Marek Balcerzak, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, I-2, 90-924 Łódź, Poland, and Faculty of Mathematics, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland. email: mbalce@uni.lodz.pl
Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland. email: arturbar@ck-sg.p.lodz.pl
Krzysztof Ciesielski*, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310. email: K_Cies@math.wvu.edu

ALGEBRAS WITH INNER MB-REPRESENTATION

Abstract

We investigate algebras of sets, and pairs $\langle\mathcal{A}, \mathcal{I}\rangle$ consisting of an algebra \mathcal{A} and an ideal $\mathcal{I} \subset \mathcal{A}$, that possess an inner MB-representation. We compare inner MB-representability of $\langle\mathcal{A}, \mathcal{I}\rangle$ with several properties of $\langle\mathcal{A}, \mathcal{I}\rangle$ considered by Baldwin. We show that \mathcal{A} is inner MBrepresentable if and only if $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$, where $S(\cdot)$ is a Marczewski operation defined below and \mathcal{H} consists of sets that are hereditarily in \mathcal{A}. We study the question of uniqueness of the ideal in that representation.

1 The Implications

Let X be a nonempty set and let \mathcal{F} be a nonempty family of nonempty subsets of X. Following the idea of Burstin and Marczewski we define:

$$
S(\mathcal{F})=\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset A \cap P \text { or } Q \subset P \backslash A)\}
$$

and

$$
S_{0}(\mathcal{F})=\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset P \backslash A)\}
$$

[^0]Then $S(\mathcal{F})$ is an algebra of subsets of X and $S_{0}(\mathcal{F})$ is an ideal on X. (See [BBRW].) For an ideal \mathcal{I} on X an algebra \mathcal{A} of subsets of X such that $\mathcal{I} \subset \mathcal{A}$ we say that

- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ (respectively, the algebra \mathcal{A}) has inner MB-representation provided there exists an $\mathcal{F} \subset \mathcal{A}$ such that $\mathcal{A}=S(\mathcal{F})$ and $\mathcal{I}=S_{0}(\mathcal{F})$ (respectively, $\mathcal{A}=S(\mathcal{F})$),
- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has density property provided $\mathcal{I}=S_{0}(\mathcal{A} \backslash \mathcal{I})$,
- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ (respectively, the algebra \mathcal{A}) is topological provided there exists a topology τ on X such that $\langle\mathcal{A}, \mathcal{I}\rangle=\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$ (respectively, $\mathcal{A}=S(\mathcal{F}))$, where $\mathcal{F}=\tau \backslash\{\emptyset\}$,
- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has the hull property provided for every $U \subset X$ there is a $V \in \mathcal{A}$ such that $U \subset V$ and for every $W \in \mathcal{A}$ if $U \subset W$, then $V \backslash W \in \mathcal{I}$,
- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ is complete provided the quotient algebra $\mathcal{A} / \mathcal{I}$ is complete,
- the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has the splitting property provided for every $\mathcal{C} \subset \mathcal{D} \subset \mathcal{A}$, if \mathcal{D} is an antichain (i.e., $A \cap B \in \mathcal{I}$ for every distinct $A, B \in \mathcal{D}$), then there exists a mapping $\mathcal{D} \ni D \mapsto I_{D} \in \mathcal{I}$ such that $C \backslash I_{C}$ and $D \backslash I_{D}$ are disjoint for every $C \in \mathcal{C}$ and $D \in \mathcal{D} \backslash \mathcal{C}$.

In the graph from Theorem 2 each of these properties is denoted, respectively, as: inner, dense, top, hull, comp, and split.

We start here with the following simple characterization of pairs with inner MB-representation. (Compare also [Wr, lemma 1].)

Proposition 1. A pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has an inner MB-representation if and only if $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$.

Proof. If $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$, then $\mathcal{A} \backslash \mathcal{I} \subset \mathcal{A} \backslash S_{0}(\mathcal{A} \backslash \mathcal{I})$, since we always have $\mathcal{F} \cap S_{0}(\mathcal{F})=\emptyset$. So, $S_{0}(\mathcal{A} \backslash \mathcal{I}) \subset \mathcal{I}$. The other inclusion is obvious. Thus, $\langle\mathcal{A}, \mathcal{I}\rangle$ has an inner MB-representation.

