Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA. email: K_Cies@math.wvu.edu, Janusz Pawlikowski; Department of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. email: pawlikow@math.uni.wroc.pl

CONTINUOUS IMAGES OF BIG SETS AND ADDITIVITY OF s_0 UNDER CPA_{prism}

Abstract

We prove that the Covering Property Axiom $\rm CPA_{prism},$ which holds in the iterated perfect set model, implies the following facts:

- There exists a family \mathcal{G} of uniformly continuous functions from \mathbb{R} to [0,1] such that $|\mathcal{G}| = \omega_1$ and for every $S \in [\mathbb{R}]^c$ there exists a $g \in \mathcal{G}$ with g[S] = [0,1].
- The additivity of the Marczewski's ideal s_0 is equal to $\omega_1 < \mathfrak{c}$.

1 Preliminaries and Axiom CPA_{prism}

Our set theoretic terminology is standard and follows that of [1]. In particular, |X| stands for the cardinality of a set X and $\mathfrak{c} = |\mathbb{R}|$. The Cantor set 2^{ω} will be denoted by a symbol \mathfrak{C} . We use the term *Polish space* for a complete separable metric space without isolated points. For a Polish space X the symbol Perf(X) will stand for the collection of all subsets of X homeomorphic to the Cantor set \mathfrak{C} . For a fixed $0 < \alpha < \omega_1$ and $0 < \beta \leq \alpha$ the symbol π_{β} will stand for the projection from \mathfrak{C}^{α} onto \mathfrak{C}^{β} .

Axiom CPA_{prism} was introduced by the authors in [3], where it is shown that it holds in the iterated perfect set model. Also, CPA_{prism} is a simpler version of the axiom CPA which is described in a monograph [4]. (See also [2].) For the reader's convenience, we will restate the axiom in the next few paragraphs.

Key Words: Continuous images, additivity, Marczewski's ideal so.

Mathematical Reviews subject classification: Primary 03E35; Secondary 03E17, 26A03. Received by the editors July 30, 2003

Communicated by: Clifford E. Weil

^{*}The second author wishes to thank West Virginia University for its hospitality in years 1998-2001, where the results presented here were obtained.

The main notions needed for the axiom are that of *prism* and *prism-density*. Let $0 < \alpha < \omega_1$ and let $\Phi_{\text{prism}}(\alpha)$ be the family of all continuous injections $f: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ with the property that

$$f(x) \upharpoonright \beta = f(y) \upharpoonright \beta \iff x \upharpoonright \beta = y \upharpoonright \beta \text{ for all } \beta \in \alpha \text{ and } x, y \in \mathfrak{C}^{\alpha}$$

or, equivalently, such that for every $\beta < \alpha$

$$f \models \beta \stackrel{\text{def}}{=} \{ \langle x \models \beta, y \models \beta \rangle \colon \langle x, y \rangle \in f \}$$

is a one-to-one function from \mathfrak{C}^{β} into \mathfrak{C}^{β} . Functions f from $\Phi_{\text{prism}}(\alpha)$ were first introduced, in more general setting, in [7] where they are called *projectionkeeping homeomorphisms*. Note that $\Phi_{\text{prism}}(\alpha)$ is closed under compositions and that for every $0 < \beta < \alpha$ if $f \in \Phi_{\text{prism}}(\alpha)$, then $f \upharpoonright \beta \in \Phi_{\text{prism}}(\beta)$. Let

$$\mathbb{P}_{\alpha} = \{ \operatorname{range}(f) \colon f \in \Phi_{\operatorname{prism}}(\alpha) \}$$

and note that if $f \in \Phi_{\text{prism}}(\alpha)$ and $E \in \mathbb{P}_{\alpha}$, then $f[E] \in \mathbb{P}_{\alpha}$. We will also define $\mathbb{P}_{\omega_1} = \bigcup_{0 < \alpha < \omega_1} \mathbb{P}_{\alpha}$. We will refer to elements of \mathbb{P}_{ω_1} as *iterated perfect* sets. (In [12] the elements of \mathbb{P}_{ω_1} are called *I*-perfect, where *I* is the ideal of countable sets.)

