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Abstract. We formulate a Covering Property Axiom CPAgame
cube , which holds in the

iterated perfect set model, and show that it implies the existence of uncountable strong
γ-sets in R (which are strongly meager) as well as uncountable γ-sets in R which are not
strongly meager. These sets must be of cardinality ω1 < c, since every γ-set is universally
null, while CPAgame

cube implies that every universally null has cardinality less than c = ω2.
We also show that CPAgame

cube implies the existence of a partition of R into ω1 null compact
sets.

1. Axiom CPAgame
cube and other preliminaries. Our set theoretic ter-

minology is standard and follows that of [3]. In particular, |X| stands for the
cardinality of a set X and c = |R|. The Cantor set 2ω will be denoted by C.
We use the term Polish space for a complete separable metric space without
isolated points. For a Polish space X, the symbol Perf(X) will denote the
collection of all subsets of X homeomorphic to C. We will consider Perf(X)
to be ordered by inclusion.

Axiom CPAgame
cube was first formulated by Ciesielski and Pawlikowski in [4].

(See also [6].) It is a simpler version of a Covering Property Axiom CPA
which holds in the iterated perfect set model. (See [4] or [6].) In order to for-
mulate CPAgame

cube we need the following terminology and notation. A subset C
of a product Cω of the Cantor set is said to be a perfect cube if C =

∏
n∈ω Cn,

where Cn ∈ Perf(C) for each n. For a fixed Polish space X let Fcube stand
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for the family of all continuous injections from a perfect cube C ⊂ Cω onto
a set P from Perf(X). We consider each function f ∈ Fcube from C onto P
as a coordinate system imposed on P . We say that P ∈ Perf(X) is a cube
if we consider it with an (implicitly given) witness function f ∈ Fcube onto
P , and Q is a subcube of a cube P ∈ Perf(X) provided Q = f [C], where
f ∈ Fcube is the witness function for P and C ⊂ dom(f) ⊂ Cω is a perfect
cube. Here and in what follows, dom(f) stands for the domain of f .

We say that a family E ⊂ Perf(X) is cube dense in Perf(X) provided
every cube P ∈ Perf(X) contains a subcube Q ∈ E . More formally, E ⊂
Perf(X) is cube dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E).(1)

It is easy to see that the notion of cube density is a generalization of the
notion of density with respect to 〈Perf(X),⊆〉, that is, if E is cube dense
in Perf(X) then E is dense in Perf(X). On the other hand, the converse
implication is not true, as shown by the following simple example.

Example 1.1 ([5, 6]). Let X = C × C and let E be the family of all
P ∈ Perf(X) such that either all vertical sections of P are countable, or else
all horizontal sections of P are countable. Then E is dense in Perf(X), but
it is not cube dense in Perf(X).

It is also worth noticing that in order to check that E is cube dense it is
enough to consider in condition (1) only functions f defined on the entire
space Cω, that is:

Fact 1.2 ([4, 5, 6]). E ⊂ Perf(X) is cube dense if and only if

∀f ∈ Fcube, dom(f) = Cω, ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E).(2)

Let Perf∗(X) stand for the family of all sets P such that either P ∈
Perf(X) or P is a singleton in X. In what follows we will consider singletons
as constant cubes, that is, with the constant coordinate function from Cω

onto the singleton. In particular, a subcube of a constant cube is the same
singleton.

Consider the following game GAMEcube(X) of length ω1. The game has
two players, Player I and Player II. At each stage ξ < ω1 of the game Player I
can play an arbitrary cube Pξ ∈ Perf∗(X) and Player II must respond with a
subcube Qξ of Pξ. The game 〈〈Pξ, Qξ〉: ξ < ω1〉 is won by Player I provided

⋃

ξ<ω1

Qξ = X;

otherwise the game is won by Player II.
By a strategy for Player II we will understand any function S such that

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a subcube of Pξ, where 〈〈Pη, Qη〉: η < ξ〉 is any
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partial game. (We abuse here slightly the notation, since the function S de-
pends also on the implicitly given coordinate functions fη: Cω → Pη making
each Pη a cube.) A game 〈〈Pξ, Qξ〉: ξ < ω1〉 is played according to a strat-
egy S for Player II provided Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ) for every ξ < ω1.
A strategy S is a winning strategy for Player II if he wins any game played
according to S.

