Object delineation Defining energies $\varepsilon_{\mathcal{D}}$ algorithms GC vs FC Forrests

Delineating objects in images via minimization of ℓ_p energies: Fuzzy Connectedness, Graph Cut, and Random Walk algorithms

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Departmentof Radiology, University of Pennsylvania

Based on a joint work with J.K. Udupa, A.X. Falcão, and P.A.V. Miranda

CUNY Graduate Center CS Colloquium, May 9, 2013

Defining energies $\varepsilon_{
ho}$ algorithms GC vs FC Forrests

Object delineation Outline

- 1 The problem of object delineation in a digital image: translating intuition to energy minimization setup
- ② Object cost as a function of object boundary; ℓ_p cost
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

 Object delineation
 Defining energies
 ε_p algorithms
 GC vs FC
 Forrests

Outline

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- Object cost as a function of object boundary; ℓ_p cost
- \bigcirc Delineation algorithms associated with ℓ_p energies
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

Object delineation Defining energies $\varepsilon_{\mathcal{P}}$ algorithms GC vs FC Forrests

Example 1, 2D, of object segmentation/delineation

An image of peppers

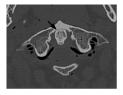
Delineation version 2

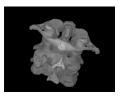
Delineation version 1

Delineation version 3

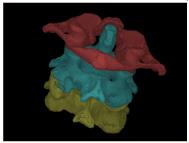
Object delineation Defining energies $\varepsilon_{\mathcal{D}}$ algorithms GC vs FC Forrests

Example 2, 3D: a CT image of patient's cervical spine





Surface rendition of segmented three vertebrae, together



Color surface rendition of the segmented three vertebra

Object delineation Defining energies ε_D algorithms GC vs FC Forrests

Example 3: An MR angiography image of the body region from belly to knee.

Rendition of an original 3D, contrast enhanced, image

A surface rendition of the entire vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees

 Object delineation
 Defining energies
 ε_{p} algorithms
 GC vs FC
 Forrests

Image segmentation — formal setting

- An (n-dimensional) image is a map f from C ⊂ Rⁿ into R^k
 The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.
- Segmentation problem: Given an image $f: C \to \mathbb{R}^k$, find a "desired" family $S(f) = \{P_1, \dots, P_m\}$ of subsets of C.
- *Delineation problem* (on which we concentrate) is when m = 1, i.e., when $S(f) = P \subset C$.

 Object delineation
 Defining energies
 ε_p algorithms
 GC vs FC
 Forrests

Delineation of an image $f \colon C \to \mathbb{R}^k$ — formal setting

How to express that $S(f) = P \subset C$ is desired?

There is no magic formulation that expresses all desires!

Several practical "solutions" exist. We use here the following:

Fix seed sets:

S indicating the foreground object *P*, (i.e., $S \subset P$), and *T* indicating the background (i.e., $T \cap P = \emptyset$).

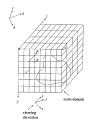
This restricts the search space for S(f) to the family $P(S, T) = \{P \subset C \setminus T : S \subset P\}$

- Define an energy/cost function $\varepsilon \colon \mathcal{P}(\emptyset, \emptyset) \to [0, \infty)$
- Declare S(f) to be desired when it minimizes ε on P(S, T).

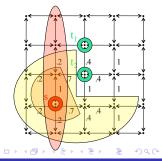
Digital vs "continuous" image $f \colon C o \mathbb{R}^k$

The above set-up makes sense and was studied for the images with scene $C \subset \mathbb{R}^n$ being open bounded region.

We discuss only digital images, with finite rectangular scenes:



Example of sets in $\mathcal{P}(S, T)$ with $S = \{s\}, T = \{t_1, t_2\}$



Object delineation $egin{array}{ccccc} {\sf Defining\ energies} & & \varepsilon_{\cal P}\ {\sf algorithms} & {\sf GC\ vs\ FC} & {\sf Forrests} \end{array}$

Outline

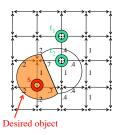
- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

Object delineation Defining energies ε_D algorithms GC vs FC Forrests

Heuristic and the definition of boundary

Heuristic: The objects boundary areas should be identifiable in the image, as the areas of sharp image intensity change.

What constitutes boundary bd(P) of P?