The simplest elements of \mathbb{P}_{α} are *perfect cubes*; that is, the sets of the form $C = \prod_{\beta < \alpha} C_{\beta}$, where $C_{\beta} \in \text{Perf}(\mathfrak{C})$ for each $\beta < \alpha$. (This is justified by a function $f = \langle f_{\beta} \rangle_{\beta < \alpha} \in \Phi_{\text{prism}}(\alpha)$, where each f_{β} is a homeomorphism from \mathfrak{C} onto C_{β} .)

One of the most important properties of iterated perfect sets, distinguishing them from perfect cubes, is the following fact, which is a particular case of [7, thm. 20]. In its current form it has been used in [3]. It proof can be also found in [4, Lemma 3.2.2].

Lemma 1.1. For every $0 < \alpha < \omega_1$, $E \in \mathbb{P}_{\alpha}$, a Polish space X, and a continuous function $f: E \to X$ there exist $0 < \beta \leq \alpha$ and $P \in \mathbb{P}_{\alpha}$, $P \subset E$, such that $f \circ \pi_{\beta}^{-1}$ is a function on $\pi_{\beta}[P] \in \mathbb{P}_{\beta}$ which is either one-to-one or constant.

To state $\operatorname{CPA}_{\operatorname{prism}}$ we need a few more definitions. For a fixed Polish space X let $\mathcal{F}_{\operatorname{prism}}(X)$ stand for the family of all continuous injections from an $E \in \mathbb{P}_{\omega_1}$ onto perfect subsets of X. Each such injection f is called a *prism* and is considered as a coordinate system imposed on $P = \operatorname{range}(f)$.¹ We will usually abuse this terminology and refer to P itself as a *prism* (in X) and to f as a *witness function* for P. A function $g \in \mathcal{F}_{\operatorname{prism}}(X)$ is *subprism* of

756

 $^{^1\}mathrm{In}$ a language of forcing a coordinate function f is simply a nice name for an element from X.

f provided $g \subset f$. In the above spirit we call $Q = \operatorname{range}(g)$ a subprism of a prism P. Thus, when we say that Q a subprism of a prism $P \in \operatorname{Perf}(X)$ we mean that Q = f[E], where f is a witness function for P and $E \subset \operatorname{dom}(f)$ is an iterated perfect set. A family $\mathcal{E} \subset \operatorname{Perf}(X)$ is prism-dense in X provided every prism in X contains a subprism $Q \in \mathcal{E}$. It is easy to see (using the fact that $\Phi_{\operatorname{prism}}(\alpha)$ is closed under the composition) that we can assume that a witness function of a prism is always defined on the entire space \mathfrak{C}^{α} for an appropriate α .

Now we are ready to state the axiom.

CPA_{prism}: $\mathfrak{c} = \omega_2$ and for every Polish space X and every prism-dense family $\mathcal{E} \subset \operatorname{Perf}(X)$ there is an $\mathcal{E}_0 \subset \mathcal{E}$ such that $|\mathcal{E}_0| \leq \omega_1$ and $|X \setminus \bigcup \mathcal{E}_0| \leq \omega_1$.

If in the definition above we restrict our attention only to prisms whose domains are perfect cubes in \mathfrak{C}^{ω} , we get a notion of cube-density which is stronger than that of prism-density. This naturally leads to a weaker version of CPA_{prism}, known as CPA_{cube}, obtained from CPA_{prism} by replacing the word "prism" with "cube." Thus, any consequence of axiom CPA_{cube}, which has been studied in [5, 2, 10, 4], follows also from CPA_{prism}.