Here is the axiom:

CPAgame
cube : c = ω2 and for any Polish space X Player II has no winning

strategy in the game GAMEcube(X).

Proposition 1.3 ([4, 6]). Axiom CPAgame
cube implies

CPAcube: c = ω2 and for every Polish space X and every cube dense family
E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \⋃ E0| ≤ ω1.

In [4] (see also [6]) it was proved that CPAcube (hence also CPAgame
cube ) im-

plies that cof(N ) = ω1 and that all perfectly meager sets and all universally
null sets have cardinality at most ω1.

In what follows we will also use the following simple fact. Its proof can
be found in [5] and [6].

Claim 1.4. Consider Cω with the standard topology and standard product
measure. If G is a Borel subset of Cω which is either of second category or
of positive measure then G contains a perfect cube

∏
i<ω Pi.

2. Disjoint coverings by ω1 null compacts

Theorem 2.1. Assume that CPAgame
cube holds and let X be a Polish space.

If D ⊂ Perf(X) is Fcube-dense and closed under perfect subsets then there
exists a partition of X into ω1 disjoint sets from D ∪ {{x}: x ∈ X}.

In the proof we will use the following easy lemma.

Lemma 2.2. Let X be a Polish space and let P={Pi: i < ω}⊂Perf∗(X).
For every cube P ∈ Perf(X) there exists a subcube Q of P such that either
Q ∩⋃i<ω Pi = ∅ or Q ⊂ Pi for some i < ω.

Proof. Let f ∈ Fcube be such that f [Cω] = P .
If P ∩⋃i<ω Pi is meager in P then, by Claim 1.4, we can find a subcube

Q of P such that Q ⊂ P \⋃i<ω Pi.
If P ∩⋃i<ω Pi is not meager in P then there exists an i < ω such that

P ∩ Pi has a non-empty interior in P . Thus, there exists a basic clopen set
C in Cω, which is a perfect cube, such that f [C] ⊂ Pi. So, Q = f [C] is the
desired subcube of P .

Proof of Theorem 2.1. For a cube P ∈ Perf(X) and a countable family
P ⊂ Perf∗(X) let D(P ) ∈ D be a subcube of P and Q(P, P ) ∈ D be as in



146 K. Ciesielski et al.

Lemma 2.2 applied to D(P ) in place of P . For a singleton P ∈ Perf∗(X) we
just put Q(P, P ) = P .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Qη: η < ξ}, Pξ).
By CPAgame

cube it is not a winning strategy for Player II. So there exists a game
〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II loses, that is,
X =

⋃
ξ<ω1

Qξ.
Notice that for every ξ < ω1 either Qξ ∩

⋃
η<ξQη = ∅ or there is an

η < ω1 such that Qξ ⊂ Qη. Let

F =
{
Qξ: ξ < ω1 & Qξ ∩

⋃

η<ξ

Qη = ∅
}
.

Then F is as desired.

Since the family of all measure zero perfect subsets of Rn is Fcube-dense
we get the following corollary.

Corollary 2.3. CPAgame
cube implies that there exists a partition of Rn

into ω1 disjoint closed nowhere dense measure zero sets.

Note that the conclusion of Corollary 2.3 does not follow from the fact
that Rn can be covered by ω1 perfect measure zero subsets (see [10, Thm. 6]).

3. Uncountable γ-sets. In this section we will prove that CPAgame
cube

implies the existence of an uncountable γ-set. Recall that a subset T of a
Polish space X is a γ-set provided for every open ω-cover U of T there is
a sequence 〈Un ∈ U : n < ω〉 such that T ⊂ ⋃n<ω

⋂
i>n Ui, where U is an

ω-cover of T if for every finite set A ⊂ T there is a U ∈ U with A ⊂ U .
γ-sets were introduced by Gerlits and Nagy [8]. They were studied by

Galvin and Miller [7], Recław [12], Bartoszyński and Recław [2], and others.
It is known that under Martin’s axiom there are γ-sets of cardinality con-
tinuum [7]. On the other hand, every γ-set has strong measure zero [8], so
it is consistent with ZFC that every γ-set is countable. Moreover, CPAgame

cube
implies that every γ-set has cardinality at most ω1 < c, since every strong
measure zero set is universally null and under CPAgame

cube every universally
null set has cardinality ≤ ω1.

