Differentiability on perfect subsets *P* of \mathbb{R} ; Smooth Peano functions from *P* onto P^2

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Departmentof Radiology, University of Pennsylvania

Workshop on Set Theory and its Applications to Topology and Real Analysis, Gdaásk, Poland, July 4-6, 2013 *in memory of Irek Recław*

Smooth Peano maps

19th Summer Symposium in Real Analysis, Erice, Italy, June 1995.

Kryssbal Alek Halissenshi Toneh Notheniec Irenensz pectar

ъ

My work with Irek

Real Analysis Exchange Vol. 21(2), 1995-96, pp. 459-472

Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, e-mail: kcies@@wvnvms.wvnet.edu Ireneusz Recław, Department of Mathematics, University of Scranton, Scranton, PA 18510-4666, e-mail: ReclawI1@@jaguar.uofs.edu permanent address: Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland, e-mail: matir@@halina.univ.gda.pl

CARDINAL INVARIANTS CONCERNING EXTENDABLE AND PERIPHERALLY CONTINUOUS FUNCTIONS

Abstract

Let \mathcal{F} be a family of real functions, $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$. In the paper we will examine the following question. For which families $F \subseteq \mathbb{R}^{\mathbb{R}}$ does there exist $g: \mathbb{R} \to \mathbb{R}$ such that $f + g \in \mathcal{F}$ for all $f \in F$? More precisely, we will study a cardinal function A(F) defined as the smallest cardinality of a family $F \subseteq \mathbb{R}^{\mathbb{R}}$ for which there is no such q. We will prove that $A(Ext) = A(PR) = c^+$ and $A(PC) = 2^c$, where Ext, PR and PC stand for the classes of extendable functions, functions with perfect road and peripherally continuous functions from \mathbb{R} into \mathbb{R} , respectively. In particular, the equation $A(Ext) = c^+$ immediately implies that every real function is a sum of two extendable functions. This solves a problem of Gibson [6].

э

We miss you, Irek!

< □ ▷ < □ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ▷ < ⊇ ○ </p>
Smooth Peano functions for perfect subsets of the real line 1

Krzysztof Chris Ciesielski

hris Ciesielski

Outline

Differentiability on perfect subsets P of the real line Examples of results

- 2 Peano maps from perfect $P \subset \mathbb{R}$ onto P^2
- 3 Smooth Peano maps from compact $P \subset \mathbb{R}$ onto P^2

4 \mathcal{C}^{∞} Peano maps for unbounded perfect $\mathcal{P} \subset \mathbb{R}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Differentiability on perfect subsets P of the real line Examples of results

2 Peano maps from perfect $P \subset \mathbb{R}$ onto P^2

3 Smooth Peano maps from compact $P \subset \mathbb{R}$ onto P^2

${4\hspace{-.3mm}}{0\hspace{-.3mm}}{0\hspace{-.3mm}}{{\mathcal C}^{\infty}}$ Peano maps for unbounded perfect ${ extsf{P}} \subset {\mathbb R}$

Krzysztof Chris Ciesielski

 Scope: systematic study of partial differentiable maps

Derivative of *f* from perfect $P \subset \mathbb{R}$ into \mathbb{R} is well defined

Still, theory behind is unpopular and/or underdeveloped

Example 1: Take

Theorem (Tietze Extension Thm)

For every closed subset X of \mathbb{R} and $f: X \to \mathbb{R}$ with $f \in C$ there is an $F: \mathbb{R} \to \mathbb{R}$ extending f such that $F \in C$.

How well known is the answer for the following questions? (Related to Whitney extension theorem.)

Can, in the above, the class C of continuous functions be replaced with the class D^1 of differentiable functions?

What about the class \mathcal{C}^1 of continuously differentiable functions?

Krzysztof Chris Ciesielski

Smooth Peano functions for perfect subsets of the real line 1

Tietze Extension Theorem D^1 functions

Theorem ([Jarník 1923], also [Petruska, Laczkovich, 1974])

For every closed subset X of \mathbb{R} and $f: X \to \mathbb{R}$ with $f \in D^1$ there is an $F: \mathbb{R} \to \mathbb{R}$ extending f such that $F \in D^1$.

Smooth Peano maps

Calc 1 problem:

How to choose the intervals to insure there is no C^1 extension?

- Insure that $\lim_{n\to\infty} \frac{f(a_n)-f(b_{n+1})}{a_n-b_{n+1}} > 0.$
- Apply Mean Value Theorem to notice that no D^1 extension of *f* can have continuous derivative at 0.

Example 2

 $[\mathbb{R}]^{\mathfrak{c}}$ all $S \subset \mathbb{R}$ of cardinality continuum; $\mathcal{F} \subset \mathcal{C}$.

```
Im^*(\mathcal{F}): \forall S \in [\mathbb{R}]^c \exists f \in \mathcal{F} \text{ such that } f[S] = [0, 1].
```

 $Im(\mathcal{F})$: $\forall S \in [\mathbb{R}]^{\mathfrak{c}} \exists f \in \mathcal{F}$ such that f[S] contains a perfect set.

