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126 Section C: Maps and general types of spaces defined by maps

c-13 Generalized Continuities

There are many different properties of functions that can be
considered as generalized continuity notions. In this article
we will describe mainly those that arose from the study of
real functions, concentrating first on the classes of functions
known under the common name of Darboux-like functions.
(See, e.g., survey articles [13, 14, 6, 3].)

For topological spacesX andY , a functionf :X → Y

is a Darboux function (or has theDarboux property),
f ∈ D(X,Y ), provided the imagef [C] of C underf is a
connected subset ofY for every connected subsetC of X. In
particular,f :R → R is Darboux providedf maps intervals
onto intervals, that is, when it has theintermediate value
property. The name comes after G. Darboux who showed in
1875 that every derivative (of a function fromR to R) has the
intermediate value property, while there are derivatives dis-
continuous on adense set. (Some 19th century mathemati-
cians thought that the intermediate value property could be
taken as the definition of continuity. Some calculus teachers
still think so.) One of the easiest examples of a discontinuous
Darboux function isf0 :R → R given byf0(x) = sin(1/x)
for x �= 0 andf0(0)= 0.

A function f :X → Y is connectivity, f ∈ Conn(X,Y ),
if the graph of the restrictionf � Z of f to Z is con-
nected inX × Y for every connected subsetZ of X. It is
easy to see thatf :R → R is connectivity if and only if
its graph is a connected subset ofR2. However, there are
functionsF :R2 → R with a connected graph which are
not connectivity functions. For example, this is the case if
F(x, y) = sin(1/x) for x �= 0, andF(0, y) = h(y), where
h :R → [−1,1] is any function with a disconnected graph.

A functionf :X → Y is extendable, f ∈ Ext(X,Y ), pro-
vided there exists a connectivity functionF :X×[0,1] → Y

such thatf (x) = F(x,0) for everyx ∈ X. It is easy to see
that

C(X,Y )⊂ Ext(X,Y )⊂ Conn(X,Y )⊂ D(X,Y )

for arbitrary topological spaces, where C(X,Y ) stands for
the class of allcontinuous functions fromX into Y .

A functionf :X → Y is almost continuous (in the sense
of Stallings),f ∈ AC(X,Y ), provided each open subset of
X×Y containing the graph off also contains the graph of a
continuous function fromX to Y . This property was defined
as a generalization of functions having thefixed-point prop-
erty. It is easy to see that if every function in C(X,X) has
the fixed-point property, then so does everyf ∈ AC(X,X).

A function f :X → Y is peripherally continuous, f ∈
PC(X,Y ), if for every x ∈ X and for all pairs of open sets
U andV containingx andf (x), respectively, there exists an
open subsetW of U such thatx ∈ W andf [bd(W)] ⊂ V ,
where bd(W) is the boundary of W . For the functions

f :R → R this means thatf has theYoung property, that
is, for everyx ∈ R there exist sequences{xn}n and {yn}n
such thatxn ↗ x, yn ↘ x, and bothf (xn) andf (yn) con-
verge tof (x). In 1907 J. Young showed that for theBaire
class 1 functions, the Darboux property and the Young prop-
erty are equivalent.

We will discuss the above mentioned classes only when
Y = R. If X = Rn andn > 1 the relations between these
classes are given by the following chart, where arrows−→
denote strict inclusions. (See [6].)

AC
C −→ Ext= Conn= PC−→ AC ∩ D

D

Chart 1. Darboux-like functions fromRn, n > 1, intoR.

The inclusion Conn⊂ Ext was proved by K. Ciesielski,
T. Natkaniec, and J. Wojciechowski [8]. The containment
Conn⊂ PC was proved by O.H. Hamilton and J. Stallings,
and the inclusion PC⊂ Conn by M.R. Hagan. The relation
Conn⊂ AC was proved by J. Stallings. It is important to
notice that Chart 1 remains unchanged if we consider only
Baire class 1 functions [6].

Classes presented in Chart 1 were also studied within
the class Add(Rn) of additive functions, that is, functions
f :Rn → R for which f (x + y) = f (x) + f (y) for all
x, y ∈ Rn. In this case Chart 1 transforms to

AC
C = Ext= Conn= PC= AC ∩ D

D

Chart 2. Additive Darboux-like functions fromRn, n > 1, intoR.

