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SPACES ON WHICH EVERY POINTWISE CONVERGENT
SERIES OF CONTINUOUS FUNCTIONS

CONVERGES PSEUDO-NORMALLY

LEV BUKOVSKÝ AND KRZYSZTOF CIESIELSKI

(Communicated by Alan Dow)

Abstract. A topological space X is a ΣΣ∗-space provided that, for every
sequence 〈fn〉∞n=0 of continuous functions from X to R, if the series

∑∞
n=0 |fn|

converges pointwise, then it converges pseudo-normally. We show that every
regular Lindelöf ΣΣ∗-space has the Rothberger property. We also construct,
under the continuum hypothesis, a ΣΣ∗-subset of R of cardinality continuum.

1. Introduction

We will use standard set-theoretical notation as in [4]. In particular, the ordinal
numbers will be identified with the sets of their predecessors and cardinals with the
initial ordinals. Thus, 2 = {0, 1} and the first infinite ordinal number ω is equal
to the set of all natural numbers {0, 1, 2, . . .}. The family of all functions from a
set X into Y is denoted by Y X . Thus, for n < ω symbol 2n will stand for the set
of all sequences s : {0, 1, 2, . . . , n− 1} → {0, 1}, while 2<ω =

⋃
n<ω 2n is the set of

all finite sequences into 2. For a set X and a cardinal number κ we define [X ]κ

as the family of all subsets of X of cardinality κ. Families [X ]<κ and [X ]≤κ are
defined similarly. We let C ⊂ [0, 1] be the classical Cantor middle-thirds set. For
a topological space X we write C(X) for the family of continuous functions from
X into the set R of real numbers. For a sequence 〈fn〉n<ω of continuous functions
from X into R we let

S(〈fn〉) =

{
x ∈ X :

∑
n<ω

|fn(x)| <∞
}
.

A series
∑
n<ω fn of functions from a set X into R converges normally (respectively,

pseudo-normally) on a set A ⊂ X if there exists a sequence 〈εn : n < ω〉 of positive
reals such that

∑
n<ω εn < ∞ and for every x ∈ A we have |fn(x)| ≤ εn for all

(respectively, all but finitely many) n < ω. Thus, a topological space X belongs to
ΣΣ∗ (see [3]) provided that, for any sequence 〈fn ∈ C(X) : n < ω〉 with S(〈fn〉) =
X , the series

∑
n<ω fn converges pseudo-normally on X .
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The class ΣΣ∗ has been studied, in a context of several similar classes of sets, by
Bukovský, Rec law, and Repický in [3]. In particular, it is known (see [3, Diagram 2])
that every ΣΣ∗-space X is a σ-space, that is, every Gδ subset of X is also an Fσ
subset of X . One of the main results of this paper says that Lindelöf ΣΣ∗-spaces
are small also in a different sense.

Theorem 1. Every regular and Lindelöf ΣΣ∗-space has the Rothberger property.

Recall here that a topological space X has the Rothberger property (called some-
times property C′′) provided that, for every sequence 〈Gn : n < ω〉 of open covers of
X , we can find Un ∈ Gn for every n < ω such that {Un : n < ω} covers X .

Certainly the most interesting case of Theorem 1 is when the space is separable
and metric. It should be stressed that although many classes from [3, Diagram 2] are
contained in the class of σ-spaces, within the class of separable metric spaces only
ΣΣ∗-spaces have the Rothberger property. Recall also that every metric space X
with the Rothberger property is of strong measure zero. (See e.g. [1, thm. 8.1.11].)
Since there are models of ZFC in which every strong measure zero subset of R is
countable [8, thm. 3.2], an uncountable ΣΣ∗-subset of R cannot be constructed in
ZFC. Moreover, so far there has been no consistent example of a ΣΣ∗-subset of R
of cardinality continuum. This state changes with the following theorem.

Theorem 2. If the continuum hypothesis holds then there exists a set X ⊂ [0, 1]
of cardinality continuum that belongs to ΣΣ∗.

