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Section C:  Maps and general types of spaces defined by maps

c-13 Generalized Continuities

There are many different properties of functions that can be f:R — R this means thaf has theYoung property, that
considered as generalized continuity notions. In this article is, for everyx € R there exist sequencds,}, and {y,},

we will describe mainly those that arose from the study of

such thaty, ' x, y, \\ x, and bothf (x,) and f (y,) con-

real functions, concentrating first on the classes of functions verge to f (x). In 1907 J. Young showed that for tiBaire

known under the common name of Darboux-like functions.
(See, e.g., survey articlesd, 14, 6, 3)

For topological spaceX andY, a functionf: X — Y
is a Darboux function (or has theDarboux property),
f € D(X,Y), provided the imagef[C] of C underf is a
connected subset of for every connected subsétof X. In
particular,f : R — R is Darboux provided® maps intervals
onto intervals, that is, when it has timter mediate value
property. The name comes after G. Darboux who showed in
1875 that every derivative (of a function frdRito R) has the

intermediate value property, while there are derivatives dis-

continuous on aense set. (Some 19th century mathemati-

cians thought that the intermediate value property could be
taken as the definition of continuity. Some calculus teachers

class 1 functions, the Darboux property and the Young prop-
erty are equivalent.

We will discuss the above mentioned classes only when
Y =R. If X =R" andn > 1 the relations between these
classes are given by the following chart, where arrews
denote strict inclusions. (Se@]))

AC

/
\D

C— Ext=Conn=PC— ACND

Chart 1. Darboux-like functions fro”, n > 1, intoR.

still think s0.) One of the easiest examples of a discontinuous The inclusion Conrc Ext was proved by K. Ciesielski,

Darboux function isfp: R — R given by fo(x) = sin(1/x)
for x £ 0 and fo(0) = 0.

A function f: X — Y is connectivity, f € ConnX,Y),
if the graph of the restrictionf | Z of f to Z is con-
nected inX x Y for every connected subsé&t of X. It is
easy to see thaf :R — R is connectivity if and only if
its graph is a connected subset®f. However, there are
functions F : R2 — R with a connected graph which are
not connectivity functions. For example, this is the case if
F(x,y) =sin(1/x) for x # 0, andF (0, y) = h(y), where
h:R — [—1, 1] is any function with a disconnected graph.

A function f: X — Y isextendable, f € Ext(X,Y), pro-
vided there exists a connectivity functidgih X x [0,1] - Y
such thatf (x) = F(x, 0) for everyx € X. It is easy to see
that

C(X,Y) C Ext(X,Y) C Conn(X,Y) C D(X,Y)

for arbitrary topological spaces, whergXC Y) stands for
the class of altontinuous functionsfrom X into Y.

A function f: X — Y is almost continuous (in the sense
of Stallings), f € AC(X, Y), provided each open subset of
X x Y containing the graph of also contains the graph of a
continuous function fronX to Y. This property was defined
as a generalization of functions having fiveed-point prop-
erty. It is easy to see that if every function in(X, X) has
the fixed-point property, then so does evegrg AC(X, X).

A function f: X — Y is peripherally continuous, f €
PC(X,7Y), if for every x € X and for all pairs of open sets
U andV containingx and f (x), respectively, there exists an
open subseW of U such thatt € W and f[bd(W)] C V,
where bdW) is the boundary of W. For the functions

T. Natkaniec, and J. Wojciechowsks][ The containment
Connc PC was proved by O.H. Hamilton and J. Stallings,
and the inclusion P€ Conn by M.R. Hagan. The relation
Connc AC was proved by J. Stallings. It is important to
notice that Chart 1 remains unchanged if we consider only
Baire class 1 functiong].

Classes presented in Chart 1 were also studied within
the class AddR") of additive functions, that is, functions
f:R" - R for which f(x + y) = f(x) + f(y) for all
x,y € R". In this case Chart 1 transforms to

AC

/
\D

C=Ext=Conn=PC=ACND

Chart 2. Additive Darboux-like functions frof”, n > 1, intoR.

The inclusion ACY D ¢ C was proved by K. Ciesielski and
J. Jastrebski [].

