
st
an
ce

fu
zz
y
co
nn
ec
te
dn
es
s

fu
zz
y
di
st
an
ce

d
ic
e

Figure: Boxplots of Dice coefficient, seeds from users 1–4.
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Seeds chosen by the users, smoothing added
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Figure: The performance of the five algorithms as a function of
smoothing the images.

MBD algorithms handled smoothing a lot better than FC and FD

Smoothing improves execution time for exact MBD algorithm
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Seeds chosen by the users, noise added

10
−4

10
−2

10
0

0

0.5

1

m
ea
n
d
ic
e
va
lu
e

Gaussian noise (σ), log scale

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

10
−4

10
−2

10
0

0

20

40

60

80

m
ea
n
ex
ec
u
ti
o
n
ti
m
e
(s
)

Gaussian noise (σ), log scale

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

Figure: The performance of the five algorithms as a function of
adding noise to the images.
MBD algorithms handled noise better than other algorithms for
not very noisy images
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Blur added to the images with fixed level of noise

1 5 10
0

0.5

1

m
ea
n
d
ic
e
va
lu
e

Gaussian smoothing (σ)

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

1 5 10
0

15

30

45

m
ea
n
ex
ec
u
ti
o
n
ti
m
e
(s
)

Gaussian smoothing (σ)

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

Figure: The performance of the five algorithms as a function of
smoothing, applied to the images with added fixed level of noise.
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Noise added to the smoothed images
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Figure: The performance of the five algorithms as a function of
adding noise, applied to the smoothed images.
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3D experiments: the image

(a) (b) (c)

Figure: The 3D T1-weighted MRI image of the brain, smoothed by
Gaussian blur with sigma value 0.5. (a) three perpendicular slices; (b)
reference segmentation of the same slices; (c) surface rendering of
the reference segmentation.
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3D experiments: the results
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Figure: The performance of the five algorithms on the image for the
asymmetrically chosen seeds at the indicated erosion radius.

MBD algorithms compare favorably with the other algorithms
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Conclusions

Minimum Barrier Distance:

Can be efficiently computed: (a) exactly; (b) approximately.

The segmentations associated with MBD compare
favorably with those associates with: geodesic distance
(GD), fuzzy distance (FD), and relative fuzzy
connectedness (RFC).

The segmentations associated with MBD are more robust
to smoothing and to noise than GD, FD, and RFC.
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`p -energies GC vs FC Forests Thm on MSF vs OPF: proof

Part 2: Delineating objects in images
via minimization of `p energies;
spanning forests via Dijkstra’s and
Kruskal’s algorithms
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Outline of Part 2: Delineating objects via `p energies

8 `p distances and related energies

9 Comparison of GC and FC image segmentations

10 Spanning forests, Dijkstra algorithm, IRFC and PW objects

11 Relation between MSF vs OPF: proof
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Heuristic and the definition of boundary

Heuristic: The objects boundary areas
should be identifiable in the image, as the
areas of sharp image intensity change.

What constitutes boundary bd(P) of P?

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

s!

t2!

t1!

Desired object!

Need graph (or topological) structure G = 〈V ,E〉 on C:

Pixels c ∈ C are its vertices, V = C;

Edges {c,d} ∈ E are “nearby” vertices (e.g. as in figure).

bd(P) is the set of all edges {c,d} ∈ E with c ∈ P and d /∈ P
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Weighted graphs and `p cost functions, 1 ≤ p ≤ ∞

Assume that with every edge e =
{c,d} ∈ E of an image f we have as-
sociated its weight/cost w(e) ≥ 0, which
is low, for big ‖f (c)− f (d)‖.

Typically, w(e) = e−‖f (c)−f (d)‖/σ2
, see fig.

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
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.7!
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.2!
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.2! .4! 1!

.4!

s!

t2!

t1!

Desired object!
If FP : E → [0,∞), FP(e) = w(e) for e ∈ bd(P) and FP(e) = 0
for e /∈ bd(P), then `p cost is defined as

εp(P)
def
= ‖FP‖p =





(∑
e∈bd(P) w(e)p

)1/p
if p <∞

maxe∈bd(P) w(e) if p =∞.
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FC and GC algorithms as minimizers of εp

εp(P)
def
= ‖FP‖p =





(∑
e∈bd(P) w(e)p

)1/p
if p <∞

maxe∈bd(P) w(e) if p =∞.

p = 1: ε1(P)=
∑

e∈bd(P) w(e); algorithm admits asymmetric cost

Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ε1.

p =∞: ε∞(P)= maxe∈bd(P) w(e);
Optimization solved by (versions of) Dijkstra algorithm.

