History

Proofs

Separate continuity and its generalizations history, recent progress, and open problems

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Departmentof Radiology, University of Pennsylvania

Dept. of Mathematics, Warsaw University, Poland October 15, 2013.

Krzysztof Chris Ciesielski

ヘロト 人間 ト ヘヨト ヘヨト

Krzysztof Chris Ciesielski

Separate continuity and its generalizations 1

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, $n = 2, 3, 4, \dots$ fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f \colon \mathbb{R}^n \to \mathbb{R}$

• *f* is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \le n$, $\mathcal{F}_{k,n}$: all *k*-dimensional flats (affine subspaces) of \mathbb{R}^n $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vectors

- *f* is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- *f* is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

・ロト ・ 理 ト ・ ヨ ト ・

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary Continuity vs \mathcal{F} -continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

- J. Thomae calculus text 1870 (and 1873), due to E. Heine: $F(x, y) = \sin \left(4 \arctan \left(\frac{y}{x}\right)\right)$ for $\langle x, y \rangle \neq \langle 0, 0 \rangle$, F(0, 0) = 0.
- 1884 treatise on calculus by Genocchi and Peano:

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $P(0,0) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Nothing is known for $n \ge 3$.

Krzysztof Chris Ciesielski

ヘロア 人間 アメヨア 人口 ア

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary Baire classification of linearly continuous functions?

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Theorem (KC, very partial answer, preliminary work)

For every Baire class 1 function $g: [0,1] \to \mathbb{R}$ there is a linearly continuous function F on \mathbb{R}^2 such that

 $F(x, x^2) = g(x)$ for all $x \in [0, 1]$.

ヘロア 人間 アメヨア 人口 ア

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity $\mathcal{T}(h)$ -continuity Proofs Summary Sets of discontinuity points for \mathcal{F} -continuous functions

D(f) denotes the set of points of discontinuity of f

 $\mathcal{D}(\mathcal{F}) = \{ D(f) \colon f \text{ is } \mathcal{F}\text{-continuous} \}$

Theorem (Kershner 1943, characterization of $\mathcal{D}(\mathcal{F}_{1,n}^+)$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization of $\mathcal{D}(\mathcal{F}_{1,n})$ (similar to that of Kershner) that is, of sets D(f) for linearly continuous functions f.

くロト (過) (目) (日)

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary On sets D(f) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If $D \subset \mathbb{R}^n$ is the set of discontinuity points of some linearly continuous function $f \colon \mathbb{R}^n \to \mathbb{R}$, then

$$D=\bigcup_{i<\omega}D_i,$$

where each D_i is isometric to the graph of a Lipschitz function $\phi_i \colon K_i \to \mathbb{R}$ with K_i being compact nowhere dense in \mathbb{R}^{n-1} .

In particular, such *D* must have Hausdorff dimension $\leq n - 1$,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue (so, *n*-Hausdorff) measure.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary New results on sets D(f) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If *D* is a restriction of a convex $\phi : \mathbb{R}^{n-1} \to \mathbb{R}$ to a compact nowhere dense subset of \mathbb{R}^{n-1} , then D = D(f) for a linearly continuous $f : \mathbb{R}^n \to \mathbb{R}$.

For n = 2 the results remains true when ϕ is C^2 (continuously twice differentiable).

In particular, *D* may have positive (n - 1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

$\mathcal{D}(\mathcal{F}_{1,n}) \qquad \mathcal{D}(\mathcal{F}_{k,n}) \qquad \mathcal{F}$ -continuity Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

T(h)-continuity

Proofs

Summary

 $P(x, y) = \frac{xy^2}{x^2 + y^4}$ is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1}\cdots(x_{n-1})^{4^{n-1}}}{(x_0)^{2^n}+(x_1)^{2^{n+1}}+\cdots+(x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0\prod_{i=0}^{n-1}(x_i)^{2^{2i}}}{\sum_{i=0}^{n-1}(x_i)^{2^{n+i}}}$$

for $\vec{x} = \langle x_0, x_1, \dots, x_{n-1} \rangle \neq \theta$, $f_n(\theta) = 0$, is $\mathcal{F}_{n-1,n}$ -continuous but not continuous (on a path $\vec{p}(t) = \langle t^{2^n}, t^{2^{n-1}}, \dots, t^{2^2}, t^{2^1} \rangle$).

