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Abstract. A function f from a countable product X =
Q

i Xi of Polish
spaces into a Polish space is separately nowhere constant provided it is
nowhere constant on every section of X. We show that every contin-
uous separately nowhere constant function is one-to-one on a product
of perfect subsets of Xi’s. This result is used to distinguish between
n-cube density notions for different n ≤ ω, where ω-cube density is a
basic notion behind the Covering Property Axiom CPA formulated by
Ciesielski and Pawlikowski. We will also distinguish, for different values
of α < ω1, between the notions of α-prism densities — the more refined
density notions used also in CPA.
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1. Introduction

The set theoretical notation used in the paper is standard and follows [1].
For a topological space X a function f : X → Y is nowhere constant if f
is not constant on any non-empty open subset of X. For a subset G of a
product space X =

∏
i∈I Xi we say that a function f : G → Y is separately

nowhere constant if for every t ∈ G and k ∈ I function f restricted to the
section Gt

k = {x ∈ G : x � I \ {k} = t � I \ {k}} is nowhere constant. This
notion is the most natural when G = X. In this case it is related in a
natural way to the notion of a separately continuous function f : X → Y ,
that is, such that f restricted to every section Xt

k is continuous.
Note that every separately nowhere constant function is nowhere con-

stant. However, the converse implication is false, as shown by the polyno-
mial functions from R2 into R defined by w0(x, y) = xy and w1(x, y) = x.
This implications pattern stays in contrast with the implications for sep-
arate continuity: continuity implies separate continuity, but the converse
implication is false.

We will consider the notion of being separately nowhere constant only for
the product of Polish spaces which we define here as a complete separable
metric spaces without isolated points. (No function is nowhere con-
stant if it is defined on a space containing isolated points.) Let C stand for
the Cantor set 2ω and for a Polish space X let Perf(X) be the family of all
subsets of X homeomorphic to C. Our main theorem on separately nowhere
constant functions is the following result, where a subset P of

∏
i∈I Xi is a

perfect cube provided it is of the form P =
∏

i∈I Pi with Pi ∈ Perf(Xi) for
all i ∈ I.

Theorem 1. Let G be a dense Gδ subset of a product
∏

i∈I Xi of Polish
spaces and let f be a continuous function from G into a Polish space Y . If
f is separately nowhere constant then there is a perfect cube P in

∏
i∈I Xi

such that P ⊂ G and f restricted to P is one-to-one.

It is not difficult to see that the conclusion of the theorem remains true
for the function w0(x, y) = xy, despite the fact that w0 is not separately
nowhere constant. On the other hand, the theorem’s conclusion is false for
the nowhere constant function w1(x, y) = x.

The theorem will be used to provide the examples distinguishing between
the notions of n-cube densities defined as follows. For 0 < n ≤ ω we say that
a family F ⊂ Perf(X) is n-cube dense provided that for every continuous
injection f : Cn → X there is a perfect cube C ⊂ Cn such that f [C] ∈ F .

To put these notions in a better perspective notice that 1-cube density is
just the standard perfect set density, that is, F ⊂ Perf(X) is 1-cube dense
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provided every perfect subset of X contains a set from F . To see that in gen-
eral n-cube density is a stronger notion recall the following example, which
is extracted from Miller’s construction [6, Theorem 5.10] of a Marczewski
s0-set of cardinality continuum.

Example 1 ([2, 4]). Let X = C × C and let E be the family of all P ∈
Perf(X) such that either all vertical sections of P are countable, or all
horizontal sections of P are countable. Then E is dense in Perf(X) but it
is not 2-cube dense.

The interest in cube densities comes from the work of Ciesielski and
Pawlikowski [4], in which authors formulate the Covering Property Axiom
CPA, notice that it holds in the iterated perfect set model, and discuss in
depth its consequences. The simplest form of the axiom is that of CPAcube:

CPAcube: c = ω2 and for every Polish space X and every ω-cube dense
family E ⊂ Perf(X) there exists an E0 ⊂ E such that |E0| < c and
|X \

⋃
E0| < c.

Another version of CPA axiom, stronger than CPAcube, is axiom CPAprism

which is obtained from CPAcube by replacing the notion of ω-cube density
with the weaker notion of density known as prism density: a family F ⊂
Perf(X) is prism dense if it is α-prism dense for every 0 < α < ω1. Now, α-
prism density is defined in a way similar to n-cube density. First one needs
to identify the family Pα of subsets of Cα, termed iterated perfect sets. This
family, which includes all perfect cubes in Cα, will be defined in Section 3.
Then, we say that a family F ⊂ Perf(X) is α-prism dense provided that for
every continuous injection f : Cα → X there is a P ∈ Pα such that f [P ] ∈ F .