Next, let us consider the following ideals on \mathfrak{C} :

$$s_0^{\mathrm{prism}} = \left\{ \mathfrak{C} \setminus \bigcup \mathcal{E} \colon \mathcal{E} \text{ is prism-dense in } \mathrm{Perf}(\mathfrak{C}) \right\}$$

and

$$s_0^{\mathrm{cube}} = \left\{ \mathfrak{C} \setminus \bigcup \mathcal{E} \colon \ \mathcal{E} \text{ is cube-dense in } \mathrm{Perf}(\mathfrak{C}) \right\}.$$

Clearly they are the variants of the Marczewski ideal s_0 of subsets of \mathfrak{C} ; that is, the family of all sets $S \subset \mathfrak{C}$ such that for every $P \in \operatorname{Perf}(\mathfrak{C})$ there exists a $Q \in \operatorname{Perf}(P)$ disjoint from S. It is not difficult to see that

$$[X]^{<\mathfrak{c}} \subset s_0^{\mathrm{cube}} \subset s_0^{\mathrm{prism}} \subset s_0$$

(The proof that $[X]^{<\mathfrak{c}} \subset s_0^{\text{cube}} \subset s_0$ can be found in [5, Fact 1.3] or [4]. The inclusion $s_0^{\text{cube}} \subset s_0^{\text{prism}}$ follows immediately from the fact that any cube-dense family is also prism-dense. The proof that $s_0^{\text{prism}} \subset s_0$ is identical to that of $s_0^{\text{cube}} \subset s_0$.)

Obviously CPA_{prism}, used with $X = \mathfrak{C}$, implies that $s_0^{\text{prism}} \subset [\mathfrak{C}]^{\leq \omega_1}$. So, we get the following consequence.

Proposition 1.2. If CPA_{prism} holds, then $s_0^{\text{prism}} = [\mathfrak{C}]^{\leq \omega_1}$.

This distinguishes the ideal s_0^{prism} from s_0 , since there exist ZFC examples of s_0 -sets of cardinality \mathfrak{c} . (See e.g. [9, thm. 5.10].) The cube analog of Proposition 1.2 was proved in [5].

2 Continuous Images of Sets of Cardinality Continuum

In [8] A. Miller proved the following in the iterated perfect set model.

(A) for every subset S of \mathbb{R} of cardinality \mathfrak{c} there exists a (uniformly) continuous function $f \colon \mathbb{R} \to [0, 1]$ such that f[S] = [0, 1].

This result was refined by the authors in [5] by showing that (A) follows already from CPA_{cube} . The main goal of this section is to show that CPA_{prism} implies the following stronger version of (A).

Theorem 2.1. CPA_{prism} implies that

(A*) there exists a family \mathcal{G} of uniformly continuous functions from \mathbb{R} to [0,1]such that $|\mathcal{G}| = \omega_1$ and for every $S \in [\mathbb{R}]^c$ there exists a $g \in \mathcal{G}$ with g[S] = [0,1].

This also constitutes a version of a remark due to Miller [8, p. 581], who noticed that in the Sacks model functions coded in the ground model can be taken as a family \mathcal{G} .

To prove the theorem we need some auxiliary results. For a fixed Polish space X and $0 < \alpha < \omega_1$ let \mathcal{F}^{α} denote the family of all continuous injections from \mathfrak{C}^{α} into X. Note that if we consider \mathcal{F}^{α} with the topology of uniform convergence, then

$$\mathcal{F}^{\alpha}$$
 is a Polish space. (1)

To prove (1) it is enough to show that \mathcal{F}^{α} is a G_{δ} subset of the space $\mathcal{C} = \mathcal{C}(\mathfrak{C}^{\alpha}, X)$ of all continuous functions from \mathfrak{C}^{α} into X. But \mathcal{F}^{α} is the intersection of the open sets G_n , $n < \omega$, where the sets G_n are constructed as follows. Fix a finite partition \mathcal{P}_n of \mathfrak{C}^{α} into clopen sets each of the diameter less than 2^{-n} , and let \mathcal{H}_n be the family of all mappings h from \mathcal{P}_n into the topology of X such that $h(P) \cap h(P') = \emptyset$ for distinct $P, P' \in \mathcal{P}_n$. We put

$$G_n = \bigcup_{h \in \mathcal{H}_n} \{ f \in \mathcal{C} \colon (\forall P \in \mathcal{P}_n) (\forall x \in P) \ f(x) \in h(P) \}.$$

This completes the argument for (1).