In what follows we will use the characterization of γ-sets due to Recław
[12]. To formulate it we need some terminology. We will consider P(ω) as
a Polish space by identifying it with 2ω via characteristic functions. For
A,B ⊂ ω we will write A ⊆∗ B when |A \ B| < ω. We say that a family
A ⊂ P(ω) is centered provided

⋂A0 is infinite for every finite A0 ⊂ A;
and A has a pseudointersection provided there exists a B ∈ [ω]ω such that
B ⊆∗ A for every A ∈ A. In addition for the rest of this section K will
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stand for the family of all continuous functions from P(ω) to P(ω) and for
A ∈ P(ω) we put A∗ = {B ∈ P(ω): B ⊆∗ A}.

Proposition 3.1 (Recław [12]). For T ⊂ P(ω) the following conditions
are equivalent.

(i) T is a γ-set.
(ii) For every f ∈ K if f [T ] is centered then f [T ] has a pseudointersec-

tion.

In the proof that follows we will apply axiom CPAgame
cube to the cubes from

the space K. The fact that the subcubes given by the axiom cover K will
allow us to use the above characterization to conclude that the constructed
set is indeed a γ-set. It is also possible to construct an uncountable γ-set
by applying axiom CPAgame

cube to the space Y of all ω-covers of P(ω) (1), as
in Section 5. However, we believe that greater diversification of spaces to
which we apply CPAgame

cube makes the paper more interesting.
We will need the following two lemmas.

Lemma 3.2. For every countable set Y ⊂ P(ω) the set

KY = {f ∈ K: f [Y ] is centered}
is Borel in K.

Proof. Let Y = {yi: i < ω} and note that

KY =
⋂

n,k<ω

⋃

m≥k

⋂

i<n

{f ∈ K: m ∈ f(yi)}.

So, KY is a Gδ set, since each set {f ∈ K: m ∈ f(yi)} is open in K.

Lemma 3.3. Let Y ⊂ P(ω) be countable and such that [ω]<ω ⊂ Y . For
every W ∈ [ω]ω and a compact set Q ⊂ KY there exist V ∈ [W ]ω and a
continuous function ϕ: Q → [ω]ω such that ϕ(f) is a pseudointersection of
f [Y ] ∪ f [V ∗] for every f ∈ Q.

Moreover, if J is an infinite family of non-empty pairwise disjoint finite
subsets of W then we can choose V containing infinitely many J ’s from J .

Proof. First notice that there exists a continuous ψ: Q→ [ω]ω such that
ψ(f) is a pseudointersection of f [Y ] for every f ∈ Q.

Indeed, let Y = {yi: i < ω} and for every f ∈ Q let ψ(f) = {nfi : i < ω},
where nf0 = min f(y0) and nfi+1 = min{n ∈ ⋂j≤i f(yj): n > nfi }. The set in

the definition of nfi+1 is non-empty, since f [Y ] is centered, as f ∈ Q ⊂ KY .
It is easy to see that ψ is continuous and that ψ(f) is as desired.

(1) More precisely, if B0 is a countable base for P(ω) and B is the collection of all
finite unions of elements from B0 then we can define Y as Bω considered with the product
topology, where B is taken with discrete topology.



148 K. Ciesielski et al.

We will define a sequence 〈Ji ∈ J : i < ω〉 such that maxJi < minJi+1
for every i < ω. We are aiming for V =

⋃
i<ω Ji.

A set J0 ∈ J is chosen arbitrarily. Now, if Ji is already defined for some
i < ω we define Ji+1 as follows. Let wi = 1 + maxJi. Thus Ji ⊂ wi. For
every f ∈ Q define

mf
i = min

(
ψ(f) ∩

⋂
f [P(wi)]

)
.