Note that the existence of such a set does not seem to follow from any other
known constructions, since ΣΣ∗ does not contain any other known (to us) class for
which the analogous result is known. Indeed, one of the smallest classes of sets that
admits the consistent examples of cardinality continuum subsets of R is the class
of strong γ-sets.1 (See [5].) However, there are consistent examples of strong γ-sets
that are not in ΣΣ∗. Actually, slightly modifying the proof of [5, thm. 8] it is easy
to construct, under Martin’s axiom, a strong γ-subset of R of cardinality continuum
that is continuum-concentrated on a countable subset. By theorems 3.12 and 4.1
from [3], such a set is not in ΣΣ∗.

2. Every regular Lindelöf ΣΣ∗-space has the Rothberger property

We start with the following variation of a well-known characterization of the
Rothberger property.

Lemma 3. Let 〈mn〉n<ω be a sequence of positive integers. Then a topological
space X has the Rothberger property if and only if

(∗) for every sequence 〈Un〉n<ω of open covers of X there exist an increasing
sequence 〈ni < ω : i < ω〉 and sets Vni ⊂ Uni with |Vni | ≤ mni such that
X =

⋃
i<ω

⋃
Vni .

Proof. Clearly every space with the Rothberger property satisfies (∗).
To see the other implication let 〈Gn : n < ω〉 be a sequence of open covers of X .

For n < ω put pn =
∑n

k=0 mk and let Un be an open cover of X refining covers Gk
for k < pn. Let also p−1 = 0. Applying (∗) to 〈Un〉n<ω we can find appropriate
sequences 〈ni〉i<ω and 〈Vni〉i<ω. For n < ω let Wn = {Wk ∈ Un : pn−1 ≤ k < pn}

1Every strong γ-set has the γ-property, which is the strongest property in Scheepers’ dia-
gram [7] admitting consistent examples of cardinality continuum.
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be such that Vni ⊂ Wni for every i < ω. (Thus, for n not equal to any ni the
sets in Wn are arbitrary.) Then we have

⋃
k<ωWk ⊃

⋃
i<ω

⋃
Vni = X . But for

pn−1 ≤ k < pn the set Wk belongs to Un, which is a refinement of Gk. So, we can
find Uk ∈ Gk for which Wk ⊂ Uk. Therefore, X =

⋃
k<ω Uk. �

Proof of Theorem 1. SinceX is regular and Lindelöf, it is completely regular. Thus,
being a ΣΣ∗-space, X must be zero-dimensional — see [2, cor. 4.5]. Let 〈Un〉n<ω be
a sequence of open covers of X . We will show that the condition (∗) from Lemma 3
is fulfilled.

Since X is Lindelöf and zero-dimensional we can assume, replacing with a refine-
ment, if necessary, that each cover Un is countable and consists of pairwise disjoint
clopen sets. For every n < ω let {Uk : k ∈ Pn} be an enumeration of Un, where
{Pn : n < ω} is an appropriate partition of ω.

Let 〈mn〉n<ω be a sequence of positive integers such that r =
∑∞
n=0 1/mn <∞.

For every n < ω and k ∈ Pn let fk = 1
mn

χUk , where χU : X → {0, 1} is the
characteristic function of U . Then for every x ∈ X∑

k<ω

fk(x) =
∑
n<ω

∑
k∈Pn

fk(x) =
∑
n<ω

1
mn

= r.

Since X is a ΣΣ∗-space, there exists a sequence 〈εn : n < ω〉 of positive reals such
that

∑
n<ω εn < ∞, and for every x ∈ X we have fn(x) ≤ εn for all but finitely

many n < ω. For i, n < ω let Xi = {x ∈ X : fk(x) ≤ εk for all i ≤ k < ω} and put
T ni = {k ∈ Pn : Xi ∩ Uk 6= ∅}. We claim that for any i < ω

(1) there exist infinitely many n ∈ ω such that |T ni | ≤ mn.