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

• $f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$, etc

 $\begin{array}{ccc} & & \mathcal{D}(\mathcal{F}_{1,n}) & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{F}\text{-continuity} & \mathcal{T}(h)\text{-continuity} \\ & & \textbf{Can } \mathcal{F}_{k,n}\text{-continuity imply continuity?} \end{array}$

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, to appear)

For every $n \ge 2$,

$$\begin{array}{cccc} \mathcal{F}_{n}\text{-cont} \implies \mathcal{F}_{n-1}\text{-cont} \implies \cdots \implies \mathcal{F}_{1}\text{-cont} \\ & & & & & \\ \mathcal{F}_{n}^{+}\text{-cont} \implies \mathcal{F}_{n-1}^{+}\text{-cont} \implies \cdots \implies \mathcal{F}_{1}^{+}\text{-cont} \end{array}$$

None of the implications can be reversed.

・ロット (雪) () () () ()

Proofs

Summary

 $\begin{array}{ccc} \begin{array}{ccc} & & \mathcal{D}(\mathcal{F}_{1,n}) & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{F}\text{-continuity} & T(h)\text{-continuity} & \text{Proofs} & \text{Summary} \\ \end{array} \\ \hline & \textbf{On the families } \mathcal{D}_{k,n}^+ = \mathcal{D}(\mathcal{F}_{k,n}^+), \ \mathcal{F}_{k,n}^+ - \textbf{right } k\text{-flats} \end{array}$

Theorem (KC and T. Glatzer, to appear)

For any k < n, $D \in \mathcal{D}_{k,n}^+$ iff D is an F_{σ} -set whose orthogonal projection $\pi_F[D]$ on any (n - k)-flat $F \in \mathcal{F}_{n-k}^+$ is of first category.

Corollary (KC and T. Glatzer)

 $P^k \times \mathbb{R}^{n-k} \in \mathcal{D}^+_{k-1,n} \setminus \mathcal{D}^+_{k,n}$ for any nowhere dense perfect $P \subset \mathbb{R}$. In particular, these sets can have positive *n*-dimensional Lebesgue measure.

$$\{\emptyset\} = \mathcal{D}_{n,n}^+ \subsetneq \mathcal{D}_{n-1,n}^+ \subsetneq \cdots \subsetneq \mathcal{D}_{1,n}^+ \subsetneq \mathcal{D}_{0,n}^+$$

Corollary (KC and T. Glatzer)

If $D \in \mathcal{D}_{k,n}$, then $\pi_F[D]$ is of first category for any $F \in \mathcal{F}_{n-k}$.

Krzysztof Chris Ciesielski

イロン 不良 とくほう 不良 とうほ

 $\begin{array}{ccc} & & \mathcal{D}(\mathcal{F}_{1,n}) & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{F}\text{-continuity} & \mathcal{T}(h)\text{-continuity} & \text{Proofs} & \text{Summary} \\ & & \text{On the families } \mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n}), \ \mathcal{F}_{k,n} - \text{all } k\text{-flats} \end{array}$

Theorem (KC and T. Glatzer, to appear)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular *k*-flat whose graphs cover *D*. So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension < n - k.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure.

$$\{\emptyset\} = \mathcal{D}_{n,n} \subsetneq \mathcal{D}_{n-1,n} \subsetneq \cdots \subsetneq \mathcal{D}_{1,n} \subsetneq \mathcal{D}_{0,n} \\ \| & \cap & \\ \mathcal{D}_{n,n}^+ \subsetneq \mathcal{D}_{n-1,n}^+ \subsetneq \cdots \subsetneq \mathcal{D}_{1,n}^+ \subsetneq \mathcal{D}_{0,n}^+ \\ \end{bmatrix}$$

 $\begin{array}{ccc} \begin{array}{ccc} & & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{F}\text{-continuity} & \mathcal{T}(h)\text{-continuity} & \text{Proofs} & \text{Summary} \\ \hline & & \textbf{Characterization of } \mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n}) & \text{for } k \geq n/2 \end{array}$

Definition (Topology on $\mathcal{F}_{k,n}$)

Generated by a subbase formed by the sets $\mathcal{F}(U) = \{F \in \mathcal{F}_k : F \cap U \neq \emptyset\}$, where U is an open set in \mathbb{R}^n .