ε∞ optimized objects are returned by the algorithms:
Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC,
and Power Watershed, PW [C. Couprie et al, 2011].

p = 2: related to Random Walker, RW, algorithm [Grady, 2006],
see next slides.
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Fuzzy sets

A map x : C → [0,1] (i.e., x ∈ [0,1]C) can be considered as a
fuzzy set, with x(c) giving the degree of membership of c in it.

A hard set P ⊂ C is identified with a fuzzy set (binary image)
χP ∈ {0,1}C ⊂ [0,1]C , χP(c) = 1 iff c ∈ P.

For x ∈ [0,1]C let ε̂p(x) = ‖Fx‖p, where Fx : E → [0,∞),

Fx ({c,d}) = |x(c)− x(d)|w({c,d}) for {c,d} ∈ E .

Then εp(P) = ε̂p(χP). We can minimize ε̂p on

P̂(S,T ) = {x : x(c) = 1 for c ∈ S & x(c) = 0 for c ∈ T}

instead of εp on P(S,T ) = P̂(S,T ) ∩ {0,1}C .
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Random Walker, RW, algorithm

RW finds (the unique) ε̂2 minimizer on P̂(S,T ).
Defines its output as P = {c : x(c) ≥ .5}.

Problems with RW:

1 Output need not be connected (even when S and T are).
2 P need not minimize ε2 on P(S,T ).

Neither of this happens for ε1 (i.e. GC) or ε∞ (i.e. RFC or PW):

Thm: For p ∈ {1,∞}, any minimizer of ε̂p on P̂(S,T ) actually
belongs to P(S,T ).
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(Non)-uniquness of the minimizers for ε1 and ε∞

Let Pp(S,T ) = {P ∈ P(S,T ) : P minimizes εp on P(S,T )}.

Both P1(S,T ) and P∞(S,T ) may have more than one element.

However, the outputs of the standard versions of the algorithms:

GC, from P1(S,T ),
RFC, from P∞(S,T ), and
IRFC, from P∞(S,T )

are unique in the sense of the next theorem.
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GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)

For p ∈ {1,∞}, Pε(S,T ) contains the ⊂-smallest object.

GC algorithm returns the smallest set in P1(S,T ).
RFC algorithm returns the smallest set in P∞(S,T ).
IRFC algorithm returns the smallest set in a refinement
P∗∞(S,T ) of P∞(S,T ).

Moreover, if n is the size of the image (scene), then

GC runs in time of order O(n3) (the best known algorithm)
or O(n2.5) (the fastest currently known algorithm)
Both RFC and IRFC run in time of order O(n) (for standard
medical images — the intensity range size not too big) or
O(n ln n) (the worst case scenario)
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GC & FC — asymptotic equivalence

Theorem (Asymptotic equivalence of GC and FC)

Let Pm
p (S,T ) be the family Pp(S,T ) for the edge weight

function w replaced by its m-th power wm. Then

Pm
∞(S,T ) = P∞(S,T ) and similarly for IRFC algorithm.

So, the outputs of RFC and IRFC are unchanged by m.

Pm
1 (S,T ) ⊆ P∞(S,T ) for m large enough.

In particular, if P∞(S,T ) has only one element, then

the output of GC coincides with the outputs of RFC and IRFC

for m large enough.
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Outline of Part 2: Delineating objects via `p energies

8 `p distances and related energies

9 Comparison of GC and FC image segmentations

10 Spanning forests, Dijkstra algorithm, IRFC and PW objects

11 Relation between MSF vs OPF: proof
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Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms:
O(n) (or O(n ln n)) versus O(n3) (or O(n2.5)).

Robustness: RFC & IRFC are unaffected by small seed changes.
GC is sensitive for even small seed changes.

Shrinking: GC chooses objects with small size boundary
(often with edges with high weights);
No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of
multiple objects, same running time and robustness.
GC in such setting leads to NP-hard problem,
so (for precise delineation) it runs in exponential time

Iterative approach: RFC has an iterative approach refinement;
No such refinement methods exist for GC at present.
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Advantages of GC over FC

Boundary smoothness: GC chooses small boudary, so it
naturally smooths it; in many (but not all) medically
important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing;
if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity:
GC naturally combines information on image
homogeneity (binary relation on voxels)
with information on expected object intensity
(unary relation on voxels);

Combining such informations is difficult to achieve
in the FC framework.
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Setup of experiments:

In each experiment we used 20 MR BrainWeb phantom
images (simulated T1 acquisition); graphs show averages.
Sets of seeds were generated, from known true binary
segmentations, by applying erosion operation:
the bigger erosion radius, the smaller the seed sets.
The weight map w(c,d), same for FC and GC, was
defined from the image intensity function f as
w(c,d) = −|G(f (c))−G(f (d))|,
where G is an appropriate Gaussian.
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Setup of experiments:

Data parameters: the simulated T1 acquisition were as follows:
spoiled FLASH sequence with TR=22ms and
TE=9.2ms, flip angle = 30◦, voxel size
= 1× 1× 1mm3, noise = 3%, and background
non-uniformity = 20%.