The next two theorems discuss these notions of density. In particular, the
first of them shows that essentially all these notions are different. The sec-
ond theorem shows that any strengthening of the axiom CPAprism obtained
by replacing the prism density with a proper subclass of the densities we
consider leads to the statement which is false in ZFC.

Theorem 2. For a Polish space X, a family F ⊂ Perf(X), and 1 < α < ω1

consider the following sentences:

Cα: family F is β-cube dense for every 0 < β < α;
Pα: family F is β-prism dense for every 0 < β < α.

Then, for 2 < m < n < ω and ω + 1 < α < γ < ω1, they are related by the
following implications.
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Moreover, none of these implications can be reversed.

For α < ω1 we say that a family F ⊂ Perf(X) is α-prism∗ dense provided
F is β-prism dense for every 0 < β < α and it is n-cube dense for every
0 < n < ω.

Theorem 3. For every α < ω1 and for every Polish space X there is an
α-prism∗ dense family F ⊂ Perf(X) for which |X \

⋃
F| = c.

These theorems will be proved in Section 3.

2. Separately nowhere constant functions

As usual R and Q represent the sets of real and rational numbers, re-
spectively. The space Rω is the product space of countably many copies of
R with its usual topology. This is a Polish space and a vector space over
R with the operations defined pointwise from the usual operations in R. In
this context we consider for every k < ω the canonical unit vectors ~ek ∈ Rω:
~ek(k) = 1 and ~ek(i) = 0 for all other i < ω. If S ⊂ Rω and δ ∈ R then
δ ·~ek +S = {δ ·~ek +s : s ∈ S}. If ε > 0 and x ∈ Rω then B(x, ε) denotes the
open ball with center x and radius ε and B(x, ε) is the corresponding closed
ball. If X is a Polish space and A ⊂ X, the closure of A is denoted by A.
If m < ω then we identify Rω with R× Rω\{m}; if y ∈ Rω\{m} and G ⊂ Rω

then the section of G along y is the set (G)y = {x ∈ R : 〈x, y〉 ∈ G}.
The following variant of Kuratowski-Ulam theorem will be useful in what

follows. Although it looks like it should be well known, we could not locate
it in the literature. Thus, we present it here with a proof.

Lemma 2. Let X be a Polish space and consider XT with the product
topology, where T 6= ∅ is an arbitrary set. Fix at most countable family K of
sets K ( T . Then for every comeager set H ⊂ XT there exists a comeager
set G ⊂ H such that for every x ∈ G and K ∈ K the set

Gx�K =
{

y ∈ XT\K : (x � K) ∪ y ∈ G
}

is comeager in XT\K .
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Proof. Let {Ki : i < ω} be an enumeration of K with infinite repetitions.
We construct, by induction on i < ω, a decreasing sequence 〈Gi : i < ω〉 of
comeager subsets of H such that for every i < ω

(i) the set (Gi)x�Ki is comeager in XT\Ki for every x ∈ Gi.
Put G−1 = H and assume that for some i < ω the comeager set Gi−1 is

already constructed. To define Gi identify XT with XKi × XT\Ki . Then,
by Kuratowski-Ulam theorem, the set

A =
{
y ∈ XKi : (Gi−1)y is comeager in XT\Ki

}
is comeager in XKi . Put Gi = Gi−1 ∩ (A×XT\Ki).

Clearly Gi ⊂ Gi−1 is a comeager subset of XT . If x ∈ Gi then
x � Ki ∈ A so (Gi)x�Ki = (Gi−1)x�Ki is comeager in XT\Ki . So, (i) holds.
This completes the definition of the sequence 〈Gi : i < ω〉.

Let G =
⋂

i<ω Gi. Clearly G ⊂ H is comeager in XT . To see the
additional part, take a K ∈ K. Since G =

⋂
{Gi : i < ω & Ki = K}, for

every x ∈ G the set

Gx�K =
⋂

{(Gi)x�Ki : i < ω & Ki = K}

is comeager in XT\K . �

The next lemma is an immediate consequence of Lemma 2 applied to
X = R, T = ω, and K = {ω \ {n} : n < ω}.

Lemma 3. For every comeager set G ⊂ Rω there exists a comeager set
H ⊂ G such that for every x ∈ H and n < ω the set H ∩ (x + R · ~en) is
comeager in x + R · ~en.

The following lemma will facilitate the inductive step in the next theorem.

Lemma 4. Let G be a comeager subset of Rω such that
(•) G∩ (x + R · ~ek) is comeager in x+R ·~ek for every x ∈ G and k < ω.

