Marek Balcerzak, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, I-2, 90-924 Łódź, Poland, and Faculty of Mathematics, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland. email: mbalce@uni.lodz.pl

Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland. email: arturbar@ck-sg.p.lodz.pl Krzysztof Ciesielski,* Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310. email: K_Cies@math.wvu.edu

ALGEBRAS WITH INNER MB-REPRESENTATION

Abstract

We investigate algebras of sets, and pairs $\langle \mathcal{A}, \mathcal{I} \rangle$ consisting of an algebra \mathcal{A} and an ideal $\mathcal{I} \subset \mathcal{A}$, that possess an inner MB-representation. We compare inner MB-representability of $\langle \mathcal{A}, \mathcal{I} \rangle$ with several properties of $\langle \mathcal{A}, \mathcal{I} \rangle$ considered by Baldwin. We show that \mathcal{A} is inner MB-representable if and only if $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$, where $S(\cdot)$ is a Marczewski operation defined below and \mathcal{H} consists of sets that are hereditarily in \mathcal{A} . We study the question of uniqueness of the ideal in that representation.

1 The Implications

Let X be a nonempty set and let \mathcal{F} be a nonempty family of nonempty subsets of X. Following the idea of Burstin and Marczewski we define:

$$S(\mathcal{F}) = \{ A \subset X \colon (\forall P \in \mathcal{F}) (\exists Q \in \mathcal{F}) (Q \subset A \cap P \text{ or } Q \subset P \setminus A) \}$$

and

$$S_0(\mathcal{F}) = \{ A \subset X \colon (\forall P \in \mathcal{F}) (\exists Q \in \mathcal{F}) (Q \subset P \setminus A) \}.$$

Key Words: algebra of sets, ideal of sets, Marczewski-Burstin representation.

Mathematical Reviews subject classification: Primary 06E25; Secondary 28A05, 54E52 Received by the editors January 24, 2003

Communicated by: Jack Brown

^{*}The third author was partially supported by NATO Grant PST.CLG.977652 and 2002/03 West Virginia University Senate Research Grant.

Then $S(\mathcal{F})$ is an algebra of subsets of X and $S_0(\mathcal{F})$ is an ideal on X. (See [BBRW].) For an ideal \mathcal{I} on X an algebra \mathcal{A} of subsets of X such that $\mathcal{I} \subset \mathcal{A}$ we say that

- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ (respectively, the algebra \mathcal{A}) has inner MB-representation provided there exists an $\mathcal{F} \subset \mathcal{A}$ such that $\mathcal{A} = S(\mathcal{F})$ and $\mathcal{I} = S_0(\mathcal{F})$ (respectively, $\mathcal{A} = S(\mathcal{F})$),
- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has density property provided $\mathcal{I} = S_0(\mathcal{A} \setminus \mathcal{I})$,
- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ (respectively, the algebra \mathcal{A}) is topological provided there exists a topology τ on X such that $\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ (respectively, $\mathcal{A} = S(\mathcal{F})$), where $\mathcal{F} = \tau \setminus \{\emptyset\}$,
- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has the hull property provided for every $U \subset X$ there is a $V \in \mathcal{A}$ such that $U \subset V$ and for every $W \in \mathcal{A}$ if $U \subset W$, then $V \setminus W \in \mathcal{I}$,
- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ is complete provided the quotient algebra \mathcal{A}/\mathcal{I} is complete,
- the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has the splitting property provided for every $\mathcal{C} \subset \mathcal{D} \subset \mathcal{A}$, if \mathcal{D} is an antichain (i.e., $A \cap B \in \mathcal{I}$ for every distinct $A, B \in \mathcal{D}$), then there exists a mapping $\mathcal{D} \ni D \mapsto I_D \in \mathcal{I}$ such that $C \setminus I_C$ and $D \setminus I_D$ are disjoint for every $C \in \mathcal{C}$ and $D \in \mathcal{D} \setminus \mathcal{C}$.

In the graph from Theorem 2 each of these properties is denoted, respectively, as: inner, dense, top, hull, comp, and split.