The set ψ(f) ∩ ⋂ f [P(wi)] is infinite, since ψ(f) is a pseudointersection of
f [Y ] while P(wi) ⊂ Y . Let kfi = minKf

i , where

Kf
i = {k ≥ wi: mf

i ∈ f(a) for all a ⊂ ω with a ∩ k ⊂ wi}.
That Kf

i 6= ∅ follows from the continuity of f since mf
i ∈ f(a) for all a ⊂ wi.

Notice that, by the continuity of ψ and the definition of kfi , for every p < ω

the set Up = {f ∈ Q: kfi < p} is open in Q. Since the sets {Up: p < ω} form
an increasing cover of Q, compactness of Q implies the existence of pi < ω
such that Q ⊂ Upi . Thus, wi ≤ kfi < pi for every f ∈ Q. We define Ji+1 to
be an arbitrary element of J disjoint from pi and notice that

mf
i ∈ f(a) for every f ∈ Q and a ⊂ ω with a ∩minJi+1 ⊂ wi.

This finishes the inductive construction.
Let V =

⋃
i<ω Ji ⊂ W and ϕ(f) = {mf

i : i < ω}. It is easy to see that
ϕ is continuous (though we will not use this fact). To finish the proof it is
enough to show that ϕ(f) is a pseudointersection of f [Y ] ∪ f [V ∗] for every
f ∈ Q.

So, fix an f ∈ Q. Clearly ϕ(f) ⊂ ψ(f) is a pseudointersection of f [Y ]
since so was ψ(f). To see that ϕ(f) is a pseudointersection of f [V ∗] take
an a ⊆∗ V . Then for almost all i < ω we have a ∩ minJi+1 ⊂ wi, so that
mf
i ∈ f(a). Thus ϕ(f) ⊆∗ f(a).

Theorem 3.4. CPAgame
cube implies that there exists an uncountable γ-set

in P(ω).

Proof. For α < ω1 and a ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α}
let W (V) ∈ [ω]ω be such that W (V) (∗ Vξ for all ξ < α. Moreover, if
P ∈ Perf∗(K) is a cube then we define a subcube Q = Q(V, P ) of P and an
infinite subset V = V (V, P ) of W = W (V) as follows. Let Y = V ∪ [ω]<ω

and choose a subcube Q of P such that either Q∩KY = ∅ or Q ⊂ KY . This
can be done by Claim 1.4 since KY is Borel. If Q ∩KY = ∅ we put V = W .
Otherwise we apply Lemma 3.3 to find V .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),
where the sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). In
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other words, Player II remembers (recovers) the sets Vη associated with the
cubes Pη played so far, and he uses them (and Lemma 3.3) to get the next
answer Qξ = Q({Vη: η < ξ}, Pξ), while remembering (or recovering each
time) the set Vξ = V ({Vη: η < ξ}, Pξ).

By CPAgame
cube this is not a winning strategy for Player II. So there exists

a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II loses,
that is, K =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated with
this game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We claim
that T is a γ-set.

In the proof we use Lemma 3.2. So, let f ∈ K be such that f [T ] is
centered. There exists an α < ω1 such that f ∈ Qα. Since f [{Vξ: ξ < α} ∪
[ω]<ω] ⊂ f [T ] we must have applied Lemma 3.3 in the choice of Qα and Vα.
Therefore, the family f [{Vξ: ξ < α} ∪ [ω]<ω ∪ V ∗α ] has a pseudointersection.
Hence so does f [T ], since T ⊂ {Vξ: ξ < α} ∪ [ω]<ω ∪ V ∗α .

Since P(ω) embeds into any Polish space, we conclude that, under
CPAgame

cube , any Polish space contains an uncountable γ-set. In particular,
there exists an uncountable γ-set T ⊂ R.

4. γ-sets in R which are not strongly meager. Recall (see e.g. [1,
p. 437]) that a subset X of R is strongly meager provided X + G 6= R for
every measure zero subset G of R. This is a notion which is dual to a strong
measure zero subset of R, since Galvin, Mycielski, and Solovay proved (see
e.g. [1, p. 405]) that:X ⊂ R has strong measure zero if and only ifX+M 6= R
for every meager subset M of R.