The Darboux-like functions were most intensively stud-
ied whenX =Y = R. In this setting, more classes are con-
sidered Darboux-like. Thus, a functigh: R — R has: the
Cantor intermediate value property if for everyx, y e R
and for eactperfect set K betweenf (x) and f (y) there is
a perfect seC betweenx andy such thatf[C] C K; the
strong Cantor intermediate value property if for every
x,y € R and for each perfect sé&t betweenf (x) and f (y)
there is a perfect sét betweent andy such thatf[C] c K
and f [ C is continuous; theveak Cantor intermediate
value property if for every x,y € R with f(x) < f(y)
there exists a perfect se&f betweenx and y such that
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fIC1 C (f(x), f(»)); the perfect road if for every x e R
there exists a perfect s€tC R havingx as a bilateral (i.e.,
two sided) limit point for whichf | P is continuous at:.

have PR= WCIVP and that the example of additive function
f:R — R from Conn\ AC (which is also CIVP) is known
only under an extra set theoretical assumption that the union

The classes of these functions are denoted by CIVP, SCIVP,of less than continuum many meager subsef® of meager
WCIVP, and PR, respectively. The relations between them in R. (A subset of a topological space is ameager set,

are as follows 13, 4.

AC Conn D
C—— Ext T PC
\
SCIVP—— CIVP—— PR
WCIVP

Chart 3. Darboux-like functions frofR into R.

The inclusions Ext- AC ¢ Conn were proved by J. Stal-
lings while the containment Ext SCIVP was proved by
H. Rosen, R.G. Gibson, and F. Roush.

The main interest in Darboux-like functions comes from
the fact that the clasa’ of the derivatives fronR into R
is contained in all these classes, that is; @’ C Ext. This
follows from the fact that every derivative is Darboux Baire
class 1 (see, e.g2]) while within the Baire class 1 Chart 3
reduces to

C— Ext=AC=Conn=D=PC
= SCIVP=CIVP =PR— WCIVP.

or of the first category, if it is a countable unionrawhere
dense subsets of(.)

The Darboux-like classes of functions are not closed un-
der arithmetic operations. (See, e.g., survey® [J.) For
example, if fp is the sifl/x) function defined above and
f1= fo+ X0y, whereX 4 is the characteristic function of,
then bothfy and f; are Darboux Baire class 1, so they are
also extendable. Howevef; — fo = X, is clearly not even
in PC. In fact, in 1927 A. Lindenbaum noticed that every
function f : R — R can be written as a sum of two Darboux
functions, while H. Fast in 1959 proved that for every family
F c RR of cardinality continuum there is just one Darboux

functiong € R¥ such thag + F d=Ef{g + f: f e F}isasub-
set of D. The result of H. Fast is a generalization of that of
A. Lindenbaum, since it is easy to see tidt = F — F if
and only if for everyf, f’ € RF there exists & € R¥ such
thatg + f, g + f' € F. (See B, Proposition 4.p) This led

T. Natkaniec 15] to study the following cardinal operator
defined for everyF c R, where|X| stands for the cardi-

nality of X:

A(F)=min{|H|: HCR* & -3g eR¥ g+ H C F}
U {[R*[7}.

The proof that every peripherally continuous Baire class 1 The values of the operatot for Darboux-like classes of

function f:R — R is extendable is due to J. Brown,
P. Humke and M. LaczkovicH]. In fact, most of the prop-

erties used to define Darboux-like functions were introduced

as characterizations of Darboux functions within the Baire
class 1, in a form “a Baire class 1 functighis Darboux if
and only if f satisfies thejiven property”. But these prop-

functions fromR to R are as follows (see, e.g3,[Theo-
rems 4.7 and 4.1

¢ =A(PR) = A(Ext) <A(AC) = A(D) <A(PC) = 2°,

where the value of £D) betweenc™ and Z can vary in dif-

erties make sense without the Baire class 1 restriction, so itferent models oZFC. Moreover, the monotonicity of the

was natural to study these various conditions on their own, operatorA implies that AExt) = A(SCIVP) = A(CIVP) =
and to find the interrelations. A number of mathematicians A(PR) = ¢t and AAC) = A(Conn) = A(D).

did just that in the latter part of the 20th century.
It is interesting that within the Baire class 2 Chart 3 has
yet another, quite different forn®][:

PR—>PC
C—>Ext—>AC—>Conn—>D—>SCIVP = CIVP
WCIVP

Chart 4. Darboux-like Baire class 2 functions frdrinto R.

