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CARDINAL INVARIANTS CONCERNING
EXTENDABLE AND PERIPHERALLY

CONTINUOUS FUNCTIONS

Abstract

Let F be a family of real functions, F ✓ RR. In the paper we will
examine the following question. For which families F ✓ RR does there
exist g : R ! R such that f + g 2 F for all f 2 F? More precisely, we
will study a cardinal function A(F) defined as the smallest cardinality
of a family F ✓ RR for which there is no such g. We will prove that
A(Ext) = A(PR) = c+ and A(PC) = 2c, where Ext, PR and PC stand
for the classes of extendable functions, functions with perfect road and
peripherally continuous functions from R into R, respectively. In par-
ticular, the equation A(Ext) = c+ immediately implies that every real
function is a sum of two extendable functions. This solves a problem of
Gibson [6].

We will also study the multiplicative analogue M(F) of the function
A(F) and we prove that M(Ext) = M(PR) = 2 and A(PC) = c.

This article is a continuation of papers [10, 3, 12] in which functions
A(F) and M(F) has been studied for the classes of almost continuous,
connectivity and Darboux functions.
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We miss you, Irek!
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Outline

1 Differentiability on perfect subsets P of the real line
Examples of results

2 Peano maps from perfect P ⊂ R onto P2

3 Smooth Peano maps from compact P ⊂ R onto P2

4 C∞ Peano maps for unbounded perfect P ⊂ R
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Scope: systematic study of partial differentiable maps

Derivative of f from perfect P ⊂ R into R is well defined

Still, theory behind is unpopular and/or underdeveloped

Example 1: Take

Theorem (Tietze Extension Thm)
For every closed subset X of R and f : X → R with f ∈ C
there is an F : R→ R extending f such that F ∈ C.

How well known is the answer for the following questions?
(Related to Whitney extension theorem.)

Can, in the above, the class C of continuous functions be
replaced with the class D1 of differentiable functions?

What about the class C1 of continuously differentiable functions?
Krzysztof Chris Ciesielski Smooth Peano functions for perfect subsets of the real line 1
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Tietze Extension Theorem D1 functions

Theorem ([Jarník 1923], also [Petruska, Laczkovich, 1974])

For every closed subset X of R and f : X → R with f ∈ D1

there is an F : R→ R extending f such that F ∈ D1.

No Tietze Extension Theorem for C1 functions:

!!
a1!b4! b1!a2!a4! b3!a3! b2! x!

f(x)!

f(an)=(an)2!

f ′(x) = 0 for all x ∈ X = {0} ∪
⋃

n[an,bn]
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Calc 1 problem:

!!
a1!b4! b1!a2!a4! b3!a3! b2! x!

f(x)!

f(an)=(an)2!

How to choose the intervals to insure there is no C1 extension?

1 Insure that limn→∞
f (an)−f (bn+1)

an−bn+1
> 0.

2 Apply Mean Value Theorem to notice that no D1 extension
of f can have continuous derivative at 0.
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Example 2

[R]c all S ⊂ R of cardinality continuum; F ⊂ C.

Im∗(F): ∀S ∈ [R]c ∃f ∈ F such that f [S] = [0,1].

Im(F): ∀S ∈ [R]c ∃f ∈ F such that f [S] contains a perfect set.

Clearly Im(C)⇐⇒ Im∗(C)

Theorem ([A. Miller 1983])

It is consistent with ZFC that Im∗(C) holds.
However, Im∗(C) fails under the Continuum Hypothesis.
So, Im(C)∗ is independent from the ZFC axioms.

Theorem ([Ciesielski, Pawlikowski, 2003])

Im(C)∗ follows from the Covering Property Axiom CPA.
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Example 2 continues

Im(F): ∀S ∈ [R]c ∃f ∈ F such that f [S] contains a perfect set.

Im∗(F): ∀S ∈ [R]c ∃f ∈ F such that f [S] contains [0,1].

Im(C)⇐⇒ Im∗(C)

Im(C) and Im∗(C) are independent from the ZFC axioms.
Follows from CPA, contradicts CH.

Im∗(D1) is false (Lusin’s condition (N)).

What about Im(D1)? Im(C1)? Im(C∞)?
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Im(C∞)⇐⇒ Im(C)⇐⇒ Im∗(C)

Im(F): ∀S ∈ [R]c ∃f ∈ F such that f [S] contains a perfect set.

Theorem ([Ciesielski, Nishura, 2012])

Im(C∞)⇐⇒ Im(C)⇐⇒ Im∗(C); they are independent of ZFC.
Im(Analytic functions) is false.

Lemma (Key to the proof of the theorem)
For every continuous f from a closed K ⊂ R into a nowhere
dense compact perfect P ⊂ R there exist:
a C∞ function g : R→ R and a homeomorphism h : R→ R
such that g � K = h ◦ f .