We start here with the following simple characterization of pairs with inner MB-representation. (Compare also [Wr, lemma 1].)

Proposition 1. A pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has an inner MB-representation if and only if $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$.

PROOF. If $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$, then $\mathcal{A} \setminus \mathcal{I} \subset \mathcal{A} \setminus S_0(\mathcal{A} \setminus \mathcal{I})$, since we always have $\mathcal{F} \cap S_0(\mathcal{F}) = \emptyset$. So, $S_0(\mathcal{A} \setminus \mathcal{I}) \subset \mathcal{I}$. The other inclusion is obvious. Thus, $\langle \mathcal{A}, \mathcal{I} \rangle$ has an inner MB-representation.

Conversely, assume that $\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ for some $\mathcal{F} \subset \mathcal{A}$. By [BBRW, prop. 1.2] to prove that $S(\mathcal{A} \setminus \mathcal{I}) = S(\mathcal{F})$ it is enough to show that the families $\mathcal{A} \setminus \mathcal{I}$ and \mathcal{F} are *mutually coinitial*; that is, every element of each of these families contains an element from the other.

Clearly, $\mathcal{F} \subset \mathcal{A} \setminus S_0(\mathcal{F}) = \mathcal{A} \setminus \mathcal{I}$, so every element of \mathcal{F} contains an element from $\mathcal{A} \setminus \mathcal{I}$. Conversely, if $A \in \mathcal{A} \setminus \mathcal{I}$, then there exists an $F \in \mathcal{F}$ with $F \subset A$, since $A \notin \mathcal{I} = S_0(\mathcal{F})$.

Theorem 2. We have the following implications between the properties of a pair $\langle \mathcal{A}, \mathcal{I} \rangle$.

Diagram

Moreover, none of the implications can be reversed, with possible exception of "top \implies hull & comp."

PROOF. The facts that every topological pair is complete and has the hull property are well known and easy to see. Indeed, if $\langle \mathcal{A}, \mathcal{I} \rangle$ is a topological pair generated by a topology τ on X, then \mathcal{I} consists of all nowhere dense sets (with respect to τ) and \mathcal{A} consists of open sets (with respect to τ) modulo \mathcal{I} . (See [BR].) Then, for each $E \subset X$, the closure cl(E) plays a role of its hull. Since an open set U can be expressed as $U = V \setminus E$ where V is regular open and E is nowhere dense (see e.g. [O, thm. 4.5]), the quotient algebra \mathcal{A}/\mathcal{I} is isomorphic to the Boolean algebra of regular open sets, which is complete (see e.g. [K]). Hence \mathcal{A}/\mathcal{I} is complete.

The implication "inner \implies dense" results immediately from Proposition 1 and the definitions. All other implications follow from the following implications proved in Baldwin's paper [Ba]: "hull \implies inner," "comp \implies split," "split & inner \implies comp," and "dense & comp \implies hull."

The fact that the implications "top \implies hull" and "top \implies comp" cannot be reversed follows from Baldwin's examples from [Ba], where he shows that the properties hull and complete are independent of each other.

An example showing that "dense & split" does not imply "inner" is described in Example 3. This takes care of nonreversability of the implications "split & inner \implies dense & split," "inner \implies dense," and "comp \implies split."

Example 4 shows that the implications "hull \Longrightarrow inner" cannot be reversed. \Box

The following example answers a question of Baldwin [Ba, question 2] whether every pair with density and splitting properties must be inner. Also, Baldwin had the example of a family with a splitting property which is not

complete only under the assumption of the continuum hypothesis, while the example below is in ZFC.

Example 3. If X is an infinite set, \mathcal{A} is an algebra of subsets of X which are either finite or cofinite, and $\mathcal{I} = \{\emptyset\}$, then the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has density and splitting properties but is neither inner nor complete.