Need graph (or topological) structure $G = \langle V, E \rangle$ on C:

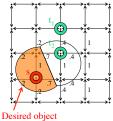
- Pixels $c \in C$ are its vertices, V = C;
- Edges $\{c, d\} \in E$ are "nearby" vertices (e.g. as in figure).

bd(P) is the set of all edges $\{c,d\} \in E$ with $c \in P$ and $d \notin P$

Weighted graphs and ℓ_p cost functions, $1 \le p \le \infty$

Assume that with every edge $e = \{c, d\} \in E$ of an image f we have associated its weight/cost $w(e) \ge 0$, which is low, for big ||f(c) - f(d)||.

Typically,
$$w(e) = e^{-\|f(c) - f(d)\|/\sigma^2}$$
, see fig.



If $F_P \colon E \to [0, \infty)$, $F_P(e) = w(e)$ for $e \in \mathrm{bd}(P)$ and $F_P(e) = 0$ for $e \notin \mathrm{bd}(P)$, then ℓ_P cost is defined as

$$\varepsilon_p(P) \stackrel{\text{def}}{=} \|F_P\|_p = \begin{cases} \left(\sum_{e \in \text{bd}(P)} w(e)^p\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in \text{bd}(P)} w(e) & \text{if } p = \infty. \end{cases}$$

Defining energies $\varepsilon_{
ho}$ algorithms GC vs FC Forrests

Object delineation Outline

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- Object cost as a function of object boundary; ℓ_p cost
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

Object delineation Defining energies $arepsilon_{
ho}$ algorithms GC vs FC Forrests

FC and GC algorithms as minimizers of ε_p

$$\varepsilon_p(P) \stackrel{\mathrm{def}}{=} \|F_P\|_p = \begin{cases} \left(\sum_{e \in \mathrm{bd}(P)} w(e)^p\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in \mathrm{bd}(P)} w(e) & \text{if } p = \infty. \end{cases}$$

$$p = 1$$
: $\varepsilon_1(P) = \sum_{e \in bd(P)} w(e)$;

Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ε_1 .

$$p = \infty$$
: $\varepsilon_{\infty}(P) = \max_{e \in \mathrm{bd}(P)} w(e)$;
Optimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} optimized objects are returned by the algorithms: Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, and Power Watershed, PW [C. Couprie *et al*, 2011].

p = 2: related to Random Walker, RW, algorithm [Grady, 2006], see next slides.

Fuzzy sets

Object delineation

A map $x: C \to [0,1]$ (i.e., $x \in [0,1]^C$) can be considered as a *fuzzy set*, with x(c) giving the degree of membership of c in it.

A hard set $P \subset C$ is identified with a fuzzy set (binary image) $\chi_P \in \{0,1\}^C \subset [0,1]^C$, $\chi_P(c) = 1$ iff $c \in P$.

For
$$x \in [0,1]^C$$
 let $\hat{\varepsilon}_p(x) = \|F_x\|_p$, where $F_x \colon E \to [0,\infty)$,

$$F_x(\{c,d\}) = |x(c) - x(d)|w(\{c,d\}) \text{ for } \{c,d\} \in E.$$

Then $\varepsilon_p(P) = \hat{\varepsilon}_p(\chi_P)$. We can minimize $\hat{\varepsilon}_p$ on

$$\hat{\mathcal{P}}(S,T) = \{x \colon x(c) = 1 \text{ for } c \in S \& x(c) = 0 \text{ for } c \in T\}$$

instead of ε_p on $\mathcal{P}(S,T) = \hat{\mathcal{P}}(S,T) \cap \{0,1\}^C$.

Object delineation Defining energies $arepsilon_{
ho}$ algorithms GC vs FC Forrests

Random Walker, RW, algorithm

- RW finds (the unique) $\hat{\varepsilon}_2$ minimizer on $\hat{\mathcal{P}}(S, T)$.
- Defines its output as $P = \{c : x(c) \ge .5\}$.

Problems with RW:

- Output need not be connected (even when S and T are).
- **2** *P* need not minimize ε_2 on $\mathcal{P}(S, T)$.

Neither of this happens for ε_1 (i.e. GC) or ε_∞ (i.e. RFC or PW):

Thm: For $p \in \{1, \infty\}$, any minimizer of $\hat{\varepsilon}_p$ on $\hat{\mathcal{P}}(S, T)$ actually belongs to $\mathcal{P}(S, T)$.