To see this, by way of contradiction assume that there is an i < ω for which (1)
is false. So, there exists an n0 such that |T ni | > mn for each n ≥ n0. Moreover,
increasing n0, if necessary, we can assume that k ≥ i for any k ∈ T ni and n ≥ n0.
Hence for every k ∈ T ni and n ≥ n0 there is an x ∈ Xi∩Uk, and so 1

mn
= fk(x) ≤ εk.

Consequently
∑∞

k=0 εk ≥
∑
n≥n0

∑
k∈Tni

εk ≥
∑
n≥n0

|T ni | · 1/mn = ∞, which is a
contradiction.

Now let 〈ni < ω : i < ω〉 be an increasing sequence such that |T nii | ≤ mni .
Setting Vni = {Unij : j ∈ T nii } ⊂ Uni we obtain a cover satisfying (∗) from Lemma 3.

�

3. ΣΣ∗-subset of R of cardinality continuum

We start with recalling Egoroff’s theorem (see e.g. [10, p. 73]):
Let µ be a finite countably additive measure on a set X and let
〈gk〉k<ω be a pointwise convergent sequence of measurable functions
from X into R. Then for every ε > 0 there exists a measurable set
E ⊂ X such that µ(X \ E) < ε and 〈gk〉k<ω converges uniformly
on E.

In the proof of the theorem we will use the following result, which is of interest on
its own.

Proposition 4. Let P be a perfect subset of R and 〈fn ∈ C(P ) : n < ω〉. If
S(〈fn〉) = P , then there exists a sequence 〈εn : n < ω〉 of positive numbers such
that

∑
n<ω εn < ∞ and the closed set K =

⋂
n<ω{x ∈ P : |fn(x)| ≤ εn} has

cardinality continuum.
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Proof. For k < ω and x ∈ P define gk(x) =
∑∞

n=k |fn(x)|. Then functions gk : P →
R are measurable (in fact, Baire class one) and they converge pointwise to 0. By
Egoroff’s theorem (used with a countably additive Borel probability measure on P
that vanishes on points) there exists a perfect subset Q of P on which the sequence
〈gk〉 converges uniformly. By induction on k < ω we will construct the sequences
〈εkn > 0: k, n < ω〉 and 〈xs ∈ Q : s ∈ 2k & k < ω〉 such that for every 0 < k < ω,
s ∈ 2k−1, t ∈ 2k, and n < ω the following holds true:

(i) x∅ ∈ Q is arbitrary, ε0
n = |fn(x∅)|+ 2−n; thus

∑∞
m=0 ε

0
m <∞;

(ii) xsˆ0 = xs and 0 < |xsˆ1− xs| < 4−kδk−1, where the number δk−1 is defined
as min

(
{|xs0 − xs1 | > 0: s0, s1 ∈ 2k−1} ∪ {1}

)
;

(iii) |fn(xt)| < εkn and εk−1
n ≤ εkn;

(iv)
∑∞

m=0 ε
k
m ≤ 2−k +

∑∞
m=0 ε

k−1
m and εki = εii for i < k.

First notice that if such sequences can be constructed and we put εn = εnn, then
the sequence 〈εn〉n<ω is as desired. Indeed, the series converges, since by (iv) for
every k < ω we have

k∑
m=0

εm =
k∑

m=0

εmm =
k∑

m=0

εkm ≤
∞∑
m=0

εkm ≤
k∑

m=1

2−m +
∞∑
m=0

ε0
m < 1 +

∞∑
m=0

ε0
m,

so
∑∞
m=0 εm ≤ 1 +

∑∞
m=0 ε

0
m <∞.

To see that the set K =
⋂
n<ω{x ∈ P : |fn(x)| ≤ εnn} has cardinality continuum,

notice that K is closed and that, by conditions (iii) and (iv), we have xt ∈ K for
every t ∈ 2<ω. So K contains the closure of the set {xt : t ∈ 2<ω}. But, by (ii), the
mapping associating limk→∞ xϕ�k ∈ K to each ϕ ∈ 2ω is one-to-one.