PROOF. The pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has density property since $S_0(\mathcal{A} \setminus \{\emptyset\}) = \{\emptyset\} = \mathcal{I}$. It does not have inner MB-representation by Proposition 1 and the fact that $S(\mathcal{A} \setminus \{\emptyset\}) = \mathcal{P}(X)$. The splitting property is satisfied trivially, since $\mathcal{I} = \{\emptyset\}$. The pair $\langle \mathcal{A}, \mathcal{I} \rangle$ is not complete by the implications from Theorem 2. \Box

The following example answers a question of Baldwin [Ba, question 1] whether every pair with inner MB-representation must have a hull property. In what follows we use the standard set theoretic notation as in [Ci]. Let X be an infinite set of cardinality κ . We say that a family $\mathcal{F}_0 \subset [X]^{\kappa}$ is almost disjoint provided $|F_1 \cap F_2| < \kappa$ for every distinct $F_1, F_2 \in \mathcal{F}_0$.

Example 4. There exists a maximal almost disjoint family $\mathcal{F}_0 \subset [X]^{\kappa}$ such that for $\mathcal{F} = \{F \triangle A \colon F \in \mathcal{F}_0 \& A \in [X]^{<\kappa}\}$ the pair $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ has inner *MB*-representation but neither is complete nor it has the hull property.

PROOF. In [BC, fact 4] it was proved that for every \mathcal{F} as in the theorem the algebra $S(\mathcal{F})$ contains \mathcal{F} (so it has inner MB-representation) and $S_0(\mathcal{F}) = [X]^{<\kappa}$.

Let $\{A, B\}$ be a partition of X into the sets of cardinality κ and let $\mathcal{G} \subset [X]^{\kappa}$ be a partition of X into κ many sets such that $|G \cap A| = |G \cap B| = \kappa$ for every $G \in \mathcal{G}$. Let $\mathcal{F}_0 \subset [X]^{\kappa}$ be a maximal almost disjoint family extending \mathcal{G} such that for every $F \in \mathcal{F}_0$ either $F \subset A$ or $F \subset B$. Such an \mathcal{F}_0 exists by the Zorn lemma. It is easy to see that \mathcal{F}_0 is a maximal almost disjoint family in $[X]^{\kappa}$.

To see that $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ does not have the hull property notice that $A \subset X$ does not have a hull. Indeed, take a $V \in S(\mathcal{F})$ containing A. Then for every $G \in \mathcal{G} \subset \mathcal{F}$ there is an $F_G \in \mathcal{F}$ contained in G such that F_G is either disjoint or contained in V. Thus, $F_G = G \setminus A_G$ for some $A_G \in [X]^{<\kappa}$, since elements of \mathcal{F}_0 are almost disjoint. This implies also that $F_G = G \setminus A_G$ must be a subset of V, since it cannot be disjoint with $V \supset A$. In other words, for every $G \in \mathcal{G}$ there exists an $x_G \in G \cap (V \setminus A)$. So, $Y = \{x_G \colon G \in \mathcal{G}\} \in [B]^{\kappa}$, and by the maximality, there exists an $F \in \mathcal{F}_0$ such that $|F \cap Y| = \kappa$. Then, for $W = V \setminus F \in S(\mathcal{F})$ we have $A \subset W \subset V$, while $V \setminus W = F \cap Y \notin [X]^{<\kappa} = S_0(\mathcal{F})$. Thus, there is no hull for A with respect to $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$.

Problem 5. Is every complete pair $\langle \mathcal{A}, \mathcal{I} \rangle$ with the hull property topological?

2 Notes on Algebras with Inner MB-Representations

According to Proposition 1 if a pair $\langle \mathcal{A}, \mathcal{I} \rangle$ has inner MB-representation, then it has a canonical one — by a family $\mathcal{F} = \mathcal{A} \setminus \mathcal{I}$. But what if we only consider inner MB-representability of an algebra \mathcal{A} ? If \mathcal{A} has an inner MBrepresentation, say $\mathcal{A} = S(\mathcal{F})$, then by Proposition 1 for $\mathcal{I} = S_0(\mathcal{F})$ we have $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$. Is there a canonical ideal \mathcal{I} with this property? Is such an ideal unique?