∀ cont f : K → P ∃ homeomorphism h : R→ R s.t. h ◦ f ∈ C∞

and h ◦ f can be extended to entire C∞ function.
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Which compact P ⊂ R can be mapped onto P2

Theorem ([Ciesielski, Jasiński, to appear])
P ⊂ R – compact; κ=# of connected components in P.
∃ a C0 Peano function f : P → P2 iff either κ = 1 or κ = c.

Proof: “⇐=” – easy; (κ = 1 – classic result of Peano)

“=⇒” – induction on Cantor-Bendixon rank |X |CB; based on

Lemma
|f [P]|CB ≤ |P|CB
for every countable compact P ⊂ R and continuous f .
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Open problems

Question
Characterize unbounded closed sets P ⊂ R admitting
continuous f from P onto P2

Similarly, for arbitrary P ⊂ R

Question (classic)

Does there exist continuous f from [0,1] onto [0,1]2 with
f [a,b] convex for all a ≤ b?

Known [J. Pach, C.A. Rogers 1983]:

∃f ∈ C from [0,1] onto [0,1]2 s.t. f [0, c] and f [c,1] convex for all c
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True Peano Curve?

Remarkable Portraits Made
with a Single Sewing Thread
Wrapped through Nails, by
Kumi Yamashita

www.thisiscolossal.com/2012/06/
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No C1 f : R→ R with f [P] = P2 for compact P
Remark (Morayne 1987, using Banach condition (T2))

There is no D1 function mapping P onto P2 for P = [0,1].

Similarly, for any P of positive Lebesgue measure.

Theorem ([Ciesielski, Jasiński, to appear])

P2 6⊂ f [P] for any perfect compact P ⊂ R and C1 map f : R→ R2

Proof based on

Lemma

If g : R→ R is C1 and P ⊂ R is a compact perfect s.t. P ⊂ g[P],
then there exists an x ∈ P with |g′(x)| ≥ 1.

Not obvious: no Intermediate Value Theorem for g � P.
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The lemma and open problems

Lemma

If g : R→ R is C1 and P ⊂ R is a compact perfect s.t. P ⊂ g[P],
then there exists an x ∈ P with |g′(x)| ≥ 1.

Question
Does the lemma hold when

only g � P is C1? (No extension thm for C1 functions!)
g is D1? (Same as g � P ∈ D1, by Jarník’s thm.)

We do not even have a proof of the following

Conjecture

If P ⊂ R is a compact perfect and g � P ≡ 0, then P 6⊂ g[P].
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The theorem and open problems

Theorem ([Ciesielski, Jasiński, to appear])

P2 6= f [P] for any compact P ⊂ R and C1 map f : R→ R2.

Question
Does the theorem hold when

only f � P is C1? (No extension thm for C1 functions!)
f is D1? (Same as f � P ∈ D1, by Jarník’s thm.)

If the answer to any of these is negative,

How much smoothness a function from P onto P2 may have?
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Can smooth Peano functions exist at all?

Theorem ([Ciesielski, Jasiński, to appear])

There exists a C∞ function f : R→ R2 and a perfect unbounded
subset P of R such that f [P] = P2.

An idea behind the proof

P is a union of perfect sets Pk ⊆ [3k ,3k + 2], k < ω, s.t.

Pk can be mapped smoothly onto P` × P`′ for any `, `′ < k ;

the maps must be extendable to smooth entire functions.

Then, a diagonal construction gives a desired f for such P.
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Difficulty in constructing desired Pk ’s

Pk can be mapped smoothly onto P` × P`′ for any `, `′ < k ;

the maps must be extendable to smooth entire functions.

Need a condition to insure extendability. It is given by

Lemma
Let K ⊂ R be compact nowhere dense and g0 : K ⊂ R be s.t.

for every k < ω there exists a δk ∈ (0,1) s.t. for all x , y ∈ K

|g0(x)− g0(y)| < |x − y |k+1 provided 0 < |x − y | < δk

Then g0 can be extended to a C∞ function g : R→ R.
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More difficulties in constructing desired Pk ’s

Pk can be mapped smoothly onto P` × P`′ for any `, `′ < k ;

The standard h from 2ω onto (2ω)2 is h = 〈hodd,heven〉,

hodd(s)(i) = s(2i + 1) and heven(s)(i) = s(2i).

For 2ω identified with C =
{∑

i<ω
2s(i)
3i+1 : s ∈ 2ω

}
,

lim sup
s→t

∣∣∣∣hodd(s)− hodd(t)
s − t

∣∣∣∣ =∞!

caused by ‘compression’ of coordinates.
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Constructing desired Pk ’s

Pk can be mapped smoothly onto P` × P`′ for any `, `′ < k ;

To compensate for the compression,

each Pk is created by appropriate “thickening” Pk−1;

“Thickening” cannot be radical: Pk must be of measure zero.

This balancing act is the key of the proof.
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Thank you for your attention!
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