To make an inductive step in the construction take a k > 0 and assume that
the (k − 1)-th step of the construction is already done. Find a j < ω such that
j > k and gj(x) < 4−k for all x ∈ Q. Let 0 < δ ≤ 4−kδk−1 be such that for every
s ∈ 2k−1, n ≤ j, and x ∈ Q, if |x− xs| < δ, then |fn(x)| < εk−1

n . Existence of such
a δ follows from the inductive assumption (iii) and the continuity of functions fn.
For s ∈ 2k−1 pick xsˆ1 ∈ Q such that 0 < |xsˆ1 − xs| < δ. This insures (ii). For
n < j put εkn = εk−1

n and for j ≤ n < ω define εkn = εk−1
n +

∑
t∈2k |fn(xt)|. This

clearly guarantees (iii) and the second part of (iv). To see the first part of (iv)
notice that

∞∑
m=0

εkm =
∑
m<j

εkm +
∞∑
m=j

εkm

=
∑
m<j

εk−1
m +

∞∑
m=j

εk−1
m +

∑
t∈2k

|fm(xt)|


=

∑
t∈2k

∞∑
m=j

|fm(xt)|+
∞∑
m=0

εk−1
m

=
∑
t∈2k

gj(xt) +
∞∑
m=0

εk−1
m

≤ 2k 4−k +
∞∑
m=0

εk−1
m = 2−k +

∞∑
m=0

εk−1
m .

This finishes the proof of Proposition 4. �
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In Proposition 4, if we require only that the sequence 〈εn : n < ω〉 converges to
zero then, by Egoroff’s theorem, we can additionally assume that the set K has a
positive measure. However, the set K from Proposition 4 need not have positive
measure.

In the proof that follows we will use the following simple fact.

Fact 5. For every X ⊂ R and 〈fn ∈ C(X) : n < ω〉 such that S(〈fn〉) = X there
exists a Borel set B ⊂ R containing X and extensions f∗n ∈ C(B) of the functions
fn such that S(〈f∗n〉) = B.

Proof. For every n < ω there exists a Gδ set Gn ⊂ R containing X and an ex-
tension f̂n ∈ C(Gn) of fn. Let G =

⋂
n<ω Gn ⊃ X , and let us define B as⋃

m<ω

⋂
k<ω

{
x ∈ G :

∑
n≤k |f̂n(x)| ≤ m

}
. Then B is a Borel set containing X

and B = S(〈f̂n � G〉). Thus functions f∗n = f̂n � B are as required. �
Proof of Theorem 2. Let B be a fixed countable clopen basis for C. For G ⊂ R let
K(G) be the family of all sequences 〈fn ∈ C(G) : n < ω〉 with S(〈fn〉) = G and let
〈〈f ξn〉n<ω : ξ < ω1〉 be an enumeration of the family

K =
⋃
{K(G) : G is a Borel subset of C}

such that every f0
n is the constant zero function on C. By induction on ξ < ω1 we

will construct a sequence 〈〈xξ, 〈εξn〉n<ω, 〈P ξn〉n<ω, Pξ,Gξ〉 : ξ < ω1〉 such that x0 = 0,
ε0
n = 2−n, P0 = P 0

n = C, G0 = {C}, and the following conditions are satisfied for
every 0 < ξ < ω1 and k < ω:

(a) Pξ =
⋃
n<ω P

ξ
n , 0 < εξk <∞, and

∑
n<ω ε

ξ
n <∞.

(b) If
⋂
η<ξ Pη 6⊂ S(〈f ξn〉n<ω), then

– xξ ∈
⋂
η<ξ Pη \ S(〈f ξn〉), ε

ξ
k = 2−k, and P ξk = C;

otherwise,
– P ξk =

⋂
k<n<ω{x ∈ Gξ : |f ξn(x)| ≤ εξn}, where Gξ is the domain of the

functions f ξn, n < ω;
xξ ∈

⋂
η≤ξ Pη \ {xη : η < ξ}.

(c) Gξ is a non-empty countable family of perfect subsets of
⋂
η≤ξ Pη such that

– if T ∈ Gξ, U ∈ B, and T ∩ U 6= ∅, then T ∩ U ∈ Gξ;
– every H ∈

⋃
η<ξ Gη contains a subset T from the family Gξ.