Definition (Ideal $\mathcal{J}_{k,n}$)

 $\mathcal{J}_{k,n}$ – all bounded sets $S \subset \mathbb{R}^n$ s.t. there is an increasing sequence $\langle \mathcal{L}_i : i < \omega \rangle$ of closed subsets of \mathcal{F}_k such that $\bigcup_{i < \omega} \mathcal{L}_i = \mathcal{F}_k$ and, for every $i < \omega$, *S* is disjoint with the interior int $(\bigcup \mathcal{L}_i)$ of the set $\bigcup \mathcal{L}_i \subset \mathbb{R}^n$.

Theorem (KC and T. Glatzer, to appear)

Let 0 < k < n be such that $k \ge \frac{n}{2}$. A set $D \subset \mathbb{R}^n$ is in $\mathcal{D}_{k,n}$ iff D is a countable union of compact sets from $\mathcal{J}_{k,n}$.

・ロト ・ 理 ト ・ ヨ ト ・

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A =analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal 1955])

- D²-continuity (for n = 2) does not imply continuity; however
- C¹-continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

Here, functions are with respect of any of coordinate hyperplanes, e.g., from x to y and from y to x.

E → < E → </p>

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary On sets D(f) for D^2 -continuous functions f

Remember (Rosenthal) that C^1 -continuity implies continuity.

Theorem (KC and T. Glatzer)

There exists a D^2 -continuous $f : \mathbb{R}^2 \to \mathbb{R}$ for which D(f) has positive one dimensional Hausdorff measure.

The example can be "lifted" to a D^2 -continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) of positive (n - 1)-Hausdorff measure.

・ 同 ト ・ ヨ ト ・ ヨ ト

History Outl	$\mathcal{D}(\mathcal{F}_{1,n})$	$\mathcal{D}(\mathcal{F}_{k,n})$	$\mathcal F$ -continuity	T(h)-continuity	Proofs	Summary
1	Separate	and linear o	continuity –	orehistory		
2	Discontinu	ity sets of	separately/li	nearly continu	ous funct	ions
3	Functions	with contin	uous restric	tions to <i>k</i> -flats		
4	\mathcal{F} -continu	ity, allowing	g curvy surfa	lces in ${\cal F}$		
5	When \mathcal{F} -c	ontinuity in	nplies contir	uity?		
6	Some pro	ofs				
7	Summary					
				A D > A D	→ モ → ★ 臣)	E のQ(

• $\mathcal{D}(all converging sequences) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous *h*, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

Theorem (KC and Joseph Rosenblatt, submitted)

• $\mathcal{D}("C^1") = \emptyset$ (we allow infinite derivatives)

• $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- D(T(h)) = Ø for a Baire class 1 function h: ℝⁿ → ℝ; We can have D(h) = Pⁿ with P compact measure 0.

Theorem (KC and Joseph Rosenblatt)

- D(T(X)) = Ø for any Borel set X ⊂ ℝⁿ which is either of positive measure or of the second category
- $\mathcal{D}(\mathcal{T}(\mathcal{P}^n)) = \emptyset$ for a compact $\mathcal{P} \subset \mathbb{R}$ of measure zero.

イロト 不得 とくほ とくほ とうほ

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary I(h)-continuity, I(h) all isometric copies of h

Theorem (KC and Joseph Rosenblatt, submitted)

• *T*(*h*)-continuity does not imply *I*(*h*)-continuity

For $h: \mathbb{R} \to \mathbb{Q}$, h(x) = 0 for all $x \notin \mathbb{Q} \cap [0, 1]$,

 $h \upharpoonright \mathbb{Q} \cap [0,1]$ having a dense graph in $[0,1] \times \mathbb{R}$.