Computer: Experiments were run on PC with an AMD Athlon
64 X2 Dual-Core Processor TK-57, 1.9 GHz,
2×256 KB L2 cache, and 2 GB DDR2 of RAM.
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Robustness & shrinking for FC & GC: White Matter

(a) RFC (b) IRFC (c) GC

(d) RFC (e) IRFC (f) GC
Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f)
GC: dramatic change of output; seeds choice same as in the FC case
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Time & accuracy of FC & GC: segmentation of WM
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FC vs GC: Conclusions

FC and GC quite similar,
yet FC has many advantages over GC:

- FC runs considerably faster than GC
- FC is robust (seed), while GC has shrinkage problem
- FC, unlike GC, easily handles multiple-object segmentation
unless the application requires, in an essential way, the
simultaneous use of
- homogeneity (binary) info on image intensity;
- expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC)
segmentation algorithm, rather than GC algorithm
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Outline of Part 2: Delineating objects via `p energies

8 `p distances and related energies

9 Comparison of GC and FC image segmentations

10 Spanning forests, Dijkstra algorithm, IRFC and PW objects

11 Relation between MSF vs OPF: proof
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Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph G = 〈C,E ,w〉 and ∅ 6= W ⊂ C.

Definition (Spanning Forest w.r.t. W )

A forest for G is any subgraph F = 〈C,E ′〉 of G free of cycles.
F = 〈C,E ′〉 is spanning with respect to W when any connected
component of F contains precisely one element of W .

Example of a spanning

forest w.r.t. W = {s1, s2, t}

Each component

marked by different color

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!
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.4!.2!
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Forest-generated (IRFC and PW) objects

G = 〈C,E ,w〉 – weighted graph, ∅ 6= W ⊂ C, S ⊂W

Definition (Forest-generated object)

For a spanning forest F w.r.t. W and S ⊂W ,
P(S,F) is a union of all components of F intersecting S.
Note that P(S,F) ∈ P(S,T ) for T = W \ S.

Example (green vertices) of

P(S,F) with S = {s1, s2}.

Outputs of the algorithms we will
discuss, GCsum and PW,

are in the P(S,F) format.

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!
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Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)

For a path p = 〈c1, . . . , ck 〉 in G let µ(p) = mini<k w({ck , ck+1}),
the weakest link of p.
A forest F w.r.t. W is path-optimal provided for every c ∈ C,
the unique path pc in F from W to c is µ-optimal in G, i.e.,
µ(pc) ≥ µ(p) for any path p in G from W to c.

For OPF F w.r.t. W , µ(pc) = µC(c,W ) for every c ∈ C
(with µC in the Fuzzy Connectedness sense)

!!!! !!

!!

s! t!c!

d!

.2! .1!

.6!.2!

(g) OPF, W = {s, t}

!!!! !!
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.2! .1!

.6!.2!

(h) another OPF
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.2! .1!

.6!.2!

(i) not OPF
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GCmax algorithm and IRFC

Theorem ([KC et al.] OPF object minimizing εmax )

There exists the smallest Pmin ∈ P(S,T ) in form P(S,F),
where F is an OPF w.r.t. S ∪ T .

F is found by GCmax, a version of Dijkstra’s shortest path
algorithm, in a linear time w.r.t. |C|+ M,

where M is the size of the range of w.

In practice, O(|C|+ M) = O(|C|).
The object Pmin, returned by GCmax, coincides with the Iterative
Relative Fuzzy Connectedness, IRFC, object.
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Maximal Spanning Forest, MSF
Definition (Maximal Spanning Forest, MSF)

A forest F = 〈C,E ′〉 w.r.t. W is maximal spanning provided∑
e∈E ′ w(e) ≥∑e∈Ê ′ w(e) for every forest F̂ = 〈C, Ê ′〉 w.r.t. W

!!!!