Now, although every γ-set has strong measure zero, under Martin’s ax-
iom Bartoszyński and Recław [2] constructed a γ-set T in R which is not
strongly meager. We will show that the existence of such a set also follows
from CPAgame

cube . The construction is a generalization of that used in the proof
of Theorem 3.4.

In the proof we will use the following notation. For A,B ⊂ ω we write
A+B for the symmetric difference of A and B. Upon identification of a set
A ⊂ ω with its characteristic function χA ∈ 2ω this definition is motivated
by the fact that χA+B(n) = χA(n)+2χB(n), where +2 is addition modulo 2.
Also, let J = {Jn ∈ [ω]2

n
: n < ω} be a family of pairwise disjoint sets and

let G̃ be the family of all W ⊂ ω which are disjoint from infinitely many
J ∈ J . Notice that G̃ has measure zero with respect to the standard measure
on P(ω) induced by the product measure on 2ω.

Lemma 4.1. If J ∈ [J ]ω and P is a cube in P(ω) then there exists a
subcube Q of P and a set V ⊂ ⋃J containing infinitely many J ∈ J such
that V +Q ⊂ G̃.
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Proof. Let D =
⋃J and

H = {〈U,W 〉 ∈ P(D)×P(ω): (U +W ) ∩ J = ∅ for infinitely many J ∈ J }
⊆ {〈U,W 〉 ∈ P(D)×P(ω): U +W ∈ G̃}.

Note that H is a Gδ subset of P(D) × P(ω) since the set HJ = {〈U,W 〉:
(U + W ) ∩ J = ∅} is open for every J ∈ J . Moreover horizontal sections
of H are dense in P(D). So, H = H ∩ (P(D)× P ) is a dense Gδ subset of
P(D)× P , as all its horizontal sections are dense. Thus, by the Kuratowski–
Ulam theorem, there is a dense Gδ subset K0 of P(D) such that for every
U ∈ K0 the vertical section HU of H is dense in P . Now, since

K1 = {U ∈ P(D): J ⊂ U for infinitely many J ∈ J }
is a dense Gδ there is a V ∈ K0 ∩ K1. In particular, V contains infinitely
many J ∈ J and HV is a dense Gδ subset of P . So, by Claim 1.4, there exists
a subcube Q of P contained in HV . Thus, Q ⊂ HV ⊂ {W ∈ P : V +W ∈ G̃}
and so V +Q ⊂ G̃.

Theorem 4.2. CPAgame
cube implies that there exists a γ-set T ⊂ P(ω) such

that T + G̃ = P(ω).

Proof. We will use CPAgame
cube for the space X = K ∪ P(ω), a direct sum

of K and P(ω), where K is as in Proposition 3.1.
For α < ω1 and a ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α} such

that each Vξ contains infinitely many J ∈ J let W (V) ∈ [ω]ω be such that
J = {J ∈ J : J ⊂ W (V)} is infinite and W (V) (∗ Vξ for all ξ < α. For a
cube P ∈ Perf∗(K) we define a subcube Q = Q(V, P ) of P and an infinite
subset V = V (V, P ) of W = W (V) as follows. By Claim 1.4 we can find a
subcube P ′ of P such that either P ′ ⊂ K or P ′ ⊂ P(ω).

If P ′ ⊂ K we proceed as in the proof of Theorem 3.4. We put Y =
V ∪ [ω]<ω and we use Claim 1.4 to find a subcube Q of P ′ such that either
Q∩KY = ∅ or Q ⊂ KY . If Q∩KY = ∅ we put V = W . Otherwise we apply
Lemma 3.3 to find V . If P ′ ⊂ P(ω) we use Lemma 4.1 to find Q and V .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),
where the sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). By
CPAgame

cube this is not a winning strategy for Player II. So there exists a game
〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II loses, that is,
X =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated with this
game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We claim that
T is as desired.

The argument that T is a γ-set is the same as in the proof of Theorem 3.4.
To see that P(ω) ⊂ T + G̃ notice that for every A ∈ P(ω) there is an α < ω1
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such that A ∈ Qα. But then at step α we used Lemma 4.1 to find Qα and Vα.
In particular, Vα +Qα ⊂ G̃. So, A ∈ Qα ⊂ Vα + G̃ ⊂ T + G̃.