Question

• Does there exist a continuous $h: \mathbb{R} \to \mathbb{R}$ with $\mathcal{D}(I(h)) = \emptyset$?

• What can be said about the sets X with $\mathcal{D}(I(X)) = \emptyset$?

ヘロト ヘ戸ト ヘヨト ヘヨト

History	$\mathcal{D}(\mathcal{F}_{1,n})$	$\mathcal{D}(\mathcal{F}_{k,n})$	\mathcal{F} -continuity	T(h)-continuity	Proofs	Summary
Outl	ine					
	Separate	and linear o	continuity – p	orehistory		
2	Discontinu	uity sets of	separately/li	nearly continu	ous funct	ions
3	Functions	with contin	uous restrict	tions to <i>k</i> -flats		
4	\mathcal{F} -continu	ity, allowing	g curvy surfa	ces in ${\cal F}$		
5	When \mathcal{F} -c	ontinuity in	nplies contin	uity?		
6	Some pro	ofs				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity $\mathcal{T}(h)$ -continuity Proofs Summary Separately continuous f on \mathbb{R}^n is Baire class $\leq n-1$

Follows immediately, by induction on *n*, from the following result used with $X = \mathbb{R}^{n}$.

Theorem (From Z. Piotrowski's book, in prepatration)

Let X be Polish space and $f: X \times \mathbb{R} \to \mathbb{R}$ be such that

- $f(x, \cdot)$ is continuous for every $x \in X$, and
- $f(\cdot, r)$ is Baire class n 1 for every $r \in \mathbb{R}$.

For every k = 0, 1, 2, ... let $f_k : X \times \mathbb{R} \to \mathbb{R}$ be the linear interpolation of $f \upharpoonright X \times \{m/2^k : m \in \mathbb{Z}\}$,

i.e., $f_k(x, \cdot)$ is linear on $[m/2^k, (m+1)/2^k]$ for all x and m.

Then each f_k is of Baire class n - 1 and $f_k \rightarrow_k f$ pointwise.

イロト イポト イヨト イヨト

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary Separately continuous f on \mathbb{R}^n is not Baire n-2

Theorem ([Lebesgue]; simplified proof of Maslyuchenko 1999)

For every Baire class n - 1 function $g: [0, 1] \rightarrow \mathbb{R}$ there is a separately continuous function f on \mathbb{R}^n such that

$$f(x,...,x) = g(x)$$
 for all $x \in [0,1]$.

By induction on *n*. Obvious for n = 1.

Notation, for $n \ge 1$:

 $d_n \colon \mathbb{R} \to \mathbb{R}^n, \, d_n(x) = \langle x, \ldots, x \rangle.$

Notation, for n > 1 and $i \in \{1, \ldots, n\}$:

 $q_i: \mathbb{R}^n \to \mathbb{R}^{n-1}, \ q_i(x_1,\ldots,x_n) = \langle x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n \rangle.$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity **Proofs** Summary **Notation and inductive step**

 $d_n(x) = \langle x, \ldots, x \rangle, \ q_i(x_1, \ldots, x_n) = \langle x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \rangle$

 Δ_n – diagonal in \mathbb{R}^n ;

 G_k 's: open in \mathbb{R}^n s.t. $\Delta_n = \bigcap_k G_k$ & cl $(G_{k+1}) \subset G_k$

 $\varphi_k : \mathbb{R}^n \to [0, 1]$: $\{\varphi_k\}_k$ is a partition of unity of $\mathbb{R}^n \setminus \Delta_n$ with respect to the open cover $\{G_{k-1} \setminus \operatorname{cl}(G_{k+2})\}_k$:

 $\varphi_k(x) = 0$ outside $G_{k-1} \setminus \operatorname{cl}(G_{k+2})$; $\sum_k \varphi_k(x) = 1$ outside Δ_n

 $g_k \colon \mathbb{R} \to \mathbb{R}$ of Baire class n - 2, $g_k \to_k g$.