It should be clear that if we put X = {xξ : ξ < ω1}, then X is uncountable and
belongs to ΣΣ∗.

Indeed, X is uncountable, since S(〈f ξn〉n<ω) = C ⊃
⋂
η<ξ Pη for uncountably

many ξ < ω1. To see that X ∈ ΣΣ∗ take a sequence 〈fn ∈ C(X) : n < ω〉 for
which S(〈fn〉) = X . By Fact 5 we can find a Borel set B ⊂ R containing X and
extensions f∗n ∈ C(B) of the functions fn such that S(〈f∗n〉) = B. Then, there
exists a ξ < ω1 such that 〈f ξn〉n<ω = 〈f∗n〉n<ω. Notice that

⋂
η<ξ Pη ⊂ S(〈f ξn〉n<ω),

since otherwise xξ ∈ X \ S(〈f ξn〉n<ω) contradicting X = S(〈fn〉) ⊂ S(〈f ξn〉n<ω).
Therefore, {xζ : ξ ≤ ζ < ω1} ⊂ Pξ =

⋃
k<ω

⋂
k<n<ω{x ∈ Gξ : |f ξn(x)| ≤ εξn}. Since

the sequence 〈εξn〉n<ω works for all but countably many points of X , the existence
of an appropriate sequence 〈εn〉n<ω follows from an obvious fact that the class ΣΣ∗

is countably additive.
Thus, it is enough to show that the inductive construction is possible. The key

point here is to prove that the intersection
⋂
η<ξ Pη is uncountable, so that we
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could have a chance to choose the next xξ. This will be done with the help of the
families Gη.

First notice that

(2) for every H ∈
⋃
η<ξ Gη there is a perfect set H∗ ⊂ H ∩

⋂
η<ξ Pη.

If ξ is a successor ordinal, say ξ = α+1, this is obvious: by the inductive assumption
there is an H∗ ∈ Gα that is a subset of H ∩

⋂
η≤α Pη = H ∩

⋂
η<ξ Pη. So, assume

that ξ is a limit ordinal, and let H ∈ Gη for some η < ξ. Let η = η0 < η1 < · · ·
be such that ξ =

⋃
n<ω ηn. Define a family {Hs : s ∈ 2<ω} by induction on the

length of s. We put H∅ = H and, if for some s ∈ 2n the set Hs ∈ Gηn is already
defined, choose disjoint perfect subsets Hsˆ0 and Hsˆ1 from Gηn+1 . The choice can
be made by the inductive assumption (c) applied to the family Gηn+1 and disjoint
clopen portions of Hs. Then H∗ =

⋂
n<ω

⋃
s∈2n Hs is a perfect subset of

⋂
η<ξ Pη.

Now, let H = {H∗ : H ∈
⋃
η<ξ Gη} = {Hk : k < ω}. We need to find a sequence

〈εξn〉n<ω for which

(3) H∗ ∩ Pξ contains a perfect subset for every H∗ ∈ H.

If
⋂
η<ξ Pη 6⊂ S(〈f ξn〉n<ω), then Pξ = C, and this is obvious. So, assume that⋂

η<ξ Pη ⊂ S(〈f ξn〉n<ω). Then, by Proposition 4, for every k < ω there exists a
sequence 〈ε̂kn > 0: n < ω〉 such that

∑
n<ω ε̂

k
n < ∞ and there is a perfect subset

Tk of
⋂
n<ω{x ∈ Hk : |fn(x)| ≤ ε̂kn}. Let εξn = max{ε̂kn : k ≤ k(n)}, where the

sequence k(0) ≤ k(1) ≤ · · · converges to ∞ slowly enough that
∑
n<ω ε

ξ
n < ∞.

Then Tn ⊂ Pξ for every n < ω and the family

Gξ = {Tn ∩B 6= ∅ : n < ω & B ∈ B}

satisfies (c). �

We would like to thank an anonymous referee for several suggestions that led to
an improvement of the paper.
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