Conversely, assume that $\langle\mathcal{A}, \mathcal{I}\rangle=\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$ for some $\mathcal{F} \subset \mathcal{A}$. By [BBRW, prop. 1.2] to prove that $S(\mathcal{A} \backslash \mathcal{I})=S(\mathcal{F})$ it is enough to show that the families $\mathcal{A} \backslash \mathcal{I}$ and \mathcal{F} are mutually coinitial; that is, every element of each of these families contains an element from the other.

Clearly, $\mathcal{F} \subset \mathcal{A} \backslash S_{0}(\mathcal{F})=\mathcal{A} \backslash \mathcal{I}$, so every element of \mathcal{F} contains an element from $\mathcal{A} \backslash \mathcal{I}$. Conversely, if $A \in \mathcal{A} \backslash \mathcal{I}$, then there exists an $F \in \mathcal{F}$ with $F \subset A$, since $A \notin \mathcal{I}=S_{0}(\mathcal{F})$.

Theorem 2. We have the following implications between the properties of a pair $\langle\mathcal{A}, \mathcal{I}\rangle$.

Diagram

Moreover, none of the implications can be reversed, with possible exception of "top \Longrightarrow hull $\mathcal{B}^{\text {comp." }}$

Proof. The facts that every topological pair is complete and has the hull property are well known and easy to see. Indeed, if $\langle\mathcal{A}, \mathcal{I}\rangle$ is a topological pair generated by a topology τ on X, then \mathcal{I} consists of all nowhere dense sets (with respect to τ) and \mathcal{A} consists of open sets (with respect to τ) modulo \mathcal{I}. (See [BR].) Then, for each $E \subset X$, the closure $\operatorname{cl}(E)$ plays a role of its hull. Since an open set U can be expressed as $U=V \backslash E$ where V is regular open and E is nowhere dense (see e.g. [O, thm. 4.5]), the quotient algebra $\mathcal{A} / \mathcal{I}$ is isomorphic to the Boolean algebra of regular open sets, which is complete (see e.g. $[K])$. Hence $\mathcal{A} / \mathcal{I}$ is complete.

The implication "inner \Longrightarrow dense" results immediately from Proposition 1 and the definitions. All other implications follow from the following implications proved in Baldwin's paper [Ba]: "hull \Longrightarrow inner," "comp \Longrightarrow split," "split \& inner \Longrightarrow comp," and "dense \& comp \Longrightarrow hull."

The fact that the implications "top \Longrightarrow hull" and "top \Longrightarrow comp" cannot be reversed follows from Baldwin's examples from [Ba], where he shows that the properties hull and complete are independent of each other.

An example showing that "dense \& split" does not imply "inner" is described in Example 3. This takes care of nonreversability of the implications "split \& inner \Longrightarrow dense \& split," "inner \Longrightarrow dense," and "comp \Longrightarrow split."

Example 4 shows that the implications "hull \Longrightarrow inner" cannot be reversed.
The following example answers a question of Baldwin [Ba, question 2] whether every pair with density and splitting properties must be inner. Also, Baldwin had the example of a family with a splitting property which is not
complete only under the assumption of the continuum hypothesis, while the example below is in ZFC.

Example 3. If X is an infinite set, \mathcal{A} is an algebra of subsets of X which are either finite or cofinite, and $\mathcal{I}=\{\emptyset\}$, then the pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has density and splitting properties but is neither inner nor complete.

Proof. The pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has density property since $S_{0}(\mathcal{A} \backslash\{\emptyset\})=\{\emptyset\}=\mathcal{I}$. It does not have inner MB-representation by Proposition 1 and the fact that $S(\mathcal{A} \backslash\{\emptyset\})=\mathcal{P}(X)$. The splitting property is satisfied trivially, since $\mathcal{I}=\{\emptyset\}$.