Let f be a continuous separately nowhere constant function from G into a
Polish space Y . If S ∈ [G]<ω is such that f is one-to-one on S, then for
every k < ω and ε > 0 there exists a δ ∈ (0, ε) such that (S + δ · ~ek) ⊂ G
and f is one-to-one on S ∪ (S + δ · ~ek).

Proof. Let S = {xi : i < n} ⊂ G be such that f � S is one-to-one. Since f
is continuous, decreasing ε if necessary, we can assume that

(∗) if S∗ = {x∗i : i < n} is such that x∗i ∈ G ∩ B(xi, ε) for every i < n,
then f is also one-to-one on S∗.
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For each x ∈ S consider the sets Mx = {δ ∈ R : x + δ · ~ek ∈ G}, which
by (•) are comeager, and Nx = {δ ∈ Mx : f(x + δ · ~ek) ∈ f [S]}. Since
f � G ∩ (x + R · ~ek) is nowhere constant, the set Nx is meager in R. So,
B =

⋂
x∈S Mx \

⋃
x∈S Nx is comeager in R.

Pick a δ ∈ (0, ε) ∩ B. Then S + δ · ~ek ⊂ G as δ ∈
⋂

x∈S Mx. To see that
f is one-to-one on S ∪ (S + δ · ~ek) take x 6= y in this set. We need to show
that f(x) 6= f(y). This follows from the assumption when x, y ∈ S, from
(∗) when x, y ∈ S + δ · ~ek, and from δ /∈

⋃
x∈S Nx otherwise. �

Theorem 4. Let G be a comeager subset of Rω and let f be a continuous
separately nowhere constant function from G into a Polish space Y . Then
there is a perfect cube P in Rω such that P ⊂ G and f is one-to-one on P .

Proof. Let {mk : k < ω} be an enumeration of ω where every natural
number appears infinitely often. By Lemma 3, shrinking G if necessary, we
can assume that G satisfies the condition (•) from Lemma 4. Since G is a
dense Gδ subset of Rω we have G =

⋂
n<ω Gn, where each Gn is open and

dense subset of Rω.
We will construct by induction on k < ω the sequences 〈Sk∈ [G]2

k
: k<ω〉,

〈εk : k < ω〉, and 〈δk : k < ω〉 such that for every k < ω:

(1) 0 < δk < εk ≤ 2−k,
(2) Sk+1 = Sk ∪ (δk · ~emk

+ Sk) ⊂
⋃
{B(x, εk) : x ∈ Sk},

(3) B(x, εk) ⊂ Gk for every x ∈ Sk,
(4) f [B(x, εk)] ∩ f [B(x∗, εk)] = ∅ for every distinct x, x∗ ∈ Sk.

We start the construction with an arbitrary S0 = {s} ⊂ G, and ε0 ≤ 1
ensuring (3). If for some k < ω the set Sk and εk are already constructed
we choose δk using Lemma 4 with k = mk and ε ≤ εk small enough that
it insures (2) and |Sk+1| = 2k+1. Then f is one-to-one on Sk+1 ⊂ G and,
using continuity of f , we can choose εk+1 satisfying (1), (3), and (4). This
finishes the construction.

If for n, k < ω we put Ak,n = {x(n) : x ∈ Sk} then it is easy to see that:

(a) Sk =
∏

n<ω Ak,n,
(b) Ak+1,n = Ak,n for every n 6= mk+1,
(c) Ak+1,mk+1

= Ak,mk+1
∪ (δk + Ak,mk+1

).

We define Pn =
⋃

k<ω Ak,n and put P =
∏

n<ω Pn. We will show that each
Pn is a perfect subset of R, P ⊂ G, and f is one-to-one on P . Notice that
this will finish the proof, because as a final adjustment (necessary, when
Pn has a non-empty interior in R) we can shrink each Pn to a subset from
Perf(R).
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Clearly each Pn is closed and, by (1) and (2), it has no isolated points.
We need to show that ⋃

k<ω

Sk =
∏
n<ω

Pn.

The inclusion
⋃

k<ω Sk ⊂
∏

n<ω Pn follows from (a). In order to prove
the other inclusion pick an x ∈

∏
n<ω Pn. Then for every n < ω there

exists a sequence {an
i : i < ω} ⊂

⋃
k<ω Ak,n with distinct terms such that

limi→∞ an
i = x(n). For every m < ω let xm ∈ Rω be defined as xm(i) = am

i
if i ≤ m and xm(i) = s(i) if i > m. Then {xm : m < ω} ⊂

⋃
k<ω Sk and

limm→∞ xm = x. This proves that
∏

n<ω Pn ⊂
⋃

k<ω Sk.
Next notice that if for k < ω we put Tk =

⋃
{B(x, εk) : x ∈ Sk} then con-

dition (2) gives us
⋃

k<ω Sk ⊂
⋂

k<ω Tk while the other inclusion is obvious.
In particular we have ∏

n<ω

Pn =
⋃
k<ω

Sk =
⋂
k<ω

Tk.