Corollary 4.3. CPAgame
cube implies that there exists a γ-set X ⊂ R which

is not strongly meager.

Proof. This is the argument from [2]. Let T be as in Theorem 4.2 and
let f : P(ω) → [0, 1], f(A) =

∑
i<ω 2−(i+1)χA(i). Then f is continuous, so

X = f [T ] is a γ-set. Let H =
⋂
m<ω

⋃
n>m f [Jn]. Then H has measure zero

and it is easy to see that [0, 1] = f [P(ω)] ⊂ f [T ] + H = X + H. Then
G = H +Q has measure zero and X +G = R.

5. Uncountable strongly meager γ-sets in R. Let X be a Polish
space with topology τ . We say that U ⊂ τ is a cover of Z ⊂ [X]<ω provided
for every A ∈ Z there is a U ∈ U with A ⊂ U . Following [7] we say that a
subset S of X is a strong γ-set provided there exists an increasing sequence
〈kn < ω: n < ω〉 such that for every sequence 〈Jn ⊂ τ : n < ω〉, where
each Jn is a cover of [X]kn , there exists a sequence 〈Dn ∈ Jn: n < ω〉 with
X ⊂ ⋃n<ω

⋂
m>nDm. It is proved in [7] that every strong γ-set X ⊂ R is

strongly meager. The goal of this section is to construct, under CPAgame
cube ,

an uncountable strong γ-set in P(ω). So, after identifying P(ω) with its
homeomorphic copy in R, this will become an uncountable γ-set in R which is
strongly meager. Under Martin’s axiom a strong γ-set in P(ω) of cardinality
continuum exists (see [7]).

Let B0 be a countable basis for the topology of P(ω) and let B be the
collection of all finite unions of elements from B0. Since every open cover
of [P(ω)]k, k < ω, contains a refinement from B, in the definition of strong
γ-set it is enough to consider only sequences 〈Jn: n < ω〉 with Jn ⊂ B.

Now, consider B with the discrete topology. Since B is countable, the
space Bω, considered with the product topology, is a Polish space and so is
X = (Bω)ω. For J ∈ X we will write Jn in place of J(n). It is easy to see
that a subbasis for the topology of X is given by the clopen sets

{J ∈ X : Jn(m) = B},
where n,m < ω and B ∈ B.

For the remainder of this section we fix an increasing sequence 〈kn < ω:
n < ω〉 such that kn ≥ n2n +n for every n < ω. Then we have the following
lemma.

Lemma 5.1. Let X ∈ [ω]ω and let F be a countable subset of P(ω) such
that [ω]<ω ⊂ F . Assume that P is a compact subset of X such that for every
J ∈ P and n < ω the family Jn[ω] = {Jn(m): m < ω} covers [F ]kn. Then
there exists a set Y ∈ [X]ω and for each J ∈ P a sequence 〈DJ

n ∈ Jn: n < ω〉
such that F ∪ Y ∗ ⊂ ⋃n<ω

⋂
m>nD

J
m.
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Proof. Let {Fn: n < ω} be an enumeration of [ω]<ω such that Fn ⊂ n for
all n < ω and let F = {fn: n < ω}. We will construct inductively sequences
〈sn ∈ X: n < ω〉 and 〈{DJ

n ∈ Jn[ω]: J ∈ P}: n < ω〉 such that for every
n < ω, J ∈ P , and A ⊂ ω we have

(i) {fi: i < n} ⊂ DJ
n and sn < sn+1;

(ii) if i < j ≤ n+ 1 and (A ∩ sn+1) \ {s0, . . . , sn} = Fi then A ∈ DJ
j .

We choose s0 ∈ X and {DJ
n ∈ Jn[ω]: J ∈ P} arbitrarily. Then con-

ditions (i) and (ii) are trivially satisfied. Next, assume that the sequence
{si: i ≤ n} is already constructed. We will construct sn+1 and sets DJ

n+1 as
follows.

Let

Q = {q ∈ [ω]<ω: q \ {s0, . . . , sn} = Fi for some i ≤ n}.
Then |Q| ≤ (n+ 1)2n+1 and |Q ∪ {f0, . . . , fn}| ≤ kn+1.