Object delineation Defining energies $\varepsilon_{\it p}$ algorithms GC vs FC Forrests

(Non)-uniquness of the minimizers for ε_1 and ε_∞

Let
$$\mathcal{P}_p(S,T) = \{P \in \mathcal{P}(S,T) \colon P \text{ minimizes } \varepsilon_p \text{ on } \mathcal{P}(S,T)\}.$$

Both $\mathcal{P}_1(S,T)$ and $\mathcal{P}_{\infty}(S,T)$ may have more than one element.

However, the outputs of the standard versions of the algorithms:

- GC, from $\mathcal{P}_1(S, T)$,
- RFC, from $\mathcal{P}_{\infty}(S, T)$, and
- IRFC, from $\mathcal{P}_{\infty}(S, T)$

are unique in the sense of the next theorem.

Object delineation Defining energies $\varepsilon_{
m p}$ algorithms GC vs FC Forrests

GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)

For $p \in \{1, \infty\}$, $\mathcal{P}_{\varepsilon}(S, T)$ contains the \subset -smallest object.

- GC algorithm returns the smallest set in $\mathcal{P}_1(S, T)$.
- RFC algorithm returns the smallest set in $\mathcal{P}_{\infty}(S,T)$.
- IRFC algorithm returns the smallest set in a refinement $\mathcal{P}^*_{\infty}(S,T)$ of $\mathcal{P}_{\infty}(S,T)$.

Moreover, if n is the size of the image (scene), then

- GC runs in time of order $O(n^3)$ (the best known algorithm) or $O(n^{2.5})$ (the fastest currently known algorithm)
- Both RFC and IRFC run in time of order O(n) (for standard medical images — the intensity range size not too big) or O(nln n) (the worst case scenario)

Object delineation Defining energies $\varepsilon_{
ho}$ algorithms GC vs FC Forrests

GC & FC — asymptotic equivalence

Theorem (Asymptotic equivalence of GC and FC)

Let $\mathcal{P}_p^m(S,T)$ be the family $\mathcal{P}_p(S,T)$ for the edge weight function w replaced by its m-th power w^m . Then

- $\mathcal{P}_{\infty}^{m}(S,T) = \mathcal{P}_{\infty}(S,T)$ and similarly for IRFC algorithm. So, the outputs of RFC and IRFC are unchanged by m.
- $\mathcal{P}_1^m(S,T) \subseteq \mathcal{P}_{\infty}(S,T)$ for m large enough.

In particular, if $\mathcal{P}_{\infty}(S,T)$ has only one element, then the output of GC coincides with the outputs of RFC and IRFC for m large enough.

Object delineation Defining energies $arepsilon_p$ algorithms GC vs FC Forrests

Outline

- 1 The problem of object delineation in a digital image: translating intuition to energy minimization setup
- Object cost as a function of object boundary; ℓ_p cost
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

Object delineation Defining energies ε_p algorithms GC vs FC Forrests

Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms: O(n) (or $O(n \ln n)$) versus $O(n^3)$ (or $O(n^{2.5})$).

Robustness: RFC & IRFC are unaffected by small seed changes.

GC is sensitive for even small seed changes.

Shrinking: GC chooses objects with small size boundary

(often with edges with high weights); No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of multiple objects, same running time and robustness.

GC in such setting leads to NP-hard problem, so (for precise delineation) it runs in exponential time

Iterative approach: RFC has an iterative approach refinement;

No such refinement methods exist for GC at present.

Object delineation Defining energies $arepsilon_p$ algorithms GC vs FC Forrests

Advantages of GC over FC

Boundary smoothness: GC chooses small boudary, so it naturally smooths it; in many (but not all) medically important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing; if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity:

GC naturally combines information on image homogeneity (binary relation on voxels) with information on expected object intensity (unary relation on voxels);

Combining such informations is difficult to achieve in the FC framework.

Object delineation Defining energies $arepsilon_{
ho}$ algorithms GC vs FC Forrests

Setup of experiments:

- In each experiment we used 20 MR BrainWeb phantom images (simulated T1 acquisition); graphs show averages.
- Sets of seeds were generated, from known true binary segmentations, by applying erosion operation: the bigger erosion radius, the smaller the seed sets.
- The weight map w(c, d), same for FC and GC, was defined from the image intensity function f as w(c, d) = -|G(f(c)) G(f(d))|, where G is an appropriate Gaussian.