In order to prove that f is one-to-one on
∏

n<ω Pn pick distinct x and
y from

∏
n<ω Pn. Then there are sequences {xm} and {ym} such that for

every m < ω we have xm, ym ∈ Sm, x ∈ B(xm, εm+1), and y ∈ B(ym, εm+1).
Since x 6= y, there is an m < ω such that xm 6= ym. So, by (5), we have
f [B(xm, εm+1)] ∩ f [B(ym, εm+1)] = ∅. Hence f(x) 6= f(y). This shows that
f is one-to-one on

∏
n<ω Pn.

Finally note that by (3) we have
∏

n<ω Pn =
⋂

k<ω Tk ⊂ G. �

Corollary 5. Let {Xn : n < ω} be a family of Polish spaces, G be a dense Gδ

subset of
∏

n<ω Xn, and let f be a continuous separately nowhere constant
function from G into a Polish space Y . Then there exist perfect sets Pn ∈
Perf(Xn), n < ω, such that f is one-to-one on

∏
n<ω Pn.

Proof. For every n < ω let Gn be a dense Gδ subset of Xn homeomorphic
to the Baire space ωω.1 Since ωω is homeomorphic to R \ Q, there is a
homeomorphism hn : Gn → R \ Q. Then, h :

∏
n<ω Gn → (R \ Q)ω defined

by h = 〈hn : n < ω〉 is a cube-preserving homeomorphism. We can apply
Theorem 4 to the function f ◦h−1 on a dense Gδ subset h

[
G ∩

∏
n<ω Gn

]
of

1Every Polish space X (without isolated points) has a dense subspace G homeomorphic
to ωω constructed as follows. Let {Bn : n < ω} be a basis for X. Then Y = X \S

n<ω bd(Bn) is a zero-dimensional dense Gδ subspace of X, where bd(Bn) denotes the
boundary of Bn. Take a countable dense subset D of Y and put G = Y \D. Then G is a
dense Gδ subspace of X. Also, G is Polish, zero-dimensional, and every compact subset
of G has an empty interior. So, by Alexandrov-Urysohn theorem [5, Theorem 7.7], it is
homeomorphic to ωω.
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Rω to obtain a perfect cube
∏

n<ω Qn on which f ◦h−1 is one-to-one. Then,
h−1

[∏
n<ω Qn

]
is a perfect cube in

∏
n<ω Xn on which f is one-to-one. �

Proof of Theorem 1. We can assume that the index set I is a cardinal
number κ. Let X =

∏
i∈κ Xi.

The case κ = ω is true by Corollary 5.
If κ = n < ω and f : G → Y is continuous and separately nowhere

constant consider F :G×Cω\n→Y×Cω\n defined by F (x)=(f(x�n), x�ω\n).
Then, F is continuous and separately nowhere constant function defined on
a dense Gδ subset of

∏
i∈ω Xi where Xi = C for every i ∈ ω \ n. Thus, by

case κ = ω, there are {Pi ∈ Perf(Xi) : i < ω} such that F is one-to-one on∏
i<ω Pi ⊂ G× Cω\n. This implies that f is one-to-one on

∏
i<n Pi ⊂ G.

If κ > ω then the result is trivial because in this case f cannot be si-
multaneously continuous and separately nowhere constant on a dense Gδ

subset G of X. To see this first notice that G contains a subset of the
form H ×

∏
i∈κ\A Xi, where A is a countable subset of κ and H is a dense

Gδ subset of
∏

i∈A Xi. This is the case, since every dense open subset U
of X contains a dense open subset in similar form: a union of a maximal
pairwise disjoint family of basic open subsets of U . So, we can assume that
G is in this form. Pick an x0 ∈ G. By the continuity of f at x0, for every
n < ω there exists an open subset Un in X containing x0 such that the
diameter of f [G ∩ Un] is less than 2−n. By the definition of the product
topology each Un contains a set of the form

