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Objects considered in this talk

We consider only functions f : Rn → R with n = 2,3,4, . . . fixed.

For a collection C of subsets of (curves in) Rn and f : Rn → R:

f is C-continuous iff f � C is continuous for every C ∈ C;
f is linearly continuous iff it is L-continuous,

where L is the family of all lines in Rn;
f is separately continuous iff it is L#-continuous,

where L# = {L ∈ L : L is parallel to one of the axes};
for a class F of functions from Rn−1 to R

f is F-continuous iff it is F∗-continuous,
where F∗ = all isometric copies of the graphs of h ∈ F .
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Continuity vs C-continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d’analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

F (x , y) = sin
(
4 arctan

( y
x

))
for 〈x , y〉 6= 〈0,0〉, F (0,0) = 0.

1884 treatise on calculus by Genocchi and Peano:

P(x , y) = xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉, P(0,0) = 0.
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Continuity vs C-continuity: more history

Scheefer 1890, Lebesgue 1905: for A analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal 1955])

D2-continuity (for n = 2) does not imply continuity; however
C1-continuity is equivalent to continuity (for every n).

Here: C1 and D2 are, respectively, continuously and twice
differentiable functions.
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Digression on P(x , y) = xy2

x2+y4 example

Clearly a function Pn(x0, . . . , xn−1) = P(x0, x1) is:

discontinuous and linearly continuous for any n ≥ 2;
it is continuous on every proper hyperplane in Rn iff n = 2.

If H = all proper hyperplanes (i.e., affine subspaces) of Rn,

Pn is H-continuous iff n = 2.

Q: Does H-continuity imply continuity for n > 2?

A: It is easy to find counterexamples, e.g., by induction.

Q: Are there nice counterexamples, similar to P2, for n > 2?
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Nice discotinuous H-continuous functions for all n

Theorem (KC 2012)

fn(~x) =
x0(x0)

40
(x1)

41 · · · (xn−1)
4n−1

(x0)2n + (x1)2n+1 + · · ·+ (xn−1)2n+(n−1) =
x0
∏n−1

i=0 (xi)
22i∑n−1

i=0 (xi)2n+i

for ~x = 〈x0, x1, . . . , xn−1〉 6= origin θ, fn(θ) = 0, is H-continuous
but not continuous (on a path ~p(t) = 〈t2n

, t2n−1
, . . . , t22

, t21〉).

f2(x0, x1) =
(x0)(x0)(x1)

4

(x0)4+(x1)8 = P((x0)
2, (x1)

2)

f3(x0, x1, x2) =
(x0)(x0)(x1)

4(x2)
16

(x0)8+(x1)16+(x2)32

f4(x0, x1, x2, x3) =
(x0)(x0)(x1)

4(x2)
16(x3)

64

(x0)16+(x1)32+(x2)64+(x3)128 , etc
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Back to the history of separate and linear continuity

Theorem ([Baire 1899] for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on Rn is Baire calss n − 1,
but need not be of lower Baire class, as

for every Baire class n − 1 function g : [0,1]→ R there is a
separately continuous function F on Rn such that

F (x , . . . , x) = g(x) for all x ∈ [0,1].

Corollary

Every linearly continuous function on Rn is Baire class n − 1

Question (I believe open)
Is the Baire class the best in the Corollary above?
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More on Baire class of linearly continuous functions

Corollary

Every linearly continuous function on Rn is Baire class n − 1

Question (I believe open)
Is the Baire class the best in the Corollary above?

Theorem (KC, very partial answer, preliminary work)

For every Baire class 1 function g : [0,1]→ R there is a
separately continuous function F on R2 such that

F (x , x2) = g(x) for all x ∈ [0,1].
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Sets of discontinuity points for C-continuous functions

D(f ) denotes the set of points of discontinuity of f

Theorem (Kershner 1943)

For any set D ⊂ Rn

D = D(f ) for some separately continuous f on Rn iff
D is an Fσ set and every orthogonal projection of D onto a
coordinate hyperplane has first category image.

Question (Kronrod 1976, still not fully answered)

Find a characterization of sets D(f ) (similar to that of Kershner)
for linearly continuous functions f
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On sets D(f ) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for D(f )’s)

If D ⊂ Rn is the set of discontinuity points of some linearly
continuous function f : Rn → R, then

D =
∞⋃

i=1

Di ,

where each Di is isometric to the graph of a Lipschitz function
φi : Ki → R with Ki being compact nowhere dense in Rn−1.

In particular, such D must have Hausdorff dimension ≤ n − 1,

while there is a separately continuous f : Rn → R with
D(f ) having positive Lebesgue (so, n-Hausdorff) measure.
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New results on sets D(f ) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for D(f )’s)

If D is a restriction of a convex φ : Rn−1 → R to a compact
nowhere dense subset of Rn−1, then
D = D(f ) for a linearly continuous f : Rn → R.

For n = 2 the results remains true when φ is C2 (continuously
twice differentiable).

In particular, D may have positive (n − 1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions

Krzysztof Chris Ciesielski & Tim Glatzer Functions with continuous restrictions to nice curves 10



On sets D(f ) for D2-continuous functions f

Remember (Rosenthal) that C1-continuity implies continuity.

Theorem (KC and T. Glatzer, to appear)

There exists a D2-continuous f : R2 → R for which D(f ) has
positive one dimensional Hausdorff measure.

The example can be “lifted” to a D2-continuous f : Rn → R with
D(f ) of positive (n − 1)-Hausdorff measure.
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Summary of new results

For every n ≥ 2 there is a simple discontinuous function
f : Rn → R with continuous restriction to every proper
hyperplane.

For every convex φ : Rn−1 → R and compact nowhere
dense K ⊂ Rn−1, there is a linearly continuous f : Rn → R
with D(f ) = φ � K .

For n = 2, the same is true for C2 functions φ.

There exists a D2-continuous f : Rn → R with D(f ) of
positive (n − 1)-Hausdorff measure.
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Thank you for your attention!
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