The pair $\langle\mathcal{A}, \mathcal{I}\rangle$ is not complete by the implications from Theorem 2.
The following example answers a question of Baldwin [Ba, question 1] whether every pair with inner MB-representation must have a hull property. In what follows we use the standard set theoretic notation as in [Ci]. Let X be an infinite set of cardinality κ. We say that a family $\mathcal{F}_{0} \subset[X]^{\kappa}$ is almost disjoint provided $\left|F_{1} \cap F_{2}\right|<\kappa$ for every distinct $F_{1}, F_{2} \in \mathcal{F}_{0}$.

Example 4. There exists a maximal almost disjoint family $\mathcal{F}_{0} \subset[X]^{\kappa}$ such that for $\mathcal{F}=\left\{F \triangle A: F \in \mathcal{F}_{0} \& A \in[X]^{<\kappa}\right\}$ the pair $\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$ has inner $M B$-representation but neither is complete nor it has the hull property.

Proof. In [BC, fact 4] it was proved that for every \mathcal{F} as in the theorem the algebra $S(\mathcal{F})$ contains \mathcal{F} (so it has inner MB-representation) and $S_{0}(\mathcal{F})=$ $[X]^{<\kappa}$.

Let $\{A, B\}$ be a partition of X into the sets of cardinality κ and let $\mathcal{G} \subset$ $[X]^{\kappa}$ be a partition of X into κ many sets such that $|G \cap A|=|G \cap B|=\kappa$ for every $G \in \mathcal{G}$. Let $\mathcal{F}_{0} \subset[X]^{\kappa}$ be a maximal almost disjoint family extending \mathcal{G} such that for every $F \in \mathcal{F}_{0}$ either $F \subset A$ or $F \subset B$. Such an \mathcal{F}_{0} exists by the Zorn lemma. It is easy to see that \mathcal{F}_{0} is a maximal almost disjoint family in $[X]^{\kappa}$.

To see that $\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$ does not have the hull property notice that $A \subset X$ does not have a hull. Indeed, take a $V \in S(\mathcal{F})$ containing A. Then for every $G \in \mathcal{G} \subset \mathcal{F}$ there is an $F_{G} \in \mathcal{F}$ contained in G such that F_{G} is either disjoint or contained in V. Thus, $F_{G}=G \backslash A_{G}$ for some $A_{G} \in[X]^{<\kappa}$, since elements of \mathcal{F}_{0} are almost disjoint. This implies also that $F_{G}=G \backslash A_{G}$ must be a subset of V, since it cannot be disjoint with $V \supset A$. In other words, for every $G \in \mathcal{G}$ there exists an $x_{G} \in G \cap(V \backslash A)$. So, $Y=\left\{x_{G}: G \in \mathcal{G}\right\} \in[B]^{\kappa}$, and by the maximality, there exists an $F \in \mathcal{F}_{0}$ such that $|F \cap Y|=\kappa$. Then, for $W=V \backslash F \in S(\mathcal{F})$ we have $A \subset W \subset V$, while $V \backslash W=F \cap Y \notin[X]^{<\kappa}=$ $S_{0}(\mathcal{F})$. Thus, there is no hull for A with respect to $\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$.

Problem 5. Is every complete pair $\langle\mathcal{A}, \mathcal{I}\rangle$ with the hull property topological?

2 Notes on Algebras with Inner MB-Representations

According to Proposition 1 if a pair $\langle\mathcal{A}, \mathcal{I}\rangle$ has inner MB-representation, then it has a canonical one - by a family $\mathcal{F}=\mathcal{A} \backslash \mathcal{I}$. But what if we only consider inner MB-representability of an algebra \mathcal{A} ? If \mathcal{A} has an inner MBrepresentation, say $\mathcal{A}=S(\mathcal{F})$, then by Proposition 1 for $\mathcal{I}=S_{0}(\mathcal{F})$ we have $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$. Is there a canonical ideal \mathcal{I} with this property? Is such an ideal unique?