∏
i∈Fn

{x0(i)} ×
∏

i∈κ\Fn
Xi,

where each Fn ⊂ κ is finite. Put F = A ∪
⋃

n<ω Fn and notice that
Z =

∏
i∈F {x0(i)} ×

∏
i∈κ\F Xi ⊂ G ∩

⋂
n<ω Un. So, f [Z] has the diame-

ter equal to 0, that is, f is constant on Z. But this contradicts the fact that
f is separately nowhere constant on G, since for ξ ∈ κ \ F set Z contains
the section {x ∈ X : x � κ \ {ξ} = x0 � κ \ {ξ}}. �

3. Cube and prism densities

We start with recalling the definition of the family Pα of iterated perfect
sets in Cα, where 0 < α < ω1. So, let Φα be the family of all continuous
injections f : Cα → Cα such that for every β < α

f �� β
def= {〈x � β, y � β〉 : 〈x, y〉 ∈ f}

is a one-to-one function from Cβ into Cβ. For example, if α =
3 = {0, 1, 2} then f ∈ Φα provided there exist continuous functions
f0 : C → C, f1 : C2 → C, and f2 : C3 → C such that f(x0, x1, x2) =
〈f0(x0), f1(x0, x1), f2(x0, x1, x2)〉 for all x0, x1, x2 ∈ C and maps f0, 〈f0, f1〉,
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and f are one-to-one. Note that Φα is closed under compositions and that
for every 0 < β < α if f ∈ Φα then f �� β ∈ Φβ . We define

Pα = {range(f) : f ∈ Φα}.

The following properties can be easily deduced from these definitions. (For
(D) see [4, (3.13)].) Here πβ is the projection from Cα, for some α ≥ β, onto
the first β coordinates, that is, πβ(x) = x � β.

(A) Every perfect cube in Cα belongs to Pα.
(B) If P ∈ Pα+1 and x ∈ πα[P ] then |({x} × C) ∩ P | = c.
(C) If 0 < β < α and P ∈ Pα then πβ [P ] ∈ Pβ.
(D) If 0 < β < α then Q = {x ∈ P : πβ(x) ∈ R} ∈ Pα for every P ∈ Pα

and R ∈ Pβ with R ⊂ πβ[P ].

Lemma 6. For 0 < n < ω and any continuous f : Cn → Y there exist a
basic clopen subset U =

∏
i<n Ui of Cn, an A ⊂ n, and, if A 6= n, a dense

Gδ subset G of W =
∏

i∈n\A Ui such that

• f � U does not depend on the variables xj for j ∈ A;
• if A 6= n then f � U , considered as a function of the variables xi

with i ∈ n \A, is separately nowhere constant on G.

Proof. We proceed by induction on n. If n = 1 the lemma is true by the
definition of nowhere constant function. Suppose the lemma is true for n
and let f : Cn+1 → Y be continuous. Denote by B0 a countable basis for the
topology on C consisting of non-empty clopen sets. For each i ≤ n and V ∈
B0 consider the closed set Si(V ) =

{
~x ∈ Cn+1\{i} : f � {~x} × V is constant

}
.

First assume that for every i ≤ n and V ∈ B0 the set Si(V ) has empty
interior. Then each set Hi = C{i} ×

(
Cn+1\{i} \

⋃
{Si(V ) : B ∈ B0}

)
is

comeager in Cn+1. So, we can apply Lemma 2 to X = C, T = n + 1,
K = {n + 1 \ {i} : i ≤ n}, and H =

⋂
i≤n Hi to find a comeager set

G ⊂ H such that for every x ∈ G and i ≤ n the set Gx�n+1\{i} ={
y ∈ C{i} : (x � n + 1 \ {i}) ∪ y ∈ G

}
is comeager in C{i}. Note also that this

last property implies that f � G is separately nowhere-constant, since for ev-
ery x ∈ G its restriction x � n+1\{i} does not belong to

⋃
{Si(V ) : B ∈ B0}.

Thus, in this case the lemma is satisfied with U = Cn+1, A = ∅, and the
above chosen G.

So, assume that there exist i ≤ n and Vi ∈ B0 such that the set Si(Vi) has
non-empty interior. Let V ∗ ⊂ Si(Vi) be a non-empty basic clopen subset of
Cn+1\{i}. Then V ∗ =

∏
j 6=i Vj , where Vj ⊂ C is a basic clopen set for every

j 6= i. If V =
∏

j≤n Vj then V is homeomorphic to Cn+1, f � V does not
depend on the variable xi, and we can consider f � V as a function g from V ∗

to Y . By applying our inductive hypothesis to g we can find a basic clopen
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subset U∗ =
∏

j 6=i Uj of V ∗, a set A∗ ⊂ n + 1 \ {i}, and, if A∗ 6= n + 1 \ {i},
a dense Gδ subset G of W =

∏
n+1\A Uj , where A = A∗ ∪{i}, satisfying the

lemma for g. But then U =
∏

j≤n Uj , where Ui = Vi, and the sets A and G
are as desired. �

Here is the main example of the paper.