!! !!
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.5!
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(j) OPF w.r.t. {s, t}, not MSF

!!!!
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(k) MSF and OPF

Theorem ([Audigier & Lotufo], [Cousty et al.])

Every MSF is OPF, but not the other way around.
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MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)

PW algorithm returns P(S,F) for a MSF F w.r.t. S ∪ T .

F is found by PW via a complicated version of Kruskal’s
algorithm and, locally, Random Walker algorithm.

Since

IRFC object is indicated by OPF,
PW object is indicated by MSF, and
every MSF is OPF

What is the relation between IRFC and PW objects?
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New results on GCmax, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If Pmin is the output of GCmax (the smallest P(S,F), with with F
is being OPF w.r.t. S ∪T), then Pmin = P(S, F̂) for some MSF F̂.

If F is a MSF w.r.t. S ∪ T , then P(S,F) minimizes energy εmax

(in P(S,T )).

P(S,F), with F being OPF w.r.t. S ∪ T , need not minimize εmax.

In other words

Pmin ∈ PMSF (S,T ) ⊂ POPF (S,T ) ∩ Pεmax(S,T ),

where PMSF (S,T ) = {P(S,F) : F is MSF}, similarly for OPF,
and Pεmax(S,T ) is the set of all εmax-optimizers.
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Outline of Part 2: Delineating objects via `p energies

8 `p distances and related energies

9 Comparison of GC and FC image segmentations

10 Spanning forests, Dijkstra algorithm, IRFC and PW objects

11 Relation between MSF vs OPF: proof
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Outline of the proof of Main Theorem

Describe Dijkstra’s algorithm that gives OPF F with
Pmin = P(S,F). Notice, it is the smallest set in POPF (S,T ).

Use Kruskal’s algorithm to find MSF F̂ with Pmin = P(S, F̂).

Show that P(S, F̂) ∈ Pεmax(S,T ) whenever F̂ is MSF.
An argument is a variant of a proof that Kruskal’s algorithm
indeed returns MSF.

Give examples, showing that no inclusion can be reversed.

Krzysztof Chris Ciesielski Generalized distances in image segmentation 66



`p -energies GC vs FC Forests Thm on MSF vs OPF: proof

Dijkstra’s algorithm DA: standard vs our version

G = 〈C,E ,w〉, F generated forest w.r.t. W , S ⊂W ⊂ C
pc – unique path in F from W to c ∈ C

Standard DA “grows” tree from a single source set W .
We use DA to grow forest with a multiple sources set W .

In standard DA, path pc has the smallest length.
(It optimizes path measure “sum of weights of all links.”)

We use DA to optimize pc w.r.t. “weakest link measure” µ.

Newest variation:
We insure that Pmin = P(F,S) is the smallest possible.
No control of algorithm’s output among Pεmax(S,T ) was
insurable before introduction of GCmax (as far as we know).
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GCmax (i.e., our DA) data structure

F is grown from roots, W = S ∪ T , via adding edges.

F is indicated via path-predecessor map Pr :
Pr [W ] = {∅}, Pr(c) =predecessor of c in pc for c /∈W

R(c) indicates root of c: the initial w ∈W belonging to pc

We use preorder relation ≺ on R× C:

〈x , c〉 ≺ 〈y ,d〉 ⇐⇒ x < y or (x = y & d ∈ T & c /∈ T )

Initialize µ(c) = 1, R(c) = c, Pr(c) = ∅ for c ∈W
Initialize µ(c) = −1, R(c) = c, Pr(c) = c for c ∈ C \W
Insert every c ∈ C into queue Q according to priority �
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The GCmax algorithm

begin
1. while Q is not empty do
2. remove from Q a �-maximal spel c;
3. for every d with {c,d} ∈ E do
4. if 〈µ(d),R(d)〉 ≺ 〈min{µ(c),w{c,d}},R(c)〉 then
5. set µ(d) = min{µ(c),w{c,d}};
6. set R(d) = R(c) and Pr(d) = c;
7. remove temporarily d from Q;
8. push d to Q with the current values of µ and R;
9. endif ;

10. endfor ;
11. endwhile;
12. return µ(·,W ) = µ(·), F indicated by Pr , Pmin = P(S,F);
end
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Properties of GCmax; correctness

line 2: Each c ∈ C is removed precisely once from Q
with µ(c) = µ(c,W )
with ≺-maximal value of 〈µ(c),R(c)〉

Proof: If the above fails for a c ∈ C and c comes from the
fist execution of line 2 when this happens, then, in earlier
execution of lines 4-9, the value 〈µ(c),R(c)〉 would have
been increased.