Clearly $Im(\mathcal{C}) \iff Im^*(\mathcal{C})$

Theorem ([A. Miller 1983])

It is consistent with ZFC that $Im^*(C)$ holds. However, $Im^*(C)$ fails under the Continuum Hypothesis. So, $Im(C)^*$ is independent from the ZFC axioms.

Theorem ([Ciesielski, Pawlikowski, 2003])

 $Im(\mathcal{C})^*$ follows from the Covering Property Axiom CPA.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Example 2 continues

 $Im(\mathcal{F})$: $\forall S \in [\mathbb{R}]^{c} \exists f \in \mathcal{F}$ such that f[S] contains a perfect set.

 $Im^*(\mathcal{F})$: $\forall S \in [\mathbb{R}]^{\mathfrak{c}} \exists f \in \mathcal{F} \text{ such that } f[S] \text{ contains } [0,1].$

- $Im(\mathcal{C}) \iff Im^*(\mathcal{C})$
- *Im*(*C*) and *Im*^{*}(*C*) are independent from the ZFC axioms. Follows from CPA, contradicts CH.
- $Im^*(D^1)$ is false (Lusin's condition (N)).

What about $Im(D^1)$? $Im(\mathcal{C}^1)$? $Im(\mathcal{C}^\infty)$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$Im(\mathcal{C}^{\infty}) \iff Im(\mathcal{C}) \iff Im^*(\mathcal{C})$

 $Im(\mathcal{F})$: $\forall S \in [\mathbb{R}]^{\mathfrak{c}} \exists f \in \mathcal{F}$ such that f[S] contains a perfect set.

Theorem ([Ciesielski, Nishura, 2012])

 $Im(\mathcal{C}^{\infty}) \iff Im(\mathcal{C}) \iff Im^*(\mathcal{C})$; they are independent of ZFC. Im(Analytic functions) is false.

Lemma (Key to the proof of the theorem)

For every continuous f from a closed $K \subset \mathbb{R}$ into a nowhere dense compact perfect $P \subset \mathbb{R}$ there exist: a \mathcal{C}^{∞} function $g \colon \mathbb{R} \to \mathbb{R}$ and a homeomorphism $h \colon \mathbb{R} \to \mathbb{R}$ such that $g \upharpoonright K = h \circ f$.

$\forall \text{ cont } f \colon K \to P \exists \text{ homeomorphism } h \colon \mathbb{R} \to \mathbb{R} \text{ s.t. } h \circ f \in \mathcal{C}^{\infty}$

and $h \circ f$ can be extended to entire C^{∞} function.

Krzysztof Chris Ciesielski

Smooth Peano functions for perfect subsets of the real line 6

Outline

Differentiability on perfect subsets P of the real line Examples of results

2 Peano maps from perfect $P \subset \mathbb{R}$ onto P^2

3 Smooth Peano maps from compact $P \subset \mathbb{R}$ onto P^2

${4\hspace{-.3mm}}{0\hspace{-.3mm}}{0\hspace{-.3mm}}{{\mathcal C}^{\infty}}$ Peano maps for unbounded perfect ${ extsf{P}} \subset {\mathbb R}$

Which compact $P \subset \mathbb{R}$ can be mapped onto P^2

Theorem ([Ciesielski, Jasiński, to appear])

 $P \subset \mathbb{R}$ – compact; κ =# of connected components in P. $\exists a C^0$ Peano function $f : P \to P^2$ iff either $\kappa = 1$ or $\kappa = \mathfrak{c}$.

Proof: " \Leftarrow " – easy; ($\kappa = 1 - \text{classic result of Peano}$)

" \implies " – induction on *Cantor-Bendixon rank* $|X|_{CB}$; based on

Lemma

 $|f[P]|_{CB} \le |P|_{CB}$ for every countable compact $P \subset \mathbb{R}$ and continuous f.

イロト イポト イヨト イヨト 一日

Open problems

Question

- Characterize unbounded closed sets P ⊂ ℝ admitting continuous f from P onto P²
- Similarly, for arbitrary $P \subset \mathbb{R}$

Question (classic)

• Does there exist continuous *f* from [0, 1] onto $[0, 1]^2$ with f[a, b] convex for all $a \le b$?

Known [J. Pach, C.A. Rogers 1983]:

 $\exists f \in C$ from [0, 1] onto [0, 1]² s.t. f[0, c] and f[c, 1] convex for all c

・ロト ・同ト ・ヨト ・ヨトー

÷.

True Peano Curve?

Remarkable Portraits Made with a Single Sewing Thread Wrapped through Nails, by Kumi Yamashita

www.thisiscolossal.com/2012/06/

Outline

 Differentiability on perfect subsets P of the real line Examples of results

2 Peano maps from perfect $P \subset \mathbb{R}$ onto P^2

3 Smooth Peano maps from compact $P \subset \mathbb{R}$ onto P^2

$4 \hspace{0.1 cm} \mathcal{C}^{\infty}$ Peano maps for unbounded perfect ${\it P} \subset \mathbb{R}$

Similarly, for any *P* of positive Lebesgue measure.