Example 7. For every 0 < α < ω1 there is a family Gα ⊂ Perf(Cα) such
that

(a) Gα does not contain any iterated perfect set, that is, Gα ∩ Pα = ∅;
(b) Gα is γ-prism dense for every 0 < γ < α;
(c) Gα is n-cube dense for every 0 < n < min{α, ω};
(d) if G∗ ∈ [Gα]<c then |Cα \

⋃
G∗| = c.

Proof. For ξ < α let Kξ = {P ∈ Perf(Cα) : πξ � πξ+1[P ] is one-to-one},
where in case of ξ = 0 we understand the definition of K0 as
{P : π1[P ] is a singleton}. It is worth to note that {P ∈Perf(Cα) : πξ �P
is one-to-one} ⊂ Kξ. We define Gα =

⋃
ξ<α Kξ.

To see (a) take P ∈ Pα and ξ < α. We need to show that P /∈ Kξ. But
by (C) we have πξ+1[P ] ∈ Pξ+1 and then (B) shows that P /∈ Kξ.

We prove (b) by induction on α. Clearly it holds for α = 1. So, assume
that for some 1 < α < ω1 condition (b) holds for every non-zero α′ < α. To
see that (b) holds for α fix 0 < γ < α and a continuous injection f : Cγ → Cα.
We need to find a Q ∈ Pγ for which f [Q] ∈ Gα.

Let g = πγ ◦ f . By [4, Lemma 3.2.2] there exist P ∈ Pγ and 0 < β ≤ γ

such that h = g ◦ π−1
β is a function on πβ[P ] (i.e., g � P does not depend

on coordinates δ ≥ β) and this function is either one-to-one or constant. If
h is constant then π1[f [P ]] is a singleton and f [P ] ∈ K0 ⊂ Gα. So, assume
that h is one-to-one.

If β = γ then g = πγ ◦ f is one-to-one on P and so πγ is one-to-one
on f [P ]. Then f [P ] ∈ Kγ ⊂ Gα. So, assume that β < γ. Then h is an
injection from πβ [P ] ∈ Pβ into Cγ . Let ϕ ∈ Φβ witness πβ [P ] ∈ Pβ . Then
ϕ maps Cβ onto πβ[P ]. Since h ◦ ϕ : Cβ → Cγ is a continuous injection, by
the inductive hypothesis used for α′ = γ there exists an E ∈ Pβ such that
Z = h ◦ ϕ[E] ∈ Gγ , that is, there exists a ξ < γ for which πξ � πξ+1[Z] is
one-to-one.

Next notice that R = ϕ[E] ∈ Pβ , since Φβ is closed under the composition,
and R ⊂ πβ[P ]. So, by (D), Q = {x ∈ P : πβ(x) ∈ R} ∈ Pα. Moreover,

Z = h ◦ ϕ[E] = h[R] = (g ◦ π−1
β )[πβ[Q]] = g[P ] = πγ [f [Q]]

and so πξ+1[Z] = πξ+1[πγ [f [Q]]] = πξ+1[f [Q]]. Thus, πξ � πξ+1[f [Q]] is
one-to-one and so f [Q] ∈ Kξ ⊂ Gα.
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To show (c) we will prove by induction on 0 < n < ω the statement

for every 0 < α < ω1 if n < α then Gα is n-cube dense.

So, take 0 < n < ω and assume that the statement holds for all non-zero
k < n. Take an α > n. To prove that Gα is n-cube dense fix a continuous
injection f : Cn → Cα. Then πn◦f : Cn → Cn is continuous. Apply Lemma 6
to πn ◦ f to find U =

∏
i<n Ui ⊂ Cn, A ⊂ n, and G satisfying the lemma.

If A = n then πn[f [U ]] = (πn ◦ f)[U ] is a singleton and f [U ] ∈ K0 ⊂ Gα.
If A = ∅ then πn ◦ f � G is continuous separately nowhere constant.

So, by Theorem 1, there exist perfect sets {Pi ⊂ Ui : i < n} such that
(πn ◦ f) �

∏
i<n Pi is one-to-one. Then, πn � f

[∏
i<n Pi

]
is one-to-one and

so f
[∏

i<n Pi

]
∈ Kn ⊂ Gα.