To give a positive answer to the first of these questions we need the following fact. Note that, in general, $\mathcal{F}_2 \subset \mathcal{F}_1$ does not imply $S(\mathcal{F}_2) \subset S(\mathcal{F}_1)$. For instance, if $X = \{0, 1, 2\}, \mathcal{F}_2 = \{\{0\}\}, \text{ and } \mathcal{F}_1 = \{\{0\}, \{1, 2\}\}, \text{ then } \{2\} \in S(\mathcal{F}_2) \setminus S(\mathcal{F}_1)$.

Lemma 6. If $\mathcal{I}_1 \subset \mathcal{I}_2$ are ideals contained in an algebra \mathcal{A} , then we have $S(\mathcal{A} \setminus \mathcal{I}_2) \subset S(\mathcal{A} \setminus \mathcal{I}_1)$.

PROOF. Let $A \in S(\mathcal{A} \setminus \mathcal{I}_2)$. To show that $A \in S(\mathcal{A} \setminus \mathcal{I}_1)$ take a $P \in \mathcal{A} \setminus \mathcal{I}_1$. We need to find a $Q \in \mathcal{A} \setminus \mathcal{I}_1$ for which

either
$$Q \subset P \cap A$$
 or $Q \subset P \setminus A$. (1)

If $P \in \mathcal{A} \setminus \mathcal{I}_2$, then clearly there is a $Q \in \mathcal{A} \setminus \mathcal{I}_2 \subset \mathcal{A} \setminus \mathcal{I}_1$ satisfying (1). So assume that $P \notin \mathcal{A} \setminus \mathcal{I}_2$. Then $P \in \mathcal{I}_2 \setminus \mathcal{I}_1$. So, $P \cap A$ and $P \setminus A$ belong to \mathcal{I}_2 and at least one of them does not belong to \mathcal{I}_1 . This set can be taken as Q, since $\mathcal{I}_2 \setminus \mathcal{I}_1 \subset \mathcal{A} \setminus \mathcal{I}_1$.

For an algebra \mathcal{A} of subsets of X, the ideal of hereditary sets in \mathcal{A} is defined as $\mathcal{H}(\mathcal{A}) = \{A \in \mathcal{A} : \mathcal{P}(A) \subset \mathcal{A}\}.$

Proposition 7. Let \mathcal{I} be an ideal on a set X, let \mathcal{A} be an algebra on X and assume that $\mathcal{I} \subset \mathcal{A} = S(\mathcal{A} \setminus \mathcal{I}) \neq \mathcal{P}(X)$. Then for every ideal \mathcal{J} such that $\mathcal{I} \subset \mathcal{J} \subset \mathcal{H}(\mathcal{A})$ we have $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{J})$.

PROOF. Notice that any ideal $\mathcal{J} \subset \mathcal{A}$ is a proper subset of \mathcal{A} since $\mathcal{A} \neq \mathcal{P}(X)$. It is easy to see that for any such ideal we have $\mathcal{A} \subset S(\mathcal{A} \setminus \mathcal{J})$. Indeed, if $A \in \mathcal{A}$ and $P \in \mathcal{A} \setminus \mathcal{J}$, then either $Q = P \setminus A$ belongs to $\mathcal{A} \setminus \mathcal{J}$ or $Q = P \cap A$ belongs to $\mathcal{A} \setminus \mathcal{J}$. Now, by Lemma 6, we have

$$\mathcal{A} \subset S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A})) \subset S(\mathcal{A} \setminus \mathcal{J}) \subset S(\mathcal{A} \setminus \mathcal{I}) = \mathcal{A}.$$

This finishes the proof.

The proposition implies immediately the following corollary, which shows, in particular, that the ideal $\mathcal{I} = \mathcal{H}(\mathcal{A})$ is canonical ideal in representation $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I}).$

Corollary 8. An algebra $\mathcal{A} \neq \mathcal{P}(X)$ has an inner MB-representation if and only if $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$.