Lemma 2.2. Let X be a Polish space and $0 < \alpha < \omega_1$. Then every map $f: \mathfrak{C}^{\beta} \to \mathcal{F}^{\alpha}$ from $\mathcal{F}_{prism}(\mathcal{F}^{\alpha})$ has a restriction $f^* \in \mathcal{F}_{prism}(\mathcal{F}^{\alpha})$ for which there exists an $\hat{f} \in \mathcal{F}_{prism}(X)$ defined on a subset of $\mathfrak{C}^{\beta+\alpha}$ such that:

- (a) $\hat{f}(s,t) = f^*(s)(t)$ for all $\langle s,t \rangle \in (\mathfrak{C}^{\beta} \times \mathfrak{C}^{\alpha}) \cap \operatorname{dom}(\hat{f})$, and
- (b) for each $s \in \text{dom}(f^*)$ the function $\hat{f}(s, \cdot) \colon \{t \in \mathfrak{C}^{\alpha} \colon \langle s, t \rangle \in \text{dom}(\hat{f})\} \to X$ is a restriction of $f^*(s)$ and belongs to $\mathcal{F}_{\text{prism}}(X)$.

PROOF. Let $f: \mathfrak{C}^{\beta} \to \mathcal{F}^{\alpha}, f \in \mathcal{F}_{\text{prism}}(\mathcal{F}^{\alpha})$, and define a function g from a set $\mathfrak{C}^{\beta} \times \mathfrak{C}^{\alpha} = \mathfrak{C}^{\beta+\alpha}$ into X by g(s,t) = f(s)(t) for $\langle s,t \rangle \in \mathfrak{C}^{\beta} \times \mathfrak{C}^{\alpha}$. It is easy to see that g is continuous. Apply Lemma 1.1 to $E = \mathfrak{C}^{\beta+\alpha} \in \mathbb{P}_{\beta+\alpha}$ and to the function g to find a $\gamma \leq \beta + \alpha$ and a subset $P \in \mathbb{P}_{\beta+\alpha}$ of E such that $g \circ \pi_{\gamma}^{-1}$ is a function on $\pi_{\gamma}[P] \in \mathbb{P}_{\gamma}$ which is either one-to-one or constant. Let $f^* = f \upharpoonright \pi_{\beta}[P]$. We will show that it is as desired.

First note that $\gamma = \beta + \alpha$ and g is one-to-one on P. Indeed, if $z \in \operatorname{range}(f^*) \cap \mathcal{F}_{\operatorname{prism}}(X)$ and $z = f^*(s)$, then for every different $t_0, t_1 \in \mathfrak{C}^{\alpha}$ with $\langle s, t_0 \rangle, \langle s, t_1 \rangle \in P$ we have $g(s, t_0) = f(s)(t_0) = z(t_0) \neq z(t_1) = g(s, t_1)$. So, g cannot be constant and if $\gamma < \beta + \alpha$, then we can find t_0 and t_1 such that $\pi_{\gamma}(\langle s, t_0 \rangle) = \pi_{\gamma}(\langle s, t_1 \rangle)$ contradicting the above calculation.

It is easy to see that $\hat{f} = g \upharpoonright P$ is as desired.

Lemma 2.2 implies the following useful fact.

Proposition 2.3. CPA_{prism} implies that for every Polish space X there exists a family \mathcal{H} of continuous functions from compact subsets of X onto $\mathfrak{C} \times \mathfrak{C}$ such that $|\mathcal{H}| \leq \omega_1$ and

for every prism P in X there are h ∈ H and c ∈ C such that h⁻¹({c}×C) and h⁻¹(⟨c, d⟩) are subprisms of P for every d ∈ C.

In particular, $\mathcal{F} = \{h^{-1}(\{c\} \times \mathfrak{C}) \colon h \in \mathcal{H} \& c \in \mathfrak{C}\}$ is prism-dense in X.