Object delineation Defining energies $arepsilon_p$ algorithms GC vs FC Forrests

Setup of experiments:

Data parameters: the simulated T1 acquisition were as follows: spoiled FLASH sequence with TR=22ms and TE=9.2ms, flip angle = 30° , voxel size = $1 \times 1 \times 1$ mm³, noise = 3%, and background non-uniformity = 20%.

Computer: Experiments were run on PC with an AMD Athlon 64 X2 Dual-Core Processor TK-57, 1.9 GHz, 2×256 KB L2 cache, and 2 GB DDR2 of RAM.

Object delineation Defining energies $\varepsilon_{\mathcal{P}}$ algorithms GC vs FC Forrests

Robustness & shrinking for FC & GC: White Matter

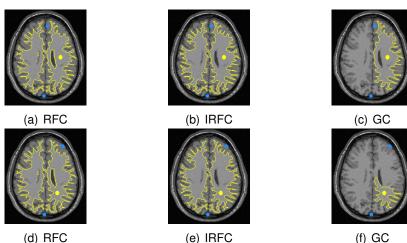
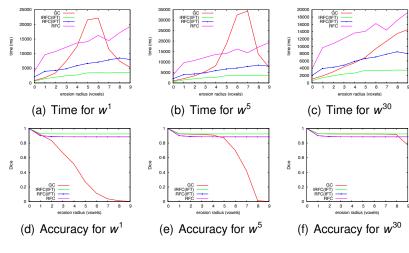


Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f) GC: dramatic change of output; seeds choice same as in the FC case

Object delineation Defining energies ε_{D} algorithms GC vs FC Forrest

Time & accuracy of FC & GC: segmentation of WM



Object delineation Defining energies $\varepsilon_{
ho}$ algorithms GC vs FC Forrests

FC vs GC: Conclusions

- FC and GC quite similar, yet FC has many advantages over GC:
 - FC runs considerably faster than GC
 - FC is robust (seed), while GC has shrinkage problem
 - FC, unlike GC, easily handles multiple-object segmentation
- unless the application requires, in an essential way, the simultaneous use of
 - homogeneity (binary) info on image intensity;
 - expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC) segmentation algorithm, rather than GC algorithm

Defining energies $\varepsilon_{
ho}$ algorithms GC vs FC Forrests

Object delineation Outline

- 1) The problem of object delineation in a digital image: translating intuition to energy minimization setup
- Object cost as a function of object boundary; $\ell_{\mathcal{D}}$ cost
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

Object delineation Defining energies $arepsilon_{\it p}$ algorithms GC vs FC Forrests

Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph $G = \langle C, E, w \rangle$ and $\emptyset \neq W \subset C$.

Definition (Spanning Forest w.r.t. W)

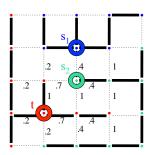
A *forest* for G is any subgraph $\mathbb{F}=\langle C,E'\rangle$ of G free of cycles. $\mathbb{F}=\langle C,E'\rangle$ is *spanning with respect to W* when any connected component of \mathbb{F} contains precisely one element of W.

Example of a spanning

forest w.r.t.
$$W = \{s_1, s_2, t\}$$

Each component

marked by different color



Object delineation Defining energies ε_{p} algorithms GC vs FC Forrests

Forest-generated (IRFC and PW) objects

 $G = \langle C, E, w \rangle$ – weighted graph, $\emptyset \neq W \subset C$, $S \subset W$

Definition (Forest-generated object)

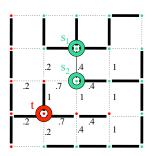
For a spanning forest \mathbb{F} w.r.t. W and $S \subset W$, $P(S, \mathbb{F})$ is a union of all components of \mathbb{F} intersecting S. Note that $P(S, \mathbb{F}) \in \mathcal{P}(S, T)$ for $T = W \setminus S$.

Example (green vertices) of

$$P(S,\mathbb{F})$$
 with $S = \{s_1, s_2\}$.

Outputs of the algorithms we will discuss, GC_{sum} and PW,

are in the $P(S, \mathbb{F})$ format.