The inclusion AC∩ D ⊂ C was proved by K. Ciesielski and
J. Jastrz¸ebski [6].

The Darboux-like functions were most intensively stud-
ied whenX = Y = R. In this setting, more classes are con-
sidered Darboux-like. Thus, a functionf :R → R has: the
Cantor intermediate value property if for every x, y ∈ R

and for eachperfect set K betweenf (x) andf (y) there is
a perfect setC betweenx andy such thatf [C] ⊂ K; the
strong Cantor intermediate value property if for every
x, y ∈ R and for each perfect setK betweenf (x) andf (y)
there is a perfect setC betweenx andy such thatf [C] ⊂K

and f � C is continuous; theweak Cantor intermediate
value property if for every x, y ∈ R with f (x) < f (y)

there exists a perfect setC betweenx and y such that
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f [C] ⊂ (f (x), f (y)); the perfect road if for every x ∈ R

there exists a perfect setP ⊂ R havingx as a bilateral (i.e.,
two sided) limit point for whichf � P is continuous atx.
The classes of these functions are denoted by CIVP, SCIVP,
WCIVP, and PR, respectively. The relations between them
are as follows [13, 6].

AC Conn D

C Ext PC

SCIVP CIVP PR

WCIVP

Chart 3. Darboux-like functions fromR into R.

The inclusions Ext⊂ AC ⊂ Conn were proved by J. Stal-
lings while the containment Ext⊂ SCIVP was proved by
H. Rosen, R.G. Gibson, and F. Roush.

The main interest in Darboux-like functions comes from
the fact that the class∆′ of the derivatives fromR into R

is contained in all these classes, that is, C� ∆′ � Ext. This
follows from the fact that every derivative is Darboux Baire
class 1 (see, e.g., [2]) while within the Baire class 1 Chart 3
reduces to

C → Ext= AC = Conn= D = PC

= SCIVP= CIVP= PR→ WCIVP.

The proof that every peripherally continuous Baire class 1
function f :R → R is extendable is due to J. Brown,
P. Humke and M. Laczkovich [1]. In fact, most of the prop-
erties used to define Darboux-like functions were introduced
as characterizations of Darboux functions within the Baire
class 1, in a form “a Baire class 1 functionf is Darboux if
and only iff satisfies thegiven property”. But these prop-
erties make sense without the Baire class 1 restriction, so it
was natural to study these various conditions on their own,
and to find the interrelations. A number of mathematicians
did just that in the latter part of the 20th century.

It is interesting that within the Baire class 2 Chart 3 has
yet another, quite different form [6]:

PR−→PC

C−→Ext−→AC−→Conn−→D−→SCIVP= CIVP

WCIVP

Chart 4. Darboux-like Baire class 2 functions fromR into R.

The most involved work in arguing for this chart is the
nonreversability of the inclusions. (See [6, Theorem 1.2].)
Chart 4 remains unchanged if we restrict Darboux-like func-
tions to Borel functions (i.e., functions for which preim-
ages ofBorel sets are again Borel) in place of Baire class 2.
Within the class of additive functions Chart 3 remains al-
most unchanged: the only difference is that in this case we

have PR= WCIVP and that the example of additive function
f :R → R from Conn\ AC (which is also CIVP) is known
only under an extra set theoretical assumption that the union
of less than continuum many meager subsets ofR is meager
in R. (A subset of a topological spaceX is a meager set,
or of the first category, if it is a countable union ofnowhere
dense subsets ofX.)