So, assume that ∅ 6= A 6= n and let k = |n \ A|. Then 0 < k < n.
Since (πn ◦ f) � U does not depend on the variables xj for j ∈ A, it can
be considered as a function g on W =

∏
i∈n\A Ui. Moreover, g � G is

separately nowhere constant. Thus, by Theorem 1, we can find a perfect
cube P =

∏
i∈n\A Pi ⊂ G ⊂

∏
i∈n\A Ui on which g is one-to-one. Thus,

g is a continuous injection from P , which can be identified with Ck, into
Cn. Since, by the inductive assumption, Gn is k-cube dense, there exists
a perfect cube C =

∏
i∈n\A Ci ⊂

∏
i∈n\A Pi such that g[C] ∈ Gn. Let

Ci = Ui for i ∈ A. Then Q =
∏

i<n Ci ⊂
∏

i<n Ui is a perfect cube and
πn[f [Q]] = (πn ◦ f)[Q] = g[C] ∈ Gn. So, there exists a ξ < n such that πξ is
one-to-one on πξ+1[πn[f [Q]]] = πξ+1[f [Q]], So, f [Q] ∈ Kξ ⊂ Gα.

Now, to argue for (d) fix a G∗ ∈ [Gα]<c. We need to show that |Cα\
⋃
G∗| =

c. For ξ < α let G∗ξ = G∗ ∩ Kξ. By induction on ξ < α choose

x(ξ) ∈ C \ {z(ξ) : z ∈ G∗ξ & z(η) = x(η) for every η < ξ}.
Note that at each step we have less than continuum many restricted points
since for every z ∈ Kξ the set {z(ξ) : z(η) = x(η) for every η < ξ} may
have at most one element. It is easy to see that x = 〈x(ξ) : ξ < α〉 ∈
Cα\

⋃
ξ<α G∗ξ =Cα\G∗. To finish the proof it is enough to notice that the value

of x(0) can be chosen in continuum many ways, so indeed |Cα\
⋃
G∗|=c. �

To transport the above example into an arbitrary Polish space we will
use the following simple fact.

Fact 8. Let h be a homeomorphic embedding of a Polish space Y into
a Polish space X, let F ⊂ Perf(Y ), and put F∗ = {h[F ] : F ∈ F} ∪
Perf(X \ h[Y [). Then for every 1 ≤ α ≤ ω1 the following conditions are
equivalent.

(a) F is α-cube (α-prism) dense in Y .
(b) F∗ is α-cube (α-prism) dense in X.
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Proof. “(a)=⇒(b)” Let f : Cα → X be injective and continuous. Since h[Y ]
is a Gδ-set in X we can apply [2, Claim 3.2] (see also [4, Claim 1.21.5]) to
find a perfect cube C ⊂ Cα such that either f [C] ⊂ h[Y ] or f [C]∩h[Y ] = ∅.

If f [C] ∩ h[Y ] = ∅ then f [C] ∈ F∗ and we are done. If f [C] ⊂ h[Y ] then
h−1 ◦ f : C → Y is a continuous injection. Identifying C with Cα and using
to h−1 ◦ f the α-cube (α-prism) density of F in Y we can find a C ′ ⊂ C
such that C ′ is a perfect cube (belongs to Pα) and F = (h−1 ◦ f)[C ′] ∈ F .
So f [C ′] = h[F ] ∈ F∗. The family F∗ is as desired.

The other implication is easy. �

Corollary 9. For every 1 < α < ω1 and every Polish space X there exists
a family Fα ⊂ Perf(X) such that: Fα is not α-prism dense; Fα is β-prism
dense for every 0 < β < α; Fα is n-cube dense for every 0 < n < min{α, ω};
|X \

⋃
Fα| = c.

Proof. First note that it is enough to find such an Fα for X = Cα. Indeed,
if F is such a family and h, X is an arbitrary Polish space, and h is an
embedding from Cα into X, then the family F∗ from Fact 8 is as desired.

Thus, it is enough to notice that the family Gα from Example 7 is not
α-prism dense. But this is the case since for the identity function f on Cα

there is no P ∈ P for which f [P ] = P ∈ Gα. �

Proof of Theorem 3. Use Corollary 9 with α ≥ ω. �

Proof of Theorem 2. The vertical implications, that α-cube density im-
plies α-prism density, follows from the fact (A), that every perfect cube in
Cα is also in Pα. For 0 < β < α < ω1 the implications “Cα =⇒ Cβ” and
“Pα =⇒ Pβ” are obvious. P2 implies C2 since 1-prism density is just perfect
set density (P1 = Perf(C1), as Φ1 consists just of autohomeomorphisms of
C1) and so it implies 1-cube density.