PROOF. Let $0 < \alpha < \omega_1$. We use the notation as in Lemma 2.2. Since the family of all sets range (f^*) is prism-dense in \mathcal{F}^{α} , by CPA_{prism} we can find a family $\mathcal{G}_{\alpha} = \{f_{\xi}^* : \xi < \omega_1\}$ such that $R_{\alpha} = \mathcal{F}^{\alpha} \setminus \bigcup_{\xi < \omega_1} \operatorname{range}(f_{\xi}^*)$ has cardinality less than or equal to ω_1 . If $f^* \in \mathcal{G}_{\alpha}$, then \hat{f} maps injectively a $P = P_f \in \mathbb{P}_{\beta+\alpha}$ onto $Q = Q_f \subset X$. Moreover, for every $z \in \mathcal{F}^{\alpha} \setminus R_{\alpha}$ there are $f^* \in \mathcal{G}_{\alpha}$ and $s \in \operatorname{dom}(f^*)$ such that $z = f^*(s)$ and $\hat{f}(s, \cdot) \in \mathcal{F}_{\operatorname{prism}}(X)$ is a restriction of z.

Now, let $H_f \in \Phi_{\text{prism}}(\beta + \alpha)$ be from $\mathfrak{C}^{\beta+\alpha}$ onto P and consider the composition $\hat{f} \circ H_f \colon \mathfrak{C}^{\beta+\alpha} \to Q$. Then functions $(\hat{f} \circ H_f)^{-1} \colon Q_f \to \mathfrak{C}^{\beta+\alpha}$ are our desired functions modulo some projections. More precisely, let $k_0 \colon \mathfrak{C}^\beta \to \mathfrak{C}$ be a homeomorphism and let $k_1 \colon \mathfrak{C} \to \mathfrak{C}$ be such that $k_1^{-1}(c) \in \text{Perf}(\mathfrak{C})$ for every $c \in \mathfrak{C}$. Define $h_f^{c} \colon Q_f \to \mathfrak{C} \times \mathfrak{C}$ by

$$h_f^{\alpha}(x) = \langle (k_0 \circ \pi_{\beta})((\hat{f} \circ H_f)^{-1}(x)), k_1([(\hat{f} \circ H_f)^{-1}(x)](\beta)) \rangle.$$

Then family $\mathcal{H}_0 = \{h_f^{\alpha} : \alpha < \omega_1 \& f^* \in \mathcal{G}_{\alpha}\}$ works for all functions not in $R = \bigcup_{0 < \alpha < \omega_1} R_{\alpha}$. Also, for every function $g \in R$ it is easy to find a continuous function h_g from range(g) onto $\mathfrak{C} \times \mathfrak{C}$ such that $h_g^{-1}(\{c\} \times \mathfrak{C})$ and $h_g^{-1}(\langle c, d \rangle)$ are subprisms of range(g) for every $c, d \in \mathfrak{C}$. Then $\mathcal{H} = \mathcal{H}_0 \cup \{h_g : g \in R\}$ is as desired. \Box

PROOF OF THEOREM 2.1. Let \mathcal{H} be as in Proposition 2.3 used with $X = \mathbb{R}$, let $k: \mathfrak{C} \to [0,1]$ be continuous surjection, and for every $h = \langle h_0, h_1 \rangle \in \mathcal{H}$ let $g_h: \mathbb{R} \to [0,1]$ be a continuous extension of a function $h^*: \operatorname{dom}(h) \to [0,1]$ defined by $h^*(x) = k(h_1(x))$. We claim that $\mathcal{G} = \{g_h: h \in \mathcal{H}\}$ is as desired.

To see it, let $S \in [\mathbb{R}]^c$ and let $\mathcal{E} = \{P \in \operatorname{Perf}(\mathbb{R}) \colon P \cap S = \emptyset\}$. Since $\mathbb{R} \setminus \bigcup \mathcal{E}$ contains S, it has cardinality \mathfrak{c} . So, from $\operatorname{CPA}_{\operatorname{prism}}$ we conclude that \mathcal{E} is not prism-dense. (Compare with Proposition 1.2.) Thus, there exists a prism P in \mathbb{R} such that S intersects every subprism of P. Let $h \in \mathcal{H}$ and $c \in \mathfrak{C}$ be such that $h^{-1}(\{c\} \times \mathfrak{C})$ and $h^{-1}(\langle c, d \rangle)$ are subprisms of P for every $d \in \mathfrak{C}$. Then S intersects each $h^{-1}(\langle c, d \rangle)$; so h[S] contains $\{c\} \times \mathfrak{C}$. Thus $g_h[S] = [0, 1]$. \Box