By inductive assumption, for every *k* there exists a separately continuous function $f_k : \mathbb{R}^{n-1} \to \mathbb{R}$ such that $g_k = f_k \circ d_{n-1}$.

Need separately cont. $f : \mathbb{R}^n \to \mathbb{R}$ s.t. $g = f \circ d_n$.

Proofs Summary Inductive step $d_n(x) = \langle x, \ldots, x \rangle, q_i(x_1, \ldots, x_n) = \langle x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \rangle$ $\varphi_k \colon \mathbb{R}^n \to [0,1] \colon \{\varphi_k\}_k$ is a partition of unity of $\mathbb{R}^n \setminus \Delta_n$ $g_k : \mathbb{R} \to \mathbb{R}$ of Baire class $n-2, g_k \to q_k$ $f_k : \mathbb{R}^{n-1} \to \mathbb{R}$ separately continuous s.t. $g_k = f_k \circ d_{n-1}$. For $i \in \{1, \ldots, n\}$ define $h_i \colon \mathbb{R}^n \to \mathbb{R}$ as $h_i(x) = \begin{cases} \sum_k \varphi_k(x) f_k(q_i(x)) & \text{if } x \in \mathbb{R}^n \setminus \Delta_n \\ g(q_n^{-1}(x)) & \text{if } x \in \Delta_n. \end{cases}$

Claim

h_i is separately continuous on $\mathbb{R}^n \setminus \Delta_n$; h_i is continuous on Δ_n with respect to the *i*th coordinate

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity **Proofs** Summary **Proof modulo Claim,** n = 2

$$q_i(x_1,\ldots,x_n) = \langle x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n \rangle$$

$$h_i(x) = \begin{cases} \sum_k \varphi_k(x) f_k(q_i(x)) & \text{if } x \in \mathbb{R}^n \setminus \Delta_n \\ g(d_n^{-1}(x)) & \text{if } x \in \Delta_n. \end{cases}$$

Claim

 h_i is separately continuous on $\mathbb{R}^n \setminus \Delta_n$; h_i is continuous on Δ_n with respect to the *i*th coordinate

Now, for n = 2, $f = h_1$ works, since h_1 is also continuous with respect to the second coordinate, as

for every distinct $s, t \in \mathbb{R}$ we have $h_1(s, t) = \sum_k \varphi_k(s, t) f_k(q_1(s, t)) = \sum_k \varphi_k(s, t) g_k(s)$ which, by Claim, converges to $g(s) = h_1(s, s)$ as $t \to s$.

$$q_i(x_1,\ldots,x_n) = \langle x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n \rangle$$

Claim

 h_i is separately continuous on $\mathbb{R}^n \setminus \Delta_n$; h_i is continuous on Δ_n with respect to the *i*th coordinate

For
$$i \in \{1, ..., n\}$$
, let $D_i = q_i^{-1}(\Delta_{n-1})$.

Sets $D_i \setminus \Delta_n$ are pairwise disjoint and closed in $\mathbb{R}^n \setminus \Delta_n$.

By normality of $\mathbb{R}^n \setminus \Delta_n$, for every $i \in \{1, ..., n\}$ there is continuous $\psi_i \colon \mathbb{R}^n \setminus \Delta \to [0, 1]$ such that $\psi_i(x) = 1$ for $x \in D_i \setminus \Delta_n$, and $\psi_i(x) = 0$ for $x \in D_i \setminus \Delta_n$, $j \neq i$.