Theorem ([Ciesielski, Jasiński, to appear])

 $P^2 \not\subset f[P]$ for any perfect compact $P \subset \mathbb{R}$ and C^1 map $f \colon \mathbb{R} \to \mathbb{R}^2$

Proof based on

Lemma

If $g : \mathbb{R} \to \mathbb{R}$ is C^1 and $P \subset \mathbb{R}$ is a compact perfect s.t. $P \subset g[P]$, then there exists an $x \in P$ with $|g'(x)| \ge 1$.

Not obvious: no Intermediate Value Theorem for $g \upharpoonright P$.

Krzysztof Chris Ciesielski

Smooth Peano functions for perfect subsets of the real line 10

The lemma and open problems

Lemma

If $g : \mathbb{R} \to \mathbb{R}$ is C^1 and $P \subset \mathbb{R}$ is a compact perfect s.t. $P \subset g[P]$, then there exists an $x \in P$ with $|g'(x)| \ge 1$.

Question

Does the lemma hold when

- only $g \upharpoonright P$ is C^1 ? (No extension thm for C^1 functions!)
- g is D^1 ? (Same as $g \upharpoonright P \in D^1$, by Jarník's thm.)

We do not even have a proof of the following

The theorem and open problems

Theorem ([Ciesielski, Jasiński, to appear])

 $P^2 \neq f[P]$ for any compact $P \subset \mathbb{R}$ and C^1 map $f : \mathbb{R} \to \mathbb{R}^2$.

Question

Does the theorem hold when

- only $f \upharpoonright P$ is C^1 ? (No extension thm for C^1 functions!)
- f is D^1 ? (Same as $f \upharpoonright P \in D^1$, by Jarník's thm.)

If the answer to any of these is negative,

How much smoothness a function from P onto P^2 may have?

Outline

Differentiability on perfect subsets P of the real line Examples of results

2 Peano maps from perfect $P \subset \mathbb{R}$ onto P^2

3 Smooth Peano maps from compact $P \subset \mathbb{R}$ onto P^2

4 \mathcal{C}^{∞} Peano maps for unbounded perfect $\mathcal{P} \subset \mathbb{R}$

Can smooth Peano functions exist at all?

Theorem ([Ciesielski, Jasiński, to appear])

There exists a C^{∞} function $f \colon \mathbb{R} \to \mathbb{R}^2$ and a perfect unbounded subset P of \mathbb{R} such that $f[P] = P^2$.

An idea behind the proof

- *P* is a union of perfect sets $P_k \subseteq [3k, 3k+2]$, $k < \omega$, s.t.
- P_k can be mapped smoothly onto $P_\ell \times P_{\ell'}$ for any $\ell, \ell' < k$;
- the maps must be extendable to smooth entire functions.
- Then, a diagonal construction gives a desired f for such P.

・ロト ・ 理 ト ・ ヨ ト ・

Difficulty in constructing desired P_k 's

- *P_k* can be mapped smoothly onto *P_ℓ* × *P_{ℓ'}* for any *ℓ*, *ℓ'* < *k*;
- the maps must be extendable to smooth entire functions.

Need a condition to insure extendability. It is given by

Lemma

Let $K \subset \mathbb{R}$ be compact nowhere dense and $g_0 \colon K \subset \mathbb{R}$ be s.t.

for every $k < \omega$ there exists a $\delta_k \in (0, 1)$ s.t. for all $x, y \in K$

• $|g_0(x) - g_0(y)| < |x - y|^{k+1}$ provided $0 < |x - y| < \delta_k$

Then g_0 can be extended to a \mathcal{C}^{∞} function $g \colon \mathbb{R} \to \mathbb{R}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

More difficulties in constructing desired P_k 's

P_k can be mapped smoothly onto *P_ℓ* × *P_{ℓ'}* for any *ℓ*, *ℓ'* < *k*;

The standard *h* from 2^{ω} onto $(2^{\omega})^2$ is $h = \langle h^{\text{odd}}, h^{\text{even}} \rangle$,

 $h^{\text{odd}}(s)(i) = s(2i + 1) \text{ and } h^{\text{even}}(s)(i) = s(2i).$

For
$$2^{\omega}$$
 identified with $C = \left\{ \sum_{i < \omega} \frac{2s(i)}{3^{i+1}} : s \in 2^{\omega} \right\}$,

$$\limsup_{s \to t} \left| \frac{h^{\text{odd}}(s) - h^{\text{odd}}(t)}{s - t} \right| = \infty!$$

caused by 'compression' of coordinates.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Constructing desired P_k 's

- P_k can be mapped smoothly onto $P_\ell \times P_{\ell'}$ for any $\ell, \ell' < k$;
- To compensate for the compression,
- each P_k is created by appropriate "thickening" P_{k-1} ;
- "Thickening" cannot be radical: P_k must be of measure zero.
- This balancing act is the key of the proof.

Thank you for your attention!

Smooth Peano functions for perfect subsets of the real line 17

・ 同 ト ・ ヨ ト ・ ヨ ト

Krzysztof Chris Ciesielski