Notice that Corollary 8 immediately implies [BBC, thm. 13], since conditions (I) and (II) from that theorem say that $\mathcal{H}(\mathcal{A}) = \mathcal{A} \cap [X]^{<\kappa}$ while (III) says that $S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A})) \setminus \mathcal{A} \neq \emptyset$. In particular, Corollary 8 implies easily that the following algebras do not have inner MB-representation:

- The algebra B of Borel subset of R, since S(B \ H(B)) = S(B \ [R]^{≤ω}) is a classical Marczewski's algebra. (Compare [BBC, cor. 14].)
- The interval algebra \mathcal{A} (i.e., generated by all intervals [a, b), where $a, b \in \mathbb{R}$), since $\mathcal{H}(\mathcal{A}) = \{\emptyset\}$ and so $S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary. (Compare [BBC, prop. 12].)
- The algebra \mathcal{A} generated by all open intervals (a, b) $(a, b \in \mathbb{R})$, since $\mathcal{H}(\mathcal{A}) = [\mathbb{R}]^{<\omega}$ and so $S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary.

Next, we will address the question of uniqueness of the ideal in the representation $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$. We will start with the following proposition.

Proposition 9. Let \mathcal{A} be an algebra, let $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ be ideals, and $Y \in \mathcal{A}$.

- (a) If every $P \subset Y$ from $\mathcal{A} \setminus \mathcal{J}$ contains a subset in $\mathcal{I} \setminus \mathcal{J}$, then $\mathcal{P}(Y) \subset S(\mathcal{A} \setminus \mathcal{J})$.
- (b) If $\mathcal{I} \cap \mathcal{P}(Y) = \mathcal{J} \cap \mathcal{P}(Y)$, then $S(\mathcal{A} \setminus \mathcal{I}) \cap \mathcal{P}(Y) = S(\mathcal{A} \setminus \mathcal{J}) \cap \mathcal{P}(Y)$.

PROOF. (a): Let $A \in \mathcal{P}(Y)$ and take $P \in \mathcal{A} \setminus \mathcal{J}$. We need to find a $Q \in \mathcal{A} \setminus \mathcal{J}$ for which

either
$$Q \subset P \cap A$$
 or $Q \subset P \setminus A$.

If $P \in \mathcal{I} \setminus \mathcal{J}$, then either $P \cap A$ or $P \setminus A$ belongs to $\mathcal{I} \setminus \mathcal{J}$; so we may take this set as a Q. So, assume that $P \in \mathcal{A} \setminus \mathcal{I}$, then there is a $P_0 \in \mathcal{I} \setminus \mathcal{J}$ contained in P. Thus, as before, either $P_0 \cap A$ or $P_0 \setminus A$ belongs to $\mathcal{I} \setminus \mathcal{J}$ and we may take this set as a Q.

Part (b) is obvious.

For an algebra $\mathcal{A} \subset \mathcal{P}(X)$ and the ideals \mathcal{I} and \mathcal{J} such that $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ a set $Y \in \mathcal{A}$ will be called $\langle \mathcal{I}, \mathcal{J} \rangle$ -special if $\mathcal{I} \cap \mathcal{P}(X \setminus Y) = \mathcal{J} \cap \mathcal{P}(X \setminus Y)$ and each set $P \subset Y$ such that $P \in \mathcal{A} \setminus \mathcal{J}$ has a subset in $\mathcal{I} \setminus \mathcal{J}$.

From Proposition 9 we easily derive the following corollary.

Corollary 10. Let \mathcal{A} be an algebra on X and let $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ be ideals. If $Y \in \mathcal{A}$ is an $\langle \mathcal{I}, \mathcal{J} \rangle$ -special set, then

$$S(\mathcal{A} \setminus \mathcal{J}) = \{ C \cup D \colon C \in \mathcal{P}(Y) \& D \in \mathcal{P}(X \setminus Y) \cap S(\mathcal{A} \setminus \mathcal{J}) \}.$$

From Proposition 9 (a) applied to $Y = \mathbb{R}$ we immediately obtain the following facts.