The Darboux-like classes of functions are not closed un-
der arithmetic operations. (See, e.g., surveys [13, 3].) For
example, iff0 is the sin(1/x) function defined above and
f1 = f0+χ {0}, whereχA is the characteristic function ofA,
then bothf0 andf1 are Darboux Baire class 1, so they are
also extendable. However,f1 −f0 = χ {0} is clearly not even
in PC. In fact, in 1927 A. Lindenbaum noticed that every
functionf :R → R can be written as a sum of two Darboux
functions, while H. Fast in 1959 proved that for every family
F ⊂ RR of cardinality continuum there is just one Darboux

functiong ∈ RR such thatg+F
def= {g+f : f ∈ F} is a sub-

set of D. The result of H. Fast is a generalization of that of
A. Lindenbaum, since it is easy to see thatRR = F − F if
and only if for everyf,f ′ ∈ RR there exists ag ∈ RR such
thatg + f,g + f ′ ∈ F . (See [3, Proposition 4.9].) This led
T. Natkaniec [15] to study the following cardinal operator
defined for everyF ⊂ RX , where|X| stands for the cardi-
nality ofX:

A(F )=min
{|H |: H ⊂ RX & ¬∃g ∈ RX g +H ⊂F

}

∪ {∣∣RX
∣∣+}

.

The values of the operatorA for Darboux-like classes of
functions fromR to R are as follows (see, e.g., [3, Theo-
rems 4.7 and 4.10]):

c
+ = A(PR)= A(Ext)� A(AC)= A(D)� A(PC)= 2c,

where the value of A(D) betweenc+ and 2c can vary in dif-
ferent models ofZFC. Moreover, the monotonicity of the
operatorA implies that A(Ext)= A(SCIVP)= A(CIVP) =
A(PR)= c+ and A(AC)= A(Conn)= A(D).

The above discussion shows that unlike the derivatives,
classes of Darboux-like functions are not closed under addi-
tion. It is also not difficult to see that none of these classes
(including∆′, see [2, p. 14]) is closed under multiplication.
Closure under composition gives a completely different pic-
ture. First of all, the derivatives are not closed under compo-
sition: by a theorem of I. Maximoff (see, e.g., [2, p. 26]), for
every Darboux Baire class 1 functiong :R → R (which does
not need to be a derivative) there exists a homeomorphismh

of R such thatf = g ◦ h is a derivative; so, the composition
g = f ◦ h−1 does not need to be a derivative. It is obvious
from the definition that the class D of Darboux functions
is closed under composition, and clearly so is C. The other
classes from Chart 3, except for Ext, are not closed under
composition. The problem of closure of Ext under composi-
tion remains open [14, Q. 9.1]. In fact, it is even not known
whether the composition of two derivatives must be in Conn.
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A partial positive result in this direction was recently ob-
tained by M. Csörnyei, T.C. O’Neil, D. Preiss [10] and, in-
dependently, by M. Elekes, T. Keleti, V. Prokaj [11], who
proved that the composition of two derivatives from[0,1]
into [0,1] must have a fixed point. (So, we cannot exclude
the possibility that∆′ ◦∆′ ⊂ AC.)

The main reason for the studies of classes of functions
related to derivatives comes from the fact that the class∆′
of all derivatives does not have any known nice character-
ization. (See [2].) One of the recent attempts of finding a
characterization was totopologize it, that is to find two
topologies τ0 and τ1 on R for which ∆′ is equal to the
class C(τ0, τ1) of all continuous functions from〈R, τ0〉 into
〈R, τ1〉. Unfortunately,∆′ cannot be topologized, as shown
by K. Ciesielski and, independently, by M. Tartaglia. (See [3,
Corollary 5.5].) However K. Ciesielski [4] proved that it can
be characterized by preimages of sets in the sense that there
exist familiesA andB of subsets ofR with the property
that ∆′ = {f ∈ RR: f−1(B) ∈ A for every B ∈ B}. It is
interesting, that if theGeneralized Continuum Hypothesis
holds then many classes of functions can be topologized [3,
Section 5]. In particular, this is the case for any classF of
functions containing all constant functions such thatF is
contained either in the class of analytic functions fromR to
R or in the class of harmonic functions fromR2 to R2.