・ロト ・ 理 ト ・ ヨ ト ・

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity **Proofs** Summary **Proof modulo Claim**, n > 2, continuation

$$q_i(x_1,\ldots,x_n)=\langle x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n\rangle$$

Claim

 h_i is separately continuous on $\mathbb{R}^n \setminus \Delta_n$; h_i is continuous on Δ_n with respect to the *i*th coordinate

$$D_i = q_i^{-1}(\Delta_{n-1}); \psi_i : \mathbb{R}^n \setminus \Delta \to [0, 1] \text{ s.t. } \psi_i(x) = 1 \text{ for}$$

 $x \in D_i \setminus \Delta_n, \text{ and } \psi_i(x) = 0 \text{ for } x \in D_j \setminus \Delta_n, j \neq i.$

Define $f : \mathbb{R}^n \to \mathbb{R}$ as

$$f(x) = \begin{cases} \sum_{i=1}^{n} \psi_i(x) h_i(x) & \text{if } x \in \mathbb{R}^n \setminus \Delta_n \\ g(d_n^{-1}(x)) & \text{if } x \in \Delta_n. \end{cases}$$

f works, as: $g = f \circ d_n$, *f* is separately continuous on $\mathbb{R}^n \setminus \Delta_n$, and *f* is separately continuous on Δ_n with respect to the *i*th variable, since $f \upharpoonright D_i = h_i \upharpoonright D_i$.

Proof of Claim

 $d_n(x) = \langle x, \dots, x \rangle$, $\{\varphi_k\}_k$ is a partition of unity of $\mathbb{R}^n \setminus \Delta_n$ $g_k \to_k g$; $f_k \colon \mathbb{R}^{n-1} \to \mathbb{R}$ separately cont. & $g_k = f_k \circ d_{n-1}$.

$$h_i(x) = \begin{cases} \sum_k \varphi_k(x) f_k(q_i(x)) & \text{if } x \in \mathbb{R}^n \setminus \Delta_n \\ g(d_n^{-1}(x)) & \text{if } x \in \Delta_n. \end{cases}$$

Claim

 h_i is separately continuous on $\mathbb{R}^n \setminus \Delta_n$ – obvious h_i is continuous on Δ_n with respect to the *i*th coordinate

Fix $t \in \mathbb{R}$. For $x \in \mathbb{R}^n \setminus \Delta_n$ with $q_i(x) = q_i(d_n(t))$: $|h_i(x) - h_i(d_n(t))| = |\sum_k \varphi_k(x)f_k(q_i(x)) - g(t)| =$ $|\sum_k \varphi_k(x)g_k(t) - g(t)| = |\sum_k \varphi_k(x)g_k(t) - \sum_k \varphi_k(x)g(t)| \le \sum_k \varphi_k(x)|g_k(t) - g(t)| \le \sum_k \varphi_k(x)\varepsilon = \varepsilon$ whenever x is so close to $d_n(t)$ that $\varphi_k(x) = 0$ for every k < m, where m is such that $|g_k(t) - g(t)| \le \varepsilon$ for every $k \ge m$.

Krzysztof Chris Ciesielski

Proofs

Summary

History	$\mathcal{D}(\mathcal{F}_{1,n})$	$\mathcal{D}(\mathcal{F}_{k,n})$	\mathcal{F} -continuity	T(h)-continuity	Proofs	Summary
Outl	ine					
1	Separate	and linear o	continuity – p	orehistory		
2	Discontinu	ity sets of	separately/lin	nearly continue	ous functi	ons
3	Functions	with contin	uous restrict	ions to <i>k</i> -flats		
4	\mathcal{F} -continu	ity, allowing	curvy surfa	ces in ${\cal F}$		
5	When \mathcal{F} -c	ontinuity in	nplies contin	uity?		
6	Some pro	ofs				

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$\begin{array}{ccc} \text{History} & \mathcal{D}(\mathcal{F}_{1,n}) & \mathcal{D}(\mathcal{F}_{k,n}) & \mathcal{F}\text{-continuity} & \text{T(h)-continuity} & \text{Proofs} & \text{Summary} \\ \hline & \text{Summary of new results} & \end{array}$

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to *k*-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h being a graph of function

History $\mathcal{D}(\mathcal{F}_{1,n})$ $\mathcal{D}(\mathcal{F}_{k,n})$ \mathcal{F} -continuity T(h)-continuity Proofs Summary

Thank you for your attention!

Krzysztof Chris Ciesielski

Separate continuity and its generalizations 27

イロト イポト イヨト イヨト

3