- If \mathcal{L} is the algebra of Lebesgue measurable subsets of \mathbb{R} , \mathcal{N} is the ideal of measure zero sets, and \mathcal{N}_0 is the ideal generated by F_{σ} sets from \mathcal{N} , then $S(\mathcal{L} \setminus \mathcal{J}) = \mathcal{P}(\mathbb{R})$ for every ideal \mathcal{J} contained either in \mathcal{N}_0 or in $\mathcal{N} \cap [\mathbb{R}]^{<2^{\omega}}$.
- If \mathcal{B} is the algebra of subsets of \mathbb{R} with the Baire property and \mathcal{M} is the ideal of meager sets, then $S(\mathcal{B} \setminus \mathcal{J}) = \mathcal{P}(\mathbb{R})$ for every ideal \mathcal{J} contained either in \mathcal{N}_0 or in $\mathcal{M} \cap [\mathbb{R}]^{<2^{\omega}}$.

From Corollary 10 we immediately see that, most of the time, $\mathcal{H}(\mathcal{A})$ is not the only ideal \mathcal{I} for which $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$. The easiest way to see it is to notice the following conclusion from Corollary 10.

Corollary 11. If \mathcal{A} is an algebra on X, $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$ are ideals, $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})$ and there exists a $Y \in \mathcal{I}$ such that $\mathcal{I} \cap \mathcal{P}(X \setminus Y) = \mathcal{J} \cap \mathcal{P}(X \setminus Y)$, then $S(\mathcal{A} \setminus \mathcal{I}) = S(\mathcal{A} \setminus \mathcal{J}).$

Finally we note that the existence of an $\langle \mathcal{I}, \mathcal{J} \rangle$ -special set is by no means necessary for the conclusion of Corollary 11.

Example 12. There exists an algebra \mathcal{A} and an ideal $\mathcal{J} \subsetneq \mathcal{H}(\mathcal{A})$ for which $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A})) = S(\mathcal{A} \setminus \mathcal{J})$ while there is no $\langle \mathcal{H}(\mathcal{A}), \mathcal{J} \rangle$ -special set $Y \in \mathcal{H}(\mathcal{A})$.

PROOF. In the papers [R] and [NR] the authors investigated the family \mathcal{D} of perfect subsets of $[\omega]^{\omega}$, where $[\omega]^{\omega}$ is endowed with the Ellentuck topology; that is, the topology generated by the sets $[x, y] = \{z \in [\omega]^{\omega} : x \subset z \subset y\}$, where $x \in [\omega]^{<\omega}$ and $y \in [\omega]^{\omega}$. A subset of $[\omega]^{\omega}$ is called a *chain* if it consists of sets incomparable with respect to inclusion. A chain is called a *Sorgenfrey chain* if its subspace topology is homeomorphic to the Sorgenfrey topology on (0, 1]. It is shown in [NR, thm. 3.4] that if $P \in \mathcal{D}$ does not contain a countable perfect set, then P contains a perfect uncountable Sorgenfrey chain.

Let \mathcal{G} be the family of all perfect Sorgenfrey chains and let $\mathcal{A} = S(\mathcal{D})$. By [NR, thm. 3.5] and [R, cor. 1.10], we have $\mathcal{A} = S(\mathcal{D}) = S(\mathcal{G})$ and $\mathcal{J} = S_0(\mathcal{D}) \subsetneq S_0(\mathcal{G}) = \mathcal{H}(\mathcal{A})$. We will show that

- (a) $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{J})$, and
- (b) $\mathcal{A} = S(\mathcal{A} \setminus \mathcal{H}(\mathcal{A}))$, but
- (c) there is no $\langle \mathcal{H}(\mathcal{A}), \mathcal{J} \rangle$ -special set $Y \in \mathcal{H}(\mathcal{A})$.

To prove (a) observe that $\mathcal{D} \subset S(\mathcal{D})$ since, for any two perfect sets Pand Q, at least one of the sets $P \cap Q$, $P \setminus Q$ has a perfect part. Now, from $\mathcal{D} \subset S(\mathcal{D})$ and $\mathcal{D} \cap S_0(\mathcal{D}) = \emptyset$ it follows that \mathcal{D} and $\mathcal{A} \setminus \mathcal{J} = S(\mathcal{D}) \setminus S_0(\mathcal{D})$ are mutually coinitial which, by [BBRW, prop. 1.2], implies (a). The clause (b) results from (a) and Proposition 7.