The class∆′ is also closely related to the class Appr
of approximately continuous functions, which was intro-
duced by A. Denjoy in 1915. (See, e.g., [2, 7].) Recall that
f :R → R is in Appr provided for everyx0 ∈ R the ap-
proximate limit applimx→x0

f (x) equals tof (x0), where
applimx→x0

f (x) = L if there exists a setS ⊂ R such that
x0 is a (Lebesgue)density point of S (that is,

lim
h→0+

λ(S ∩ [x0 − h,x0 + h])
2h

= 1,

with λ(A) standing for the inner Lebesgue measure ofA)
and limx→x0, x∈S f (x) = L. The interest in Appr comes
from the fact that every bounded approximately continu-
ous functions is a derivative. Also, each function in Appr
is Darboux Baire class 1, so it belongs to every class of
Darboux-like functions. It was not until 1952 that O. Haupt
and C. Pauc defined thedensity topology τN on R (which
is the family of allG ⊂ R such that everyx ∈ G is a den-
sity point ofG) and showed that Appr is equal to the class
C(τN , τO) of all functions continuous with respect to the
density topologyτN on the domain and the ordinary topo-
logy τO on the range. Their paper seemed to have had almost
no impact and the same results were rediscovered in 1961
by C. Goffman and D. Waterman. (See [7, Section 1.5].)
This led to deep studies of the density topology, as well
as to its category analogτI , known under the name ofI-
density topology. Extensive research have been also con-
ducted on the classes C(τI , τO) of I-approximately con-
tinuous functions, C(τN , τN ) of density continuous func-
tions, and C(τI , τI) of I-density continuous functions.
(See [7].) Classes C(τN , τO) and C(τI , τO) are closed under
addition, while C(τN , τN ) and C(τI, τI) are not.

A functionf :R → R is symmetrically continuous, f ∈
SC, provided limh→0[f (x + h) − f (x − h)] = 0 for every
x ∈ R; it is approximately symmetrically continuous, f ∈
ApprSC, if applimh→0[f (x + h)− f (x − h)] = 0 for each
x ∈ R. The theory of symmetrically continuous functions
stems from the theory of trigonometric series and dates back
to the beginning of the 20th century. Research in this area
has been very active in the last several years (see [16]) af-
ter C. Freiling and D. Rinne in 1988 solved a long standing
problem proving that every measurable functionf :R → R

havingapproximate symmetric derivative,

Ds
apf (x)

def= applimh→0
f (x + h)− f (x − h)

2h
,

equal 0 for allx ∈ R must be constant almost everywhere.
C. Freiling [12] also proved that it is consistent withZFC
that in the above theorem the assumption of a measurability
of f can be dropped. However, this cannot be proved inZFC,
as under theContinuum Hypothesis, CH, W. Sierpínski con-
structed a nonempty proper subsetX of R for whichf = χ

X

has approximate symmetric derivative equal 0 for allx ∈ R.
The above classes can be added to Chart 3 as follows.

Ext
Appr

C ApprSC

SC
Measurable

Chart 5. Approximately and symmetrically continuous functions.

The fact that every symmetrically continuous function
is measurable follows from a theorem I.N. Pesin and
D. Preiss [16, Theorem 2.26] asserting that if anf is sym-
metrically continuous then its set of points of discontinuity
is meager and of measure zero. On the other hand, an ap-
proximately symmetrically continuous function need not be
measurable, as witnessed by the functionf = χ

X mentioned
above. It is unknown whether there exists aZFC example of
a nonmeasurable function in ApprSC.

It is easy to see that all inclusions in Chart 5 are proper.
For example, clearlyχ {0} ∈ SC\Appr. To getg ∈ Appr\SC
take a0 < b0 < a1 < b1 < · · · < 0 such that 0 is an accu-
mulation point ofE = ⋃

n<ω[an, bn] and a density point
of R \ E. Put g(x) = 0 for x ∈ R \ E and defineg(x) =
(bn − an)

−1dist(x,R \ [an, bn]) for x ∈ [an, bn]. Finally
g + χ {0} ∈ ApprSC\ (Appr∪ SC).