To give a positive answer to the first of these questions we need the following fact. Note that, in general, $\mathcal{F}_{2} \subset \mathcal{F}_{1}$ does not imply $S\left(\mathcal{F}_{2}\right) \subset S\left(\mathcal{F}_{1}\right)$. For instance, if $X=\{0,1,2\}, \mathcal{F}_{2}=\{\{0\}\}$, and $\mathcal{F}_{1}=\{\{0\},\{1,2\}\}$, then $\{2\} \in S\left(\mathcal{F}_{2}\right) \backslash S\left(\mathcal{F}_{1}\right)$.

Lemma 6. If $\mathcal{I}_{1} \subset \mathcal{I}_{2}$ are ideals contained in an algebra \mathcal{A}, then we have $S\left(\mathcal{A} \backslash \mathcal{I}_{2}\right) \subset S\left(\mathcal{A} \backslash \mathcal{I}_{1}\right)$.

Proof. Let $A \in S\left(\mathcal{A} \backslash \mathcal{I}_{2}\right)$. To show that $A \in S\left(\mathcal{A} \backslash \mathcal{I}_{1}\right)$ take a $P \in \mathcal{A} \backslash \mathcal{I}_{1}$. We need to find a $Q \in \mathcal{A} \backslash \mathcal{I}_{1}$ for which

$$
\begin{equation*}
\text { either } Q \subset P \cap A \text { or } Q \subset P \backslash A \text {. } \tag{1}
\end{equation*}
$$

If $P \in \mathcal{A} \backslash \mathcal{I}_{2}$, then clearly there is a $Q \in \mathcal{A} \backslash \mathcal{I}_{2} \subset \mathcal{A} \backslash \mathcal{I}_{1}$ satisfying (1). So assume that $P \notin \mathcal{A} \backslash \mathcal{I}_{2}$. Then $P \in \mathcal{I}_{2} \backslash \mathcal{I}_{1}$. So, $P \cap A$ and $P \backslash A$ belong to \mathcal{I}_{2} and at least one of them does not belong to \mathcal{I}_{1}. This set can be taken as Q, since $\mathcal{I}_{2} \backslash \mathcal{I}_{1} \subset \mathcal{A} \backslash \mathcal{I}_{1}$.

For an algebra \mathcal{A} of subsets of X, the ideal of hereditary sets in \mathcal{A} is defined as $\mathcal{H}(\mathcal{A})=\{A \in \mathcal{A}: \mathcal{P}(A) \subset \mathcal{A}\}$.

Proposition 7. Let \mathcal{I} be an ideal on a set X, let \mathcal{A} be an algebra on X and assume that $\mathcal{I} \subset \mathcal{A}=S(\mathcal{A} \backslash \mathcal{I}) \neq \mathcal{P}(X)$. Then for every ideal \mathcal{J} such that $\mathcal{I} \subset \mathcal{J} \subset \mathcal{H}(\mathcal{A})$ we have $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{J})$.

Proof. Notice that any ideal $\mathcal{J} \subset \mathcal{A}$ is a proper subset of \mathcal{A} since $\mathcal{A} \neq \mathcal{P}(X)$. It is easy to see that for any such ideal we have $\mathcal{A} \subset S(\mathcal{A} \backslash \mathcal{J})$. Indeed, if $A \in \mathcal{A}$ and $P \in \mathcal{A} \backslash \mathcal{J}$, then either $Q=P \backslash A$ belongs to $\mathcal{A} \backslash \mathcal{J}$ or $Q=P \cap A$ belongs to $\mathcal{A} \backslash \mathcal{J}$. Now, by Lemma 6 , we have

$$
\mathcal{A} \subset S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A})) \subset S(\mathcal{A} \backslash \mathcal{J}) \subset S(\mathcal{A} \backslash \mathcal{I})=\mathcal{A}
$$

This finishes the proof.
The proposition implies immediately the following corollary, which shows, in particular, that the ideal $\mathcal{I}=\mathcal{H}(\mathcal{A})$ is canonical ideal in representation $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$.

Corollary 8. An algebra $\mathcal{A} \neq \mathcal{P}(X)$ has an inner $M B$-representation if and only if $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$.