The most involved work in arguing for this chart is the
nonreversability of the inclusions. (Se@, [Theorem 1.R)
Chart 4 remains unchanged if we restrict Darboux-like func-
tions to Borel functions (i.e., functions for which preim-
ages ofBorel sets are again Borel) in place of Baire class 2.
Within the class of additive functions Chart 3 remains al-

The above discussion shows that unlike the derivatives,
classes of Darboux-like functions are not closed under addi-
tion. It is also not difficult to see that none of these classes
(including A’, see P, p. 19) is closed under multiplication.
Closure under composition gives a completely different pic-
ture. First of all, the derivatives are not closed under compo-
sition: by a theorem of I. Maximoff (see, e.q2, [p. 29), for
every Darboux Baire class 1 functignR — R (which does
not need to be a derivative) there exists a homeomorphism
of R such thatf = g o & is a derivative; so, the composition
g = f o h~1 does not need to be a derivative. It is obvious
from the definition that the class D of Darboux functions
is closed under composition, and clearly so is C. The other
classes from Chart 3, except for Ext, are not closed under
composition. The problem of closure of Ext under composi-
tion remains openl4, Q. 9.1. In fact, it is even not known

most unchanged: the only difference is that in this case we whether the composition of two derivatives must be in Conn.
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A partial positive result in this direction was recently ob- A function f : R — R is symmetrically continuous, f €

tained by M. Csérnyei, T.C. O’'Neil, D. Preis&(] and, in- SC, provided lim_ol f (x + k) — f(x — h)] = 0 for every

dependently, by M. Elekes, T. Keleti, V. Prokdjl], who x € R; itis approximately symmetrically continuous, f €

proved that the composition of two derivatives fr¢f) 1] ApprSC, if applim,_, ol f (x + h) — f(x — h)] =0 for each

into [0, 1] must have a fixed point. (So, we cannot exclude x € R. The theory of symmetrically continuous functions

the possibility thatd’ o A’ € AC.) stems from the theory of trigonometric series and dates back
The main reason for the studies of classes of functionsto the beginning of the 20th century. Research in this area

related to derivatives comes from the fact that the cldss  has been very active in the last several years ($6p &f-

of all derivatives does not have any known nice character- ter C. Freiling and D. Rinne in 1988 solved a long standing

ization. (See %].) One of the recent attempts of finding a problem proving that every measurable functiprik — R
characterization was ttopologize it, that is to find two havingapproximate symmetric derivative,

topologies 7o and ;3 on R for which A’ is equal to the

class g, 1) of all continuous functions froniR, zp) into ; def . fx+h)— f(x—h)

(R, 71). Unfortunately,A’ cannot be topologized, as shown Dy f(x) = applim, . 2h ’

by K. Ciesielski and, independently, by M. Tartaglia. (S&e [

Corollary 5.3.) However K. Ciesielski4] proved that it can equal O for allx € R must be constant almost everywhere.
be characterized by preimages of sets in the sense that ther€. Freiling [L2] also proved that it is consistent withFC
exist families.A and B of subsets ofR with the property that in the above theorem the assumption of a measurability
that A" = {f e RR: f~1(B) € A forevery B € B}. It is of f can be dropped. However, this cannot be proveafFio,
interesting, that if theSeneralized Continuum Hypothess  as under th€ontinuum Hypothesis, CH, W. Sierphski con-
holds then many classes of functions can be topologized [  structed a nonempty proper sub&esf R for which f = X x

Section §. In particular, this is the case for any clasof has approximate symmetric derivative equal 0 foadl R.
functions containing all constant functions such ttfais The above classes can be added to Chart 3 as follows.
contained either in the class of analytic functions frRno
R or in the class of harmonic functions fraR? to R2. Ext
The classA’ is also closely related to the class Appr Appr/
of approximately continuous functions, which was intro- 7 —
duced by A. Denjoy in 1915. (See, e.@, [1].) Recall that C\ P ApprsC
f:R — R is in Appr provided for everyyg € R the ap- SC\
proximate limit applim,_, , f(x) equals tof (xo), where Measurable

applim._, ,, f(x) = L if there exists a se§ C R such that

xo is a (Lebesgueajensity point of S (that is, _ , , _
Chart 5. Approximately and symmetrically continuous functions.