Fix J ∈ P . Since Jn+1[ω] covers [F ]≤kn+1, there exists a DJ
n+1 ∈ Jn+1[ω]

containing Q∪ {f0, . . . , fn}. Since DJ
n+1 is open and covers the finite set Q,

there is an sJn+1 > sn in X such that for every q ∈ Q,

{x ⊂ ω: x ∩ sJn+1 = q ∩ sJn+1} ⊂ DJ
n+1.

Notice that

(∗) for every A ⊂ ω and sn+1 ≥ sJn+1 condition (ii) holds.

Indeed, assume that (A∩sn+1)\{s0, . . . , sn} = Fi for some i < j ≤ n+1.
If j ≤ n then n ≥ 1 and since Fi ⊂ i ⊂ sn−1 we have

(A ∩ sn) \ {s0, . . . , sn−1} = (A ∩ sn+1) \ {s0, . . . , sn} = Fi.

So, by the inductive assumption, A ∈ DJ
j . If j = n + 1 then q = A ∩ sn+1

∈ Q. So A ∈ {x ⊂ ω: x ∩ sn+1 = q ∩ sn+1} ⊂ {x ⊂ ω: x ∩ sJn+1 = q ∩ sJn+1}
⊂ DJ

n+1, finishing the proof of (∗).
For each J ∈ P let mJ < ω be such that Jn+1(mJ) = DJ

n+1 and define
UJ = {K ∈ X : Kn+1(mJ) = DJ

n+1}. Then UJ is an open neighborhood of J .
In particular, {UJ : J ∈ P} is an open cover of the compact set P , so there
exists a finite P0 ⊂ P such that P ⊂ ⋃{UJ : J ∈ P0}. Choose sn+1 ∈ X

such that sn+1 ≥ max{sJn+1: J ∈ P0}. Moreover, for every J ∈ P choose
J ∈ P0 such that J ∈ UJ and define DJ

n+1 = DJ
n+1. It is easy to see that,

by (∗), conditions (i) and (ii) are preserved. This completes the inductive
construction.

Put Y = {sn: n < ω}. To see that it satisfies the conclusion pick an
arbitrary J ∈ P . We will show that F ∪ Y ∗ ⊂ ⋃n<ω

⋂
m>nD

J
m.

Clearly F ⊂ ⋃n<ω

⋂
m>nD

J
m since, by (i), fn ∈ DJ

m for every m > n.
So, fix an A ∈ Y ∗. Then A \ Y = Fi for some i < ω. Let n < ω be such
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that i < n and sn > maxFi. Then for every m > n we have i < m ≤ m+ 1
and (A ∩ sm+1) \ {s0, . . . , sm} = Fi. So, by (ii), we have A ∈ DJ

m for every
m > n. Thus, A ∈ ⋂m>nD

J
m.

Lemma 5.2. If F ⊂ P(ω) is countable then the set

XF = {J ∈ X : Jn[ω] covers [F ]kn for every n < ω}
is Borel in X .

Proof. This follows from the fact that

XF =
⋂

n<ω

⋂

A∈[F ]kn

⋃

m<ω

⋃

A⊂B∈B
{J ∈ X : Jn(m) = B}

since each set {J ∈ X : Jn(m) = B} is clopen in X . Thus, XF is a Gδ set.

Theorem 5.3. CPAgame
cube implies that there exists an uncountable strong

γ-set in P(ω).

Proof. For α < ω1 and a ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α}
let W (V) ∈ [ω]ω be such that W (V) (∗ Vξ for all ξ < α. Moreover, if
P ∈ Perf∗(X ) is a cube then we define a subcube Q = Q(V, P ) of P and
an infinite subset Y = V (V, P ) of X = W (V) as follows. Let F = V ∪ [ω]<ω

and choose a subcube Q of P such that either Q∩XF = ∅ or Q ⊂ XF . This
can be done by Claim 1.4 since XF is Borel. If Q ∩ XF = ∅ we put Y = X.
Otherwise we apply Lemma 5.1 to find Y .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),
where the sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). By
CPAgame

cube this is not a winning strategy for Player II. So there exists a game
〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II loses, that is,
X =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated with this
game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We claim that
T is a strong γ-set.

