On functions on \mathbb{R}^{n} continuous when restricted to nice curves or surfaces

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and
MIPG, Departmentof Radiology, University of Pennsylvania

Special Session on

Separate versus Joint Continuity
AMS Central Fall Sectional Meeting University of Akron, OH, October 20-21, 2012.

Objects considered in this talk

We consider only functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $n=2,3,4, \ldots$ fixed.
For a collection \mathfrak{C} of subsets of (curves in) \mathbb{R}^{n} and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

- f is \mathfrak{C}-continuous iff $f \upharpoonright C$ is continuous for every $C \in \mathfrak{C}$;
- f is linearly continuous iff it is \mathcal{L}-continuous, where \mathcal{L} is the family of all lines in \mathbb{R}^{n};
- f is separately continuous iff it is $\mathcal{L}^{\#}$-continuous, where $\mathcal{L}^{\#}=\{L \in \mathcal{L}: L$ is parallel to one of the axes $\} ;$
- for a class \mathcal{F} of functions from \mathbb{R}^{n-1} to \mathbb{R}
f is \mathcal{F}-continuous iff it is \mathcal{F}^{*}-continuous, where $\mathcal{F}^{*}=$ all isometric copies of the graphs of $h \in \mathcal{F}$.

Continuity vs Ce-continuity: prehistory (for $n=2$)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed: separate continuity implies continuity!

Counterexamples:

- J. Thomae calculus text 1870 (and 1873), due to E. Heine:

$$
F(x, y)=\sin \left(4 \arctan \left(\frac{y}{x}\right)\right) \text { for }\langle x, y\rangle \neq\langle 0,0\rangle, F(0,0)=0 .
$$

- 1884 treatise on calculus by Genocchi and Peano:

$$
P(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} \text { for }\langle x, y\rangle \neq\langle 0,0\rangle, P(0,0)=0 .
$$

Continuity vs Ce-continuity: more history

Scheefer 1890, Lebesgue 1905: for \mathcal{A} analytic functions
\mathcal{A}-continuity (for $n=2$) does not imply continuity.

Theorem ([Rosenthal])

- D^{2}-continuity (for $n=2$) does not imply continuity; however
- \mathcal{C}^{1}-continuity is equivalent to continuity (for every n). Here: \mathcal{C}^{1} and D^{2} are, respectively, continuously and twice differentiable functions.

Digression on $P(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$ example

Clearly a function $P_{n}\left(x_{0}, \ldots, x_{n-1}\right)=P\left(x_{0}, x_{1}\right)$ is:

- discontinuous and linearly continuous for any $n \geq 2$;
- it is continuous on every proper hyperplane in \mathbb{R}^{n} iff $n=2$.

If $\mathcal{H}=$ all proper hyperplanes (i.e., affine subspaces) of \mathbb{R}^{n},

- P_{n} is \mathcal{H}-continuous iff $n=2$.

Q: Does \mathcal{H}-continuity imply continuity for $n>2$?
A: It is easy to find counterexamples, e.g., by induction.
Q: Are there nice counterexamples, similar to P_{2}, for $n>2$?

Nice discotinuous \mathcal{H}-continuous functions for all n

Theorem (KC 2012)

$$
f_{n}(\vec{x})=\frac{x_{0}\left(x_{0}\right)^{4^{0}}\left(x_{1}\right)^{4^{1}} \cdots\left(x_{n-1}\right)^{4^{n-1}}}{\left(x_{0}\right)^{2^{n}}+\left(x_{1}\right)^{2 n+1}+\cdots+\left(x_{n-1}\right)^{2 n+(n-1)}}=\frac{x_{0} \prod_{i=0}^{n-1}\left(x_{i}\right)^{2^{2 i}}}{\sum_{i=0}^{n-1}\left(x_{i}\right)^{2 n+i}}
$$

for $\vec{x}=\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle \neq$ origin $\theta, f_{n}(\theta)=0$, is \mathcal{H}-continuous but not continuous (on a path $\vec{p}(t)=\left\langle t^{2^{n}}, t^{2^{n-1}}, \ldots, t^{2^{2}}, t^{2^{1}}\right\rangle$).