To see that for ω < α < ω1 we have “Cω+1 =⇒ Cα” it is enough to notice
that any ω-cube dense family is also β-cube dense for any ω ≤ β < ω1.
This is the case since the coordinatewise homeomorphism between Cω and
Cβ preserves perfect cubes.

The fact that no other horizontal implication can be reversed is justified
by the family Fα from Corollary 9 for different values of α. Indeed, Fα

clearly justifies “Pα 6=⇒ Pγ” for any 1 < α < γ since it satisfies Pα but
not Pγ as it is not α-prism dense. If 1 < m < n ≤ ω then Fm also witness
“Cm 6=⇒ Cn” since it satisfies Cm but not Cn, since it cannot be m-cube
dense without being m-prism dense.

The fact that none of the vertical implications “Cα =⇒ Pα”, for 2 <
α < ω1, can be reversed is justified by any family which is α-prism dense



SEPARATELY NOWHERE CONSTANT FUNCTIONS 61

for every α but is not 2-cube dense. There are many such families. For
example, this is the case for the family F of all linearly independent (over
Q) subsets of R. It is shown in [3] (see also [4, Corollary 5.1.2]) that this F
is α-prism dense for every 0 < α < ω1. On the other hand it is not 2-cube
dense, as shown by the following function f . (See [3, Remark 5.2] or [4,
Remark 5.1.4].) Let P1 and P2 be disjoint perfect subsets of R such that
P1 ∪ P1 is linearly independent over Q. Let f : P1 × P2 → R be defined
by f(x1, x2) = x1 + x2. Identifying P1 and P2 with C we think about f as
defined on C2. It is easy to see that if each of the sets Q1 ⊂ P1 and Q2 ⊂ P2

has at least two elements then f [Q1 ×Q2] is linearly dependent.
Another such example is a family F of all P ∈ Perf(C2) such that the

projection on one of the coordinates is one-to-one. It follows quite easily
from [4, Lemma 3.2.2] that F is α-prism dense for every α. (See e.g. [4,
Proposition 4.1.3].) It is not 2-cube dense since for the identity function
f : C2 → C2 there is no perfect cube C for which f [P ] ∈ F . �

4. Final remarks

It is also worth to notice that we have the following implications.

Proposition 10. If β + 1 ≤ α < ω1 then every α-prism (α-cube) dense
family is also (β + 1)-prism ((β + 1)-cube) dense. In particular, if 0 < m <
n ≤ ω then every n-cube dense family is also m-cube dense.

Proof. Let g : Cα\β → C be a homeomorphism, and let h : Cα → Cβ+1 be
defined by h(x)(ξ) = x(ξ) for every ξ < β and h(x)(β) = g(x � α \ β). It
is easy to see that h is a homeomorphism and that if P ⊂ Cα is a perfect
cube (belongs to Pα) then h[P ] is a perfect cube (belongs to Pβ+1).

Now, let F ⊂ Perf(X) be α-prism α-cube) dense in X. To see that F is
(β + 1)-prism ((β+1)-cube) dense take a continuous injection f : Cβ+1 → X.
Then f ◦ h : Cα → X is also a continuous injection. Since F is α-prism (α-
cube) dense, there exists a P ⊂ Cα such that P belongs to Pα (is a perfect
cube) and f [h[P ]] = (f ◦ h)[P ] ∈ F . But h[P ] belongs to Pβ+1 (is a perfect
cube), so F is (β + 1)-prism ((β + 1)-cube) dense. �

We do not know if, in general, for a limit ordinal λ < ω1 the (λ+1)-prism
density implies λ-prism density.

The next example shows that Lemma 6 fails, in a strong way, for functions
defined on infinite product.
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Example 11. There exists a continuous function f : Cω → Cω such that
for every perfect cube P there is an n < ω such that f � P is one-to-one on
some section of n-th variable, and is constant on some other sections of the
same variable.

Proof. For n < ω let fn : C2 → C be defined by fn(x, y)(i) = y(n) · x(i).
Clearly fn is continuous. Moreover, if y(n) = 1 then fn(·, y) is the identity
function, so it is one-to-one; if y(n) = 0 then fn(·, y) is constant equal to 0.

For 〈xn : n < ω〉 ∈ Cω define f(〈xn : n < ω〉) = 〈fn(xn+1, x0) : n < ω〉.
Then f is clearly continuous. Consider f restricted to a perfect cube P =∏

n<ω Pn. Let a, b ∈ P0 be distinct and let n < ω be such that a(n) 6= b(n).
Assume that a(n) = 0 and let z ∈ Cω\{n+1}. Look at f � P on a section
given by z and note that: if z(0) = a then f � P is constant on this section;
if z(0) = b then f � P is one-to-one on this section. �
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