lim MSAlxo—h xo+ kD) =1, The fact that every symmetrically continuous function

h—0F 2h is measurable follows from a theorem I.N. Pesin and
D. Preiss 16, Theorem 2.ZGasserting that if ary is sym-
metrically continuous then its set of points of discontinuity

from the fact that every bounded approximately continu- IS meager and of measure zero. On the ot_her hand, an ap-
ous functions is a derivative. Also, each function in Appr proximately symmetrically continuous function need not be

is Darboux Baire class 1, so it belongs to every class of Measurable, aswitnessed by the functios X y mentioned
Darboux-like functions. It was not until 1952 that O. Haupt @POVve. Itis unknown whether there existBRC example of
and C. Pauc defined thaensity topology 7ps onR (which anonmeasurable function in ApprSC.

is the family of allG c R such that every € G is a den- It is easy to see that all inclusions in Chart 5 are proper.
sity point of G) and showed that Appr is equal to the class For example, clearly o) € SC\ Appr. To getg € Appr\ SC
C(tzr, 7o) of all functions continuous with respect to the t@keao < bp < a1 < by < --- <0 such that 0 is an accu-
density topologyzys on the domain and the ordinary topo- Mulation point of £ = J, _,[ax, bx] and a density point
logy 7o on the range. Their paper seemed to have had almostof R \ E. Putg(x) =0 for x e R\ E and defineg(x) =

no impact and the same results were rediscovered in 19616, — ax) *dist(x, R \ [a,. b,]) for x € [a,.b,]. Finally

by C. Goffman and D. Waterman. (Seg, [Section 1.k) g+ X0) € ApprSC\ (Appru SO).

This led to deep studies of the density topology, as well ~ Another interesting notion of generalized continuity is

with A(A) standing for the inner Lebesgue measureAdf
and lim,_ x, xes f(x) = L. The interest in Appr comes

as to its category analogr, known under the name df- known ascountable continuity. For topological spacex,
density topology. Extensive research have been also con- ¥ andF C Y*, we definedec(F) as the smallest infinite
ducted on the classes(fz, t¢) of Z-approximately con- cardinalx such that for everyf € F there is a family of
tinuousfunctions, C(zas, 7o) of density continuousfunc- at mostk-many continuous functiong from a subset oX
tions, and Gz, 7) of Z-density continuous functions. into Y such that the graph of is covered by the graphs of

(See[].) Classes Crar, To) and Qzz, Tp) are closed under  all these functiong. A function f : X — Y is k-continuous
addition, while Gzxs, tor) and Qrz, t7) are not. provided de¢{ f}) < «; it is countably continuous if f is
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w-continuous. (See3] Section 4.) The study of these no-
tions was initiated by a question of N. Luzin whether every
Borel function fromR into R is countably continuous. This

guestion was answered negatively by P.S. Novikov and gen-

eralized by L. Keldys. In fact we have already d&¢) > w,
where B1 is the family of Baire class 1 functions froifR
to R. The most general result in this direction was obtained
by J. Cichd, M. Morayne, J. Pawlikowski and S. SolecRi [
Theorem 4.1 who proved that cogM) < dedB1) < d,
where coyM) is the smallest cardinality of a&overing
of R by meager sets, and is the dominating number.
The consistency of cqwm) < deqB;) and de¢By) < d
was proved by S. Stegns B, Theorem 4.} and S. She-
lah, S. Stemans B, Theorem 4.]3 respectively. Number dec
has been also studied by K. Ciesielski B],[in which he
proved that caft) < deqSC) = deqS2) = deqR®) < cand
that each of the inequalities can be strict.(epstands for
the cofinality of the continuume and SZ for the class of
Sierpinski-Zygmund functions f:R — R, that is, those
whose restrictiory [ X is discontinuous for ever¥ C R of
cardinalityc.

Finally, one can ask how much continuity an arbitrary
function from a topological spack into Y must have. (See,
e.g., B, pp- 148, 14R) In 1922 H. Blumberg proved that for
every f:R — R there exists a dense subgebdf R such that
f I D is continuous. This result was generalized by several

authors to more general topological spaces. However, the

most interesting discussion of Blumberg theorem remains
in the case of functions froR to R. Blumberg’s setD is
countable and irZFC this is the best that can be proved,
since undeCH a restriction of a Sierpiski—-Zygmund func-
tion to any uncountable set is discontinuous. A similar ex-
ample can be also found in some modelszéC (e.g., a
Cohen model) in the absence ofH as noticed by several
authors. (See3, Theorem 2.p) At the same time S. Bald-
win [3, Theorem 2 Bshowed that undeMartin’s Axiom

for every functionf:R — R and every cardinal number
k < ¢ there exists a seéb C R such thatf | D is continu-
ous andD is «x-dense, that is,D N I has cardinality at least