Indeed, let 〈Un ⊂ B: n < ω〉 be such that Un covers [T ]kn for every
n < ω. Then there is a J ∈ X such that Jn[ω] = Un for every n < ω. Let
α < ω1 be such that J ∈ Qα. Then J ∈ X{Vη : η<α}∪[ω]<ω , so we must have
used Lemma 5.1 to get Qα. In particular, there is a sequence 〈DJ

n ∈ Jn[ω] =
Un: n < ω〉 such that ([ω]<ω ∪ {Vη: η < α}) ∪ (Vα)∗ ⊂ ⋃n<ω

⋂
m>nD

J
m. So,

T ⊂ ⋃n<ω

⋂
m>nD

J
m, as {Vη: α ≤ η < ω1} ⊂ (Vα)∗.

Since every homeomorphic image of a strong γ-set is evidently a strong
γ-set, we obtain immediately the following conclusion.
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Corollary 5.4. CPAgame
cube implies that there exists an uncountable γ-set

in R which is strongly meager.

It is worth mentioning that a construction of an uncountable strong γ-set
in P(ω) under CPAgame

cube can also be done in a formalism similar to that used
in Section 3. In order to do it, we need the following definitions and facts.
For a fixed sequence k = 〈kn < ω: n < ω〉 we say that A ⊂ (P(ω))ω is
k-centered provided for every n < ω any kn sets from {A(n): A ∈ A} have
a common point; B ∈ ωω is a quasi-intersection of A ⊂ (P(ω))ω provided
for every A ∈ A there are infinitely many n < ω with B(n) ∈ A(n). Now, if
K∗ is the family of all continuous functions from P(ω) to (P(ω))ω then the
following is true:

A set X ⊂ P(ω) is a strong γ-set if and only if there exists an
increasing sequence k = 〈kn < ω: n < ω〉 such that for every
f ∈ K∗ if f [X] is k-centered then f [X] has a quasi-intersection.

With this characterization in hand we can construct an uncountable strong
γ-set in P(ω) by applying CPAgame

cube to the space K∗.

References

[1] T. Bartoszyński and H. Judah, Set Theory, A K Peters, 1995.
[2] T. Bartoszyński and I. Recław, Not every γ-set is strongly meager, in: Set Theory

(Boise, ID, 1992–1994), Contemp. Math. 192, Amer. Math. Soc., Providence, RI,
1996, 25–29.

[3] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud.
Texts 39, Cambridge Univ. Press, 1997.

[4] K. Ciesielski and J. Pawlikowski, Crowded and selective ultrafilters under the Cov-
ering Property Axiom, J. Appl. Anal., to appear. (Preprint? available (2).)

[5] —, —, Covering Property Axiom CPAcube and its consequences, Fund. Math. 176
(2003), 63–75. (Preprint? available.)

[6] —, —, Covering Property Axiom CPA, version of September 2002, work in progress?.
[7] F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology

Appl. 17 (1984), 145–155.
[8] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982),

151–161.
[9] F. Jordan, Generalizing the Blumberg theorem, Real Anal. Exchange 27 (2001–2002),

423–439. (Preprint? available.)
[10] A. W. Miller, Covering 2ω with ω1 disjoint closed sets, in: The Kleene Symposium,

North-Holland, Amsterdam, 1980, 415–421.
[11] A. Nowik, Possibly there is no uniformly completely Ramsey null set of size 2ω,

Colloq. Math. 93 (2002), 251–258. (Preprint? available.)

(2) Preprints marked by ? are available in electronic form from Set Theoretic Analysis
Web Page: http://www.math.wvu.edu/˜kcies/STA/STA.html



Uncountable γ-sets under CPAgame
cube 155

[12] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math.
144 (1994), 43–54.

Department of Mathematics
West Virginia University
Morgantown, WV 26506-6310, U.S.A.
E-mail: K Cies@math.wvu.edu

amillan@math.wvu.edu

Department of Mathematics
University of Wrocław

Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland

E-mail: pawlikow@math.uni.wroc.pl

Received 10 January 2002;
in revised form 16 October 2002