Notice that Corollary 8 immediately implies [BBC, thm. 13], since conditions (I) and (II) from that theorem say that $\mathcal{H}(\mathcal{A})=\mathcal{A} \cap[X]^{<\kappa}$ while (III) says that $S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A})) \backslash \mathcal{A} \neq \emptyset$. In particular, Corollary 8 implies easily that the following algebras do not have inner MB-representation:

- The algebra \mathcal{B} of Borel subset of \mathbb{R}, since $S(\mathcal{B} \backslash \mathcal{H}(\mathcal{B}))=S(\mathcal{B} \backslash[\mathbb{R}] \leq \omega)$ is a classical Marczewski's algebra. (Compare [BBC, cor. 14].)
- The interval algebra \mathcal{A} (i.e., generated by all intervals $[a, b)$, where $a, b \in$ \mathbb{R}), since $\mathcal{H}(\mathcal{A})=\{\emptyset\}$ and so $S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary. (Compare [BBC, prop. 12].)
- The algebra \mathcal{A} generated by all open intervals $(a, b)(a, b \in \mathbb{R})$, since $\mathcal{H}(\mathcal{A})=[\mathbb{R}]^{<\omega}$ and so $S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary.

Next, we will address the question of uniqueness of the ideal in the representation $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$. We will start with the following proposition.
Proposition 9. Let \mathcal{A} be an algebra, let $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ be ideals, and $Y \in \mathcal{A}$.
(a) If every $P \subset Y$ from $\mathcal{A} \backslash \mathcal{J}$ contains a subset in $\mathcal{I} \backslash \mathcal{J}$, then $\mathcal{P}(Y) \subset$ $S(\mathcal{A} \backslash \mathcal{J})$.
(b) If $\mathcal{I} \cap \mathcal{P}(Y)=\mathcal{J} \cap \mathcal{P}(Y)$, then $S(\mathcal{A} \backslash \mathcal{I}) \cap \mathcal{P}(Y)=S(\mathcal{A} \backslash \mathcal{J}) \cap \mathcal{P}(Y)$.

Proof. (a): Let $A \in \mathcal{P}(Y)$ and take $P \in \mathcal{A} \backslash \mathcal{J}$. We need to find a $Q \in \mathcal{A} \backslash \mathcal{J}$ for which

$$
\text { either } Q \subset P \cap A \text { or } Q \subset P \backslash A
$$

If $P \in \mathcal{I} \backslash \mathcal{J}$, then either $P \cap A$ or $P \backslash A$ belongs to $\mathcal{I} \backslash \mathcal{J}$; so we may take this set as a Q. So, assume that $P \in \mathcal{A} \backslash \mathcal{I}$, then there is a $P_{0} \in \mathcal{I} \backslash \mathcal{J}$ contained in P. Thus, as before, either $P_{0} \cap A$ or $P_{0} \backslash A$ belongs to $\mathcal{I} \backslash \mathcal{J}$ and we may take this set as a Q.

Part (b) is obvious.
For an algebra $\mathcal{A} \subset \mathcal{P}(X)$ and the ideals \mathcal{I} and \mathcal{J} such that $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ a set $Y \in \mathcal{A}$ will be called $\langle\mathcal{I}, \mathcal{J}\rangle$-special if $\mathcal{I} \cap \mathcal{P}(X \backslash Y)=\mathcal{J} \cap \mathcal{P}(X \backslash Y)$ and each set $P \subset Y$ such that $P \in \mathcal{A} \backslash \mathcal{J}$ has a subset in $\mathcal{I} \backslash \mathcal{J}$.

From Proposition 9 we easily derive the following corollary.
Corollary 10. Let \mathcal{A} be an algebra on X and let $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ be ideals. If $Y \in \mathcal{A}$ is an $\langle\mathcal{I}, \mathcal{J}\rangle$-special set, then

$$
S(\mathcal{A} \backslash \mathcal{J})=\{C \cup D: C \in \mathcal{P}(Y) \& D \in \mathcal{P}(X \backslash Y) \cap S(\mathcal{A} \backslash \mathcal{J})\}
$$

From Proposition 9 (a) applied to $Y=\mathbb{R}$ we immediately obtain the following facts.