So, indeed F is OPF and
Pmin = P(S,F) is the ⊂-smallest element of POPF (S,T ).

Next we show that Pmin = P(S, F̂) for some MSF F̂
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Kruskal’s algorithm KA

Kruskal’s algorithm creates MSF F̂ for G = 〈C,E ,w〉 as follows:

it lists all edges of the graph in a queue Q such that their
weights form a non-increasing sequence;
it removes consecutively the edges from Q, adding to F̂
those, which addition creates, in the expanded F̂, neither a
cycle nor a path between different vertices from W ; other
edges are discarded.

This schema has a leeway in choosing the order of edges in Q:
those that have the same weight can be ordered arbitrarily.

This leeway will be exploited in the next proof.
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Construction of MSF F̂ with Pmin = P(S, F̂)

Put B = bd(P(S,F)).

Insert every e ∈ E into queue Q such that:

the weights of e ∈ Q are in a non-increasing order;
among the edges with the same weight,

all those from E \ B precede all those from B.

Apply Kruskal’s algorithm to this Q to get MSF F̂.

F̂ is an MSF by the power of Kruskal’s algorithm.

To prove that P(S, F̂) = P(S,F)
it is enough to show that F̂ ∩ B = ∅.
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F̂ is disjoint with B = bd(P(S,F))
Let e = {c,d} ∈ B = bd(P(S,F)), c ∈ P(T ,F). We show that:

In KA, adding e to F̂ would create a path from S to T .

Let pc and pd be the paths in F from W to c and d . Then

µ(pc) ≥ we and µ(pd ) ≥ we. (1)

Proof: If µ(pc) > µ(pd ), then we ≤ µ(pd ), since otherwise
µ(pd ) < min{µ(pc),we} ≤ µ(d ,W ),

contradicting optimality of pd .

Similarly, µ(pc) < µ(pd ) implies we ≤ µ(pc).

Finally, µ(pc) = µ(pd ) implies we < µ(pc) = µ(pd ), since
otherwise GCmax (during the execution of lines 6-8 for c and d)
would reassign d to P(T ,F), contradicting d ∈ P(S,F).
So, (1) is proved.
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F̂ is disjoint with B = bd(P(S,F)), continuation

For e = {c,d} ∈ B = bd(P(S,F)), c ∈ V \ P(S,F), we show:

In KA, adding e to F̂ would create a path from S to T .

For paths pc and pd in F from W to c and d ,

µ(pc) ≥ we and µ(pd ) ≥ we.

Let E ′ = {e′ ∈ E : we′ ≥ we} \ B. Then, F̂ ∩ E ′ is already
constructed by KA. It is enough to show that

In Ĝ = 〈V , F̂ ∩ E ′〉 there is path p̂d from S to d and p̂c from T to c.

Proof. The component C of d in Ĝ intersects S, as otherwise
there is an ê ∈ pd ⊂ E ′ only one vertex of which intersects C
and ê ∈ E ′ would have been added to F̂, but was not. So,
indeed, there is p̂d as claimed. Similarly, for p̂c . QED
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If F is an MSF, then P(S,F) minimizes εmax

Let F be an MSF and P = P(S,F). Note that

εmin
def
= {εmax(P) : P ∈ P(S,T )} = max{µ(p) : p is from S to T}

We need to show that εmax(P) ≤ εmin. Assume it is not.

Then, there is an e = {c,d} ∈ E with c ∈ P = P(S,F) ∩ bd(P)
for which we > εmin. Let pc and pd be the paths in F from W to
c and d . Then either µ(pc) < we or µ(pd ) < we; otherwise there
is path p from S to T with µ(p) = we > εmin, a contradiction.

Assume that µ(pc) < we. Then pc = 〈c1, . . . , ck 〉 with k > 1 and
e′ = {ck−1, ck} has weight ≤ µ(pc) < we. But then
F′ = F ∪ {e} \ {e′} is a spanning forest w.r.t. W with
w(F′) = w(F) + we − we′ > w(F), contradicting that F is MSF.
QED
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Summary

We proved that GCmax algorithm returns OPF F for which
P(S,F) minimizes εmax(P)

def
= maxe∈bd(P) w(e) in P(S,T ).

Moreover,

Pmin ∈ PMSF (S,T ) ⊂ POPF (S,T ) ∩ Pεmax(S,T ),

where PMSF (S,T ) = {P(S,F) : F is MSF}, similarly for OPF,
and Pεmax(S,T ) is the set of all εmax-optimizers.

None of the inclusions can be reversed.
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Thank you for your attention!
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