Object delineation Defining energies $\varepsilon_{\mathcal{D}}$ algorithms GC vs FC Forrests

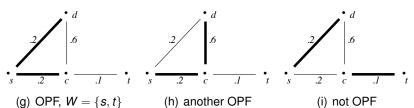
Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)

For a path $p = \langle c_1, \dots, c_k \rangle$ in G let $\mu(p) = \min_{i < k} w(\{c_k, c_{k+1}\})$, the weakest link of p.

A forest \mathbb{F} w.r.t. W is *path-optimal* provided for every $c \in C$, the unique path p_c in \mathbb{F} from W to c is μ -optimal in G, i.e., $\mu(p_c) \geq \mu(p)$ for any path p in G from W to c.

For OPF $\mathbb F$ w.r.t. W, $\mu(p_c) = \mu^C(c,W)$ for every $c \in C$ (with μ^C in the Fuzzy Connectedness sense)



Object delineation Defining energies $\varepsilon_{\mathcal{P}}$ algorithms GC vs FC Forrests

GC_{max} algorithm and IRFC

Theorem ([KC $\emph{et al.}$] OPF object minimizing $arepsilon_{\infty}$)

There exists the smallest $P_{min} \in \mathcal{P}(S, T)$ in form $P(S, \mathbb{F})$, where \mathbb{F} is an OPF w.r.t. $S \cup T$.

F is found by GC_{max} , a version of Dijkstra's shortest path algorithm, in a linear time w.r.t. |C| + M, where M is the size of the range of w.

In practice, O(|C| + M) = O(|C|).

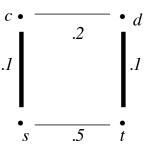
The object P_{min} , returned by GC_{max} , coincides with the Iterative Relative Fuzzy Connectedness, IRFC, object.

Maximal Spanning Forest, MSF

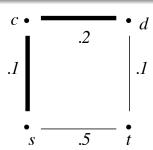
Object delineation

Definition (Maximal Spanning Forest, MSF)

A forest $\mathbb{F} = \langle C, E' \rangle$ w.r.t. W is $\underset{e \in E'}{maximal spanning}$ provided $\sum_{e \in \hat{E}'} w(e) \geq \sum_{e \in \hat{E}'} w(e)$ for every forest $\hat{\mathbb{F}} = \langle C, \hat{E}' \rangle$ w.r.t. W



(j) OPF w.r.t. $\{s, t\}$, not MSF



(k) MSF and OPF

Theorem ([Audigier & Lotufo], [Cousty et al.])

Every MSF is OPF, but not the other way around.

Object delineation Defining energies ε_{p} algorithms GC vs FC Forrests

MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)

PW algorithm returns $P(S, \mathbb{F})$ for a MSF \mathbb{F} w.r.t. $S \cup T$.

 \mathbb{F} is found by PW via a complicated version of Kruskal's algorithm and, locally, Random Walker algorithm.

Since

- IRFC object is indicated by OPF,
- PW object is indicated by MSF, and
- every MSF is OPF

What is the relation between IRFC and PW objects?

Object delineation Defining energies ε_{ρ} algorithms GC vs FC Forrests

New results on GC_{max}, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If P_{min} is the output of GC_{max} (the smallest $P(S, \mathbb{F})$, with with \mathbb{F} is being OPF w.r.t. $S \cup T$), then $P_{\text{min}} = P(S, \hat{\mathbb{F}})$ for some MSF $\hat{\mathbb{F}}$.

If $\mathbb F$ is a MSF w.r.t. $S \cup T$, then $P(S,\mathbb F)$ minimizes energy ε_∞ (in $\mathcal P(S,T)$).

 $P(S, \mathbb{F})$, with \mathbb{F} being OPF w.r.t. $S \cup T$, need not minimize ε_{∞} .

In other words

$$P_{\mathsf{min}} \in \mathcal{P}_{\mathsf{MSF}}(S,T) \subset \mathcal{P}_{\mathsf{OPF}}(S,T) \cap \mathcal{P}_{\varepsilon_{\infty}}(S,T),$$

where $\mathcal{P}_{MSF}(S,T) = \{P(S,\mathbb{F}) \colon \mathbb{F} \text{ is MSF}\}$, similarly for OPF, and $\mathcal{P}_{\varepsilon_{\infty}}(S,T)$ is the set of all ε_{∞} -optimizers.

Forrests

Thank you for your attention!