- If \mathcal{L} is the algebra of Lebesgue measurable subsets of \mathbb{R}, \mathcal{N} is the ideal of measure zero sets, and \mathcal{N}_{0} is the ideal generated by F_{σ} sets from \mathcal{N}, then $S(\mathcal{L} \backslash \mathcal{J})=\mathcal{P}(\mathbb{R})$ for every ideal \mathcal{J} contained either in \mathcal{N}_{0} or in $\mathcal{N} \cap[\mathbb{R}]^{<2^{\omega}}$.
- If \mathcal{B} is the algebra of subsets of \mathbb{R} with the Baire property and \mathcal{M} is the ideal of meager sets, then $S(\mathcal{B} \backslash \mathcal{J})=\mathcal{P}(\mathbb{R})$ for every ideal \mathcal{J} contained either in \mathcal{N}_{0} or in $\mathcal{M} \cap[\mathbb{R}]^{<2^{\omega}}$.

From Corollary 10 we immediately see that, most of the time, $\mathcal{H}(\mathcal{A})$ is not the only ideal \mathcal{I} for which $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$. The easiest way to see it is to notice the following conclusion from Corollary 10.

Corollary 11. If \mathcal{A} is an algebra on $X, \mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ are ideals, $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{I})$ and there exists a $Y \in \mathcal{I}$ such that $\mathcal{I} \cap \mathcal{P}(X \backslash Y)=\mathcal{J} \cap \mathcal{P}(X \backslash Y)$, then $S(\mathcal{A} \backslash \mathcal{I})=S(\mathcal{A} \backslash \mathcal{J})$.

Finally we note that the existence of an $\langle\mathcal{I}, \mathcal{J}\rangle$-special set is by no means necessary for the conclusion of Corollary 11.

Example 12. There exists an algebra \mathcal{A} and an ideal $\mathcal{J} \subsetneq \mathcal{H}(\mathcal{A})$ for which $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))=S(\mathcal{A} \backslash \mathcal{J})$ while there is no $\langle\mathcal{H}(\mathcal{A}), \mathcal{J}\rangle$-special set $Y \in$ $\mathcal{H}(\mathcal{A})$.

Proof. In the papers $[\mathrm{R}]$ and $[\mathrm{NR}]$ the authors investigated the family \mathcal{D} of perfect subsets of $[\omega]^{\omega}$, where $[\omega]^{\omega}$ is endowed with the Ellentuck topology; that is, the topology generated by the sets $[x, y]=\left\{z \in[\omega]^{\omega}: x \subset z \subset y\right\}$, where $x \in[\omega]^{<\omega}$ and $y \in[\omega]^{\omega}$. A subset of $[\omega]^{\omega}$ is called a chain if it consists of sets incomparable with respect to inclusion. A chain is called a Sorgenfrey chain if its subspace topology is homeomorphic to the Sorgenfrey topology on $(0,1]$. It is shown in [NR, thm. 3.4] that if $P \in \mathcal{D}$ does not contain a countable perfect set, then P contains a perfect uncountable Sorgenfrey chain.

Let \mathcal{G} be the family of all perfect Sorgenfrey chains and let $\mathcal{A}=S(\mathcal{D})$. By [NR, thm. 3.5] and [R, cor. 1.10], we have $\mathcal{A}=S(\mathcal{D})=S(\mathcal{G})$ and $\mathcal{J}=$ $S_{0}(\mathcal{D}) \subsetneq S_{0}(\mathcal{G})=\mathcal{H}(\mathcal{A})$. We will show that
(a) $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{J})$, and
(b) $\mathcal{A}=S(\mathcal{A} \backslash \mathcal{H}(\mathcal{A}))$, but
(c) there is no $\langle\mathcal{H}(\mathcal{A}), \mathcal{J}\rangle$-special set $Y \in \mathcal{H}(\mathcal{A})$.