To prove (c), by way of contradiction assume that there is a $\langle \mathcal{H}(\mathcal{A}), S_0(\mathcal{D}) \rangle$ special set $Y \in \mathcal{H}(\mathcal{A})$. Then $\mathcal{H}(\mathcal{A}) \cap \mathcal{P}([\omega]^{\omega} \setminus Y) = S_0(\mathcal{D}) \cap \mathcal{P}([\omega]^{\omega} \setminus Y)$. Since $\mathcal{H}(\mathcal{A}) = S_0(\mathcal{G})$, we have

$$S_0(\mathcal{G}) \cap \mathcal{P}([\omega]^{\omega} \setminus Y) = S_0(\mathcal{D}) \cap \mathcal{P}([\omega]^{\omega} \setminus Y).$$
(2)

Next observe that

(d) each set from $\mathcal{D} \cap \mathcal{P}([\omega]^{\omega} \setminus Y)$ contains a set from \mathcal{G} .

Indeed, let $D \in \mathcal{D} \cap \mathcal{P}([\omega]^{\omega} \setminus Y)$. Since $\mathcal{D} \subset S(\mathcal{D}) \setminus S_0(\mathcal{D})$, it follows from $S(\mathcal{D}) = S(\mathcal{G})$ and (2) that

$$D \in (S(\mathcal{D}) \setminus S_0(\mathcal{D})) \cap \mathcal{P}([\omega]^{\omega} \setminus Y) = (S(\mathcal{G}) \setminus S_0(\mathcal{G})) \cap \mathcal{P}([\omega]^{\omega} \setminus Y).$$

Hence by [BBRW, prop 1.1(4)], there is a $G \in \mathcal{G}$ such that $G \subset D$ as desired.

Since \mathcal{G} consists of uncountable sets, from (d) we derive that no countable perfect set in $[\omega]^{\omega}$ is contained in $[\omega]^{\omega} \setminus Y$. From [NR] it follows that each nonempty open set in $[\omega]^{\omega}$ contains a set from \mathcal{G} . Thus Y, which is in $\mathcal{H}(\mathcal{A}) =$ $S_0(\mathcal{G})$, has the empty interior. Consequently, $[\omega]^{\omega} \setminus Y$ is dense and so, by [R, thm. 1.5], it contains a countable perfect set Q. However, this contradicts the previous observation.

References

- [BBC] M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin representations of certain algebras, Real Anal. Exchange, 26(2) (2000–2001), 581–591.
- [BBRW] M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, *Marczewski fields and ideals*, Real Anal. Exchange, 26(2) (2000–2001), 703–715.
- [BR] M. Balcerzak, J. Rzepecka, Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys., 39 (1998), 93–97.
- [Ba] S. Baldwin, *The Marczewski hull property and complete Boolean al*gebras, Real Anal. Exchange, **28**(2) (2002–2003), 415–428.

- [BC] A. Bartoszewicz, K. Ciesielski, *MB-representations and topological algebras*, Real Anal. Exchange, **27**(2) (2001–2002), 749–755.
- [Ci] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts, 39, Cambridge Univ. Press 1997.
- [K] S. Koppelberg, Handbook of Boolean Algebras, vol. 1, North Holland, Amsterdam 1989.
- [NR] A. Nowik, P. Reardon, *Marczewski sets and other classes in the Ellentuck topology*, submitted.
- [O] J. C. Oxtoby, *Measure and Category*, Springer, New York, 1971.
- [R] P. Reardon, Ramsey, Lebesgue, and Marczewski sets and the Baire property, Fund. Math., 149 (1996), 191–203.
- [Wr] S. Wroński, Marczewski operation can be iterated few times, Bull. Polish Acad. Sci. Math., 50 (2002), 217–219.