Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, Al. Politechniki 11, 90-924 Łódź, Poland. email: arturbar@ck-sg.p.lodz.pl Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA. email: K_Cies@math.wvu.edu http://www.math.wvu.edu/~kcies

ERRATA: MB-REPRESENTATIONS AND TOPOLOGICAL ALGEBRAS

Theorem 5(b) from [BC] says the following.

Let $|X| = \kappa \geq \omega$, $\mathcal{F}_0 \subset [X]^{\kappa}$ be an almost disjoint family, and $\mathcal{F} = \{F \triangle A \colon F \in \mathcal{F}_0 \& A \in [X]^{<\kappa}\}$. If $|\mathcal{F}_0| > \kappa$ then the algebra $S(\mathcal{F}) = \{A \subset X \colon (\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset A \cap P \text{ or } Q \subset P \setminus A)\}$ is not topological, that is, $A \neq S(\tau \setminus \{\emptyset\})$ for any topology τ on X.

Unfortunately, the printed proof has a gap. (It shows only that the pair $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ is not topological.) A correct proof for this result follows.

PROOF. By way of contradiction suppose that there exists a topology τ on X such that $S(\mathcal{F}) = S(\tau_0)$, where $\tau_0 = \tau \setminus \{\emptyset\}$. Notice that for every $F \in \mathcal{F}$ we have $F \in S(\mathcal{F}) = S(\tau_0)$ and

$$U \notin S(\mathcal{F})$$
 for every $U \in [F]^{\kappa}$ with $|F \setminus U| = \kappa$. (1)

In particular, $\mathcal{P}(F) \not\subset S(\tau_0)$; so F does not belong to $S_0(\tau_0)$, which is defined as $\{A \subset X : (\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset P \setminus A)\}$. Thus,

$$\operatorname{int}_{\tau}(F) \neq \emptyset \text{ for every } F \in \mathcal{F}.$$
 (2)

For every $F \in \mathcal{F}_0$ let \mathcal{V}_F be a maximal pairwise disjoint subfamily of $\tau \cap [F]^{<\kappa}$ and notice that $|\bigcup \mathcal{V}_F| < \kappa$. Indeed, otherwise we could find a subfamily \mathcal{V} of \mathcal{V}_F with $|\bigcup \mathcal{V}| = |F \setminus \bigcup \mathcal{V}| = \kappa$. But then $U = \bigcup \mathcal{V} \in \tau \subset S(\tau_0) = S(\mathcal{F})$ would contradict (1). So, $F \setminus \bigcup \mathcal{V}_F \in \mathcal{F}$ and $V_F = \operatorname{int}_{\tau}(F \setminus \bigcup \mathcal{V}_F)$ is nonempty by (2). To finish the proof it is enough to notice that $\{V_F : F \in \mathcal{F}_0\}$ is a family of nonempty pairwise disjoint subsets of X, contradicting the fact that $|\mathcal{F}_0| > \kappa = |X|$.

Key Words: Generalized Marczewski's sets, topology.

Mathematical Reviews subject classification: Primary 54E52; Secondary 06E25, 03E35 Received by the editors November 11, 2002

Communicated by: Jack Brown

References

[BC] A. Bartoszewicz, K. Ciesielski, MB-representations and topological algebras , Real Anal. Exchange $\bf 27(2)$ (2001–2002), 749–755.