To prove (a) observe that $\mathcal{D} \subset S(\mathcal{D})$ since, for any two perfect sets P and Q, at least one of the sets $P \cap Q, P \backslash Q$ has a perfect part. Now, from $\mathcal{D} \subset S(\mathcal{D})$ and $\mathcal{D} \cap S_{0}(\mathcal{D})=\emptyset$ it follows that \mathcal{D} and $\mathcal{A} \backslash \mathcal{J}=S(\mathcal{D}) \backslash S_{0}(\mathcal{D})$ are mutually coinitial which, by [BBRW, prop. 1.2], implies (a). The clause (b) results from (a) and Proposition 7.

To prove (c), by way of contradiction assume that there is a $\left\langle\mathcal{H}(\mathcal{A}), S_{0}(\mathcal{D})\right\rangle$ special set $Y \in \mathcal{H}(\mathcal{A})$. Then $\mathcal{H}(\mathcal{A}) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)=S_{0}(\mathcal{D}) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)$. Since $\mathcal{H}(\mathcal{A})=S_{0}(\mathcal{G})$, we have

$$
\begin{equation*}
S_{0}(\mathcal{G}) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)=S_{0}(\mathcal{D}) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right) \tag{2}
\end{equation*}
$$

Next observe that
(d) each set from $\mathcal{D} \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)$ contains a set from \mathcal{G}.

Indeed, let $D \in \mathcal{D} \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)$. Since $\mathcal{D} \subset S(\mathcal{D}) \backslash S_{0}(\mathcal{D})$, it follows from $S(\mathcal{D})=S(\mathcal{G})$ and (2) that

$$
D \in\left(S(\mathcal{D}) \backslash S_{0}(\mathcal{D})\right) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)=\left(S(\mathcal{G}) \backslash S_{0}(\mathcal{G})\right) \cap \mathcal{P}\left([\omega]^{\omega} \backslash Y\right)
$$

Hence by [BBRW, prop 1.1(4)], there is a $G \in \mathcal{G}$ such that $G \subset D$ as desired.
Since \mathcal{G} consists of uncountable sets, from (d) we derive that no countable perfect set in $[\omega]^{\omega}$ is contained in $[\omega]^{\omega} \backslash Y$. From $[\mathrm{NR}]$ it follows that each nonempty open set in $[\omega]^{\omega}$ contains a set from \mathcal{G}. Thus Y, which is in $\mathcal{H}(\mathcal{A})=$ $S_{0}(\mathcal{G})$, has the empty interior. Consequently, $[\omega]^{\omega} \backslash Y$ is dense and so, by $[\mathrm{R}$, thm. 1.5], it contains a countable perfect set Q. However, this contradicts the previous observation.

References

[BBC] M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin representations of certain algebras, Real Anal. Exchange, 26(2) (2000-2001), 581-591.
[BBRW] M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, Marczewski fields and ideals, Real Anal. Exchange, 26(2) (2000-2001), 703-715.
[BR] M. Balcerzak, J. Rzepecka, Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys., 39 (1998), 93-97.
[Ba] S. Baldwin, The Marczewski hull property and complete Boolean algebras, Real Anal. Exchange, 28(2) (2002-2003), 415-428.
[BC] A. Bartoszewicz, K. Ciesielski, MB-representations and topological algebras, Real Anal. Exchange, 27(2) (2001-2002), 749-755.
[Ci] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts, 39, Cambridge Univ. Press 1997.
[K] S. Koppelberg, Handbook of Boolean Algebras, vol. 1, North Holland, Amsterdam 1989.
[NR] A. Nowik, P. Reardon, Marczewski sets and other classes in the Ellentuck topology, submitted.
[O] J. C. Oxtoby, Measure and Category, Springer, New York, 1971.
[R] P. Reardon, Ramsey, Lebesgue, and Marczewski sets and the Baire property, Fund. Math., 149 (1996), 191-203.
[Wr] S. Wroński, Marczewski operation can be iterated few times, Bull. Polish Acad. Sci. Math., 50 (2002), 217-219.

[^0]: Key Words: algebra of sets, ideal of sets, Marczewski-Burstin representation. Mathematical Reviews subject classification: Primary 06E25; Secondary 28A05, 54E52 Received by the editors January 24, 2003
 Communicated by: Jack Brown
 *The third author was partially supported by NATO Grant PST.CLG. 977652 and 2002/03 West Virginia University Senate Research Grant.