« for every nondegenerated intervhl In the same direc-
tion S. Shelah3, Theorem 2.1showed that it is consistent
with ZFC that for every functionf :R — R there exists a
setD C R such thatf | D is continuous and is nowhere
meager, that is,D N I is nonmeager for every nontrivial in-
terval I. Most recently, A. Rostanowski and S. Shelah (un-
published) also found a model @FC in which it is always
possible to find the sab of positive outer measure, though
in this case we cannot require thatis dense irfR. (See B,
Theorem 2.1]1)

Its is easy to find a functiory :R — R which has no
points of continuity — the characteristic function of the
set of rational numbers has this property. But what if we
ask for points of continuity in weaker sense? For exam-
ple, a functionf :R — R is weakly continuous at x if it
has the Young property at, that is, if there are sequences
ap, /' 0andb, \ 0 such that lim_s f(x +a,) = f(x) =
lim,— o f(x + by). This notion is so weak that it is im-
possible to find a functiory :R — R which is nowhere

weakly continuous. More precisely, every:R — R is
weakly continuous everywhere on the complement of a
countable set. (See3[ Theorem 2.1) A natural sym-
metric counterpart of weak continuity is defined as fol-
lows: a functionf : R — R is weakly symmetrically con-
tinuous at x provided there exists a sequenkg — 0
such that lim_ o (f (x + h,) — f(x — hy)) =0. The sym-
metric version of the theorem mentioned above badly
fails: K. Ciesielski and L. Larson3, Theorem 2.1J7con-
structed a nowhere weakly symmetrically continuous func-
tions f:R — {0,1,2,3,...}. It is unknown whether a
nowhere weakly symmetrically continuous functighsR —
R can have finite rang&[ Problem 2, though its range must
have at least four elements. K. Ciesielski and S. Shelah |
proved that such apf can have bounded countable range.
For functions fromR to R many generalized continu-

ities mentioned above can be viewed in the contextath

— . def,. ..
limit P-lim,_ , f(x) < liMmy_ . xep f(x) Wherexg is in

the closure ofP N (xg, 00) and of P N (—o0, xg). Thus, for

a continuous function the path at xg must be an interval;
for f € PR a path must be a perfect set; fore PC (i.e.,
weakly continuous) any path works; for an approximately
continuous functionrg must be a density point of a pafh

in any symmetric version of these notions the paths must be
symmetric with respect t@g. Luzin's theorem implies that
every bounded measurable functignR — R is approxi-
mately continuous almost everywhere. Blumberg’s theorem
and Sierpaski—Zygmund's example illustrate the extent to
which arbitrary functions have sets of restricted continu-

ity.

Certainly, the above discussion barely touches the tip of
the iceberg of different notions of generalized continuities.
From the notions not mentioned so far probably the most
studied is that of quasi-continuity introduced in 1932 by
Kempisty. (See I3, Section §) Thus, a functionf from
a topological spaceX into R is quasi-continuous, f €
QC(X), if for every x € X and open set®¥/ > x andV >
f(x) there exists a nonempty op@h C U with f[W]C V.

The other two closely related classes are defined as follows.
Afunction f: X — Riscliquish, f € CLIQ(X), if for every

x € X, openU 3 x, ande > O there is a nonempty open
W C U such that|f(y) — f(z)] < e forall y,ze W, f

is almost continuousin sense of Husain, f € ACH(X), if

for everyx € X and openV > f(x) pointx belongs to the
interior of the closure off ~1(V). It is not difficult to see
that QG X) c CLIQ(X) and that everyf € CLIQ(X) has
the Baire property. Quasi-continuous functions need not to
be in PC, as witnessed b0 ). Also, ExtZ CLIQ(R),
since Ext+ Ext=RF # CLIQ(R) = CLIQ(R) + CLIQ(R).

The relation Extz ACH(R) ¢ D is justified by a sifl/x)-
function and the characteristic function of the set of rational
numbers, respectively. However, we have AGH c PC.
Also, QCR) ¢ ACH(R) and ACHR) ¢ CLIQ(R), where
the second relation is justified by the characteristic function
of aBernstein set.
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