3 CPA_{prism} Implies That $add(s_0) = \omega_1$

Recall that the additivity number is defined as

$$\operatorname{add}(s_0) = \min\left\{ |F| \colon F \subset s_0 \And \bigcup F \notin s_0 \right\}.$$

Numbers $\operatorname{add}(s_0)$, $\operatorname{cov}(s_0)$, $\operatorname{non}(s_0)$, and $\operatorname{cof}(s_0)$ has been intensively studied. (See e.g. [6].) It is known that $\operatorname{cof}(s_0) > \mathfrak{c}$ (see e.g. [6, thm. 1.3]) and that $\operatorname{non}(s_0) = \mathfrak{c}$ since there are s_0 -sets of cardinality \mathfrak{c} . There are models of ZFC+MA with $\mathfrak{c} = \omega_2$ and $\operatorname{cov}(s_0) = \omega_1$, while the Proper Forcing Axiom implies that $\operatorname{add}(s_0) = \mathfrak{c}$. Here we prove that $\operatorname{CPA}_{\operatorname{prism}}$ implies $\operatorname{add}(s_0) = \omega_1$. Note also that a stronger form of CPA implies that $\operatorname{cov}(s_0) = \omega_2$. (See [4, prop. 6.1.1].)

In the proof we will use the following fact in which the assumption that \mathcal{D} is an open subset of $\operatorname{Perf}(\mathfrak{C})$ means that $\operatorname{Perf}(P) \subset \mathcal{D}$ for every $P \in \mathcal{D}$.

Fact 3.1. For any open dense subset \mathcal{D} of $\operatorname{Perf}(\mathfrak{C})$ (considered as ordered by inclusion) there exists a maximal antichain $\mathcal{A} \subset \mathcal{D}$ consisting of pairwise disjoint sets such that every $P \in \operatorname{Perf}(\bigcup \mathcal{A})$ is covered by less than continuum many sets from \mathcal{A} .

PROOF. Let $\operatorname{Perf}(\mathfrak{C}) = \{P_{\alpha} : \alpha < \mathfrak{c}\}$. We will build inductively a sequence $\langle \langle A_{\alpha}, x_{\alpha} \rangle \in \mathcal{D} \times \mathfrak{C} : \alpha < \mathfrak{c} \rangle$ aiming for $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$. At step $\alpha < \mathfrak{c}$, given already $\langle \langle A_{\beta}, x_{\beta} \rangle : \beta < \alpha \rangle$ we look at P_{α} .

Choice of x_{α} : If $P_{\alpha} \subset \bigcup_{\beta < \alpha} A_{\beta}$, we take x_{α} as an arbitrary element of \mathfrak{C} ; otherwise we pick $x_{\alpha} \in P_{\alpha} \setminus \bigcup_{\beta < \alpha} A_{\beta}$.

Choice of A_{α} : If there is a $\beta < \alpha$ such that $P_{\alpha} \cap A_{\beta}$ is uncountable, we let $A_{\alpha} = A_{\beta}$; otherwise pick $A_{\alpha} \in \mathcal{D}$ below P_{α} and notice that we can refine it, if necessary, to be disjoint from $\bigcup_{\beta < \alpha} A_{\beta} \cup \{x_{\beta} : \beta \leq \alpha\}$. It is easy to see that $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ is as required. \Box

Theorem 3.2. CPA_{prism} implies that $add(s_0) = \omega_1$.

PROOF. Let $\mathcal{H} = \{h_{\xi} \colon \xi < \omega_1\}$ be as in Proposition 2.3 with $X = \mathfrak{C}$. For every $\xi < \omega_1$ put $\mathcal{A}_{\xi}^0 = \{h_{\xi}^{-1}(\{c\} \times \mathfrak{C}) \colon c \in \mathfrak{C}\}$. Then each \mathcal{A}_{ξ}^0 is a family of pairwise disjoint sets and $\mathcal{A}^0 = \bigcup_{\xi < \omega_1} \mathcal{A}_{\xi}^0$ is dense in $\operatorname{Perf}(\mathfrak{C})$.