- $f_{2}\left(x_{0}, x_{1}\right)=\frac{\left(x_{0}\right)\left(x_{0}\right)\left(x_{1}\right)^{4}}{\left(x_{0}\right)^{4}+\left(x_{1}\right)^{8}}=P\left(\left(x_{0}\right)^{2},\left(x_{1}\right)^{2}\right)$
- $f_{3}\left(x_{0}, x_{1}, x_{2}\right)=\frac{\left(x_{0}\right)\left(x_{0}\right)\left(x_{1}\right)^{4}\left(x_{2}\right)^{16}}{\left(x_{0}\right)^{8}+\left(x_{1}\right)^{16}+\left(x_{2}\right)^{32}}$
- $f_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{0}\right)\left(x_{0}\right)\left(x_{1}\right)^{4}\left(x_{2}\right)^{16}\left(x_{3}\right)^{64}}{\left(x_{0}\right)^{66}+\left(x_{1}\right)^{12}+\left(x_{2}\right)^{64}+\left(x_{3}\right)^{128}}$, etc

Back to the history of separate and linear continuity

Theorem ([Baire 1899] for $n=1$, [Lebesgue 1905] for all n)

Every separately continuous function on \mathbb{R}^{n} is Baire calss $n-1$, but need not be of lower Baire class, as

- for every Baire class $n-1$ function $g:[0,1] \rightarrow \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^{n} such that

$$
F(x, \ldots, x)=g(x) \text { for all } x \in[0,1] .
$$

Corollary
Every linearly continuous function on \mathbb{R}^{n} is Baire class $n-1$
Question (I believe open)
Is the Baire class the best in the Corollary above?

More on Baire class of linearly continuous functions

Corollary

Every linearly continuous function on \mathbb{R}^{n} is Baire class $n-1$
Question (I believe open)
Is the Baire class the best in the Corollary above?
Theorem (KC, very partial answer, preliminary work)
For every Baire class 1 function $g:[0,1] \rightarrow \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^{2} such that

$$
F\left(x, x^{2}\right)=g(x) \text { for all } x \in[0,1]
$$

Sets of discontinuity points for \mathfrak{C}-continuous functions

$D(f)$ denotes the set of points of discontinuity of f
Theorem (Kershner 1943)
For any set $D \subset \mathbb{R}^{n}$

- $D=D(f)$ for some separately continuous f on \mathbb{R}^{n} iff
- D is an F_{σ} set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1976, still not fully answered)
Find a characterization of sets $D(f)$ (similar to that of Kershner) for linearly continuous functions f

On sets $D(f)$ for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for $D(f)$'s)

If $D \subset \mathbb{R}^{n}$ is the set of discontinuity points of some linearly continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
D=\bigcup_{i=1}^{\infty} D_{i},
$$

where each D_{i} is isometric to the graph of a Lipschitz function $\phi_{i}: K_{i} \rightarrow \mathbb{R}$ with K_{i} being compact nowhere dense in \mathbb{R}^{n-1}.

In particular, such D must have Hausdorff dimension $\leq n-1$,
while there is a separately continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D(f)$ having positive Lebesgue (so, n-Hausdorff) measure.

New results on sets $D(f)$ for linearly continuous f

> Theorem (KC and T. Glatzer: lower bound for $D(f)$'s)
> If D is a restriction of a convex $\phi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ to a compact nowhere dense subset of \mathbb{R}^{n-1}, then
> $D=D(f)$ for a linearly continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
> For $n=2$ the results remains true when ϕ is \mathcal{C}^{2} (continuously twice differentiable).

In particular, D may have positive ($n-1$)-Hausdorff measure.
Note a gap between classes of convex and Lipschitz functions

On sets $D(f)$ for D^{2}-continuous functions f

Remember (Rosenthal) that \mathcal{C}^{1}-continuity implies continuity.

Theorem (KC and T. Glatzer, to appear)

There exists a D^{2}-continuous $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for which $D(f)$ has positive one dimensional Hausdorff measure.

The example can be "lifted" to a D^{2}-continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D(f)$ of positive ($n-1$)-Hausdorff measure.

Summary of new results

- For every $n \geq 2$ there is a simple discontinuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with continuous restriction to every proper hyperplane.
- For every convex $\phi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ and compact nowhere dense $K \subset \mathbb{R}^{n-1}$, there is a linearly continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D(f)=\phi \upharpoonright K$.
- For $n=2$, the same is true for \mathcal{C}^{2} functions ϕ.
- There exists a D^{2}-continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D(f)$ of positive ($n-1$)-Hausdorff measure.

Thank you for your attention!