For each $\xi < \omega_1$ let A_{ξ}^* be a maximal antichain extending \mathcal{A}_{ξ}^0 , define $\mathcal{D}_{\xi} = \{P \in \operatorname{Perf}(\mathfrak{C}) \colon P \subset A \text{ for some } A \in \mathcal{A}_{\xi}^*\}$, and let $\mathcal{A}_{\xi} \subset \mathcal{D}_{\xi}$ be as in Fact 3.1. Then $\mathcal{A} = \bigcup_{\xi < \omega_1} \mathcal{A}_{\xi}$ is still dense in $\operatorname{Perf}(\mathfrak{C})$. For each $\xi < \omega_1$ let $\{P_{\xi}^{\alpha} \colon \alpha < \mathfrak{c}\}$ be an enumeration of \mathcal{A}_{ξ} . (Note that

For each $\xi < \omega_1$ let $\{P_{\xi}^{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of \mathcal{A}_{ξ} . (Note that each \mathcal{A}_{ξ} has cardinality \mathfrak{c} , since this was the case for sets \mathcal{A}_{ξ}^{0} .) Pick x_{ξ}^{α} from each P_{ξ}^{α} and put $\mathcal{A}_{\xi} = \{x_{\xi}^{\alpha} : \alpha < \mathfrak{c}\}$. Then $\mathcal{A}_{\xi} \in s_0$ for every $\xi < \omega_1$. However, $\mathcal{A} = \bigcup_{\xi < \omega_1} \mathcal{A}_{\xi} \notin s_0$ since it intersects every element of a dense set \mathcal{A} . \Box

It can be also shown that $\operatorname{CPA}_{\operatorname{prism}}$, with a help of Proposition 2.3, implies that the Sacks forcing $\mathbb{P} = \langle \operatorname{Perf}(\mathfrak{C}), \subset \rangle$ collapses \mathfrak{c} to ω_1 . However, this also follows immediately from a theorem of P. Simon [11] that \mathbb{P} collapses \mathfrak{c} to \mathfrak{b} while already $\operatorname{CPA}_{\operatorname{cube}}$ implies that $\mathfrak{b} \leq \operatorname{cof}(\mathcal{N}) = \omega_1$.

References

- K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts, 39, Cambridge Univ. Press 1997.
- [2] K. Ciesielski, J. Pawlikowski, Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1) (2003), 19–55. (Preprint* available.)²
- [3] K. Ciesielski, J. Pawlikowski, Small coverings with smooth functions under the Covering Property Axiom, preprint*.
- [4] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA, version of January 2003, work in progress*.
- [5] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA_{cube} and its consequences, Fund. Math., **176(1)** (2003), 63–75. (Preprint* available.)
- [6] H. Judah, A. W. Miller, S. Shelah, Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic, 31(3) (1992), 145–161.
- [7] V. Kanovei, Non-Glimm-Effros equivalence relations at second projective level, Fund. Math., 154 (1997), 1–35.

²Preprints marked by * are available in electronic form from *Set Theoretic Analysis Web Page:* http://www.math.wvu.edu/homepages/kcies/STA/STA.html

- [8] A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic, 48 (1983), 575–584.
- [9] A. W. Miller, Special Subsets of the Real Line, in: Handbook of Set-Theoretic Topology, (K. Kunen and J. E. Vaughan, eds.), North-Holland (1984), 201–233.
- [10] A. Nowik, Possibly there is no uniformly completely Ramsey null set of size 2^ω, Colloq. Math., 93 (2002), 251–258. (Preprint* available.)
- [11] P. Simon, Sacks forcing collapses c to b, Comment. Math. Univ. Carolin., 34(4) (1993), 707–710.
- [12] J. Zapletal, Cardinal Invariants and Descriptive Set Theory, Mem. Amer. Math. Soc., to appear.