Another interesting notion of generalized continuity is
known ascountable continuity. For topological spacesX,
Y andF ⊂ YX , we definedec(F ) as the smallest infinite
cardinalκ such that for everyf ∈ F there is a family of
at mostκ-many continuous functionsg from a subset ofX
into Y such that the graph off is covered by the graphs of
all these functionsg. A functionf :X → Y is κ-continuous
provided dec({f }) � κ ; it is countably continuous if f is
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ω-continuous. (See [3, Section 4].) The study of these no-
tions was initiated by a question of N. Luzin whether every
Borel function fromR into R is countably continuous. This
question was answered negatively by P.S. Novikov and gen-
eralized by L. Keldyš. In fact we have already dec(B1) > ω,
whereB1 is the family of Baire class 1 functions fromR
to R. The most general result in this direction was obtained
by J. Cichón, M. Morayne, J. Pawlikowski and S. Solecki [3,
Theorem 4.1] who proved that cov(M) � dec(B1) � d ,
where cov(M) is the smallest cardinality of acovering
of R by meager sets, andd is the dominating number.
The consistency of cov(M) < dec(B1) and dec(B1) < d

was proved by S. Steprāns [3, Theorem 4.2], and S. She-
lah, S. Stepr̄ans [3, Theorem 4.3], respectively. Number dec
has been also studied by K. Ciesielski in [5], in which he
proved that cof(c)� dec(SC)= dec(SZ)= dec(RR)� c and
that each of the inequalities can be strict. cof(c) stands for
the cofinality of the continuumc and SZ for the class of
Sierpiński–Zygmund functions f :R → R, that is, those
whose restrictionf �X is discontinuous for everyX ⊂ R of
cardinalityc.

Finally, one can ask how much continuity an arbitrary
function from a topological spaceX into Y must have. (See,
e.g., [3, pp. 148, 149].) In 1922 H. Blumberg proved that for
everyf :R → R there exists a dense subsetD of R such that
f � D is continuous. This result was generalized by several
authors to more general topological spaces. However, the
most interesting discussion of Blumberg theorem remains
in the case of functions fromR to R. Blumberg’s setD is
countable and inZFC this is the best that can be proved,
since underCH a restriction of a Sierpiński–Zygmund func-
tion to any uncountable set is discontinuous. A similar ex-
ample can be also found in some models ofZFC (e.g., a
Cohen model) in the absence ofCH as noticed by several
authors. (See [3, Theorem 2.9].) At the same time S. Bald-
win [3, Theorem 2.8] showed that underMartin’s Axiom
for every functionf :R → R and every cardinal number
κ < c there exists a setD ⊂ R such thatf � D is continu-
ous andD is κ-dense, that is,D ∩ I has cardinality at least
κ for every nondegenerated intervalI . In the same direc-
tion S. Shelah [3, Theorem 2.10] showed that it is consistent
with ZFC that for every functionf :R → R there exists a
setD ⊂ R such thatf �D is continuous andD is nowhere
meager, that is,D ∩ I is nonmeager for every nontrivial in-
terval I . Most recently, A. Rosłanowski and S. Shelah (un-
published) also found a model ofZFC in which it is always
possible to find the setD of positive outer measure, though
in this case we cannot require thatD is dense inR. (See [3,
Theorem 2.11].)

Its is easy to find a functionf :R → R which has no
points of continuity – the characteristic function of the
set of rational numbers has this property. But what if we
ask for points of continuity in weaker sense? For exam-
ple, a functionf :R → R is weakly continuous at x if it
has the Young property atx, that is, if there are sequences
an ↗ 0 andbn ↘ 0 such that limn→∞ f (x + an) = f (x)=
limn→∞ f (x + bn). This notion is so weak that it is im-
possible to find a functionf :R → R which is nowhere

weakly continuous. More precisely, everyf :R → R is
weakly continuous everywhere on the complement of a
countable set. (See [3, Theorem 2.16].) A natural sym-
metric counterpart of weak continuity is defined as fol-
lows: a functionf :R → R is weakly symmetrically con-
tinuous at x provided there exists a sequencehn → 0
such that limn→∞(f (x + hn)− f (x − hn))= 0. The sym-
metric version of the theorem mentioned above badly
fails: K. Ciesielski and L. Larson [3, Theorem 2.17] con-
structed a nowhere weakly symmetrically continuous func-
tions f :R → {0,1,2,3, . . .}. It is unknown whether a
nowhere weakly symmetrically continuous functionsf :R →
R can have finite range [3, Problem 2], though its range must
have at least four elements. K. Ciesielski and S. Shelah [9]
proved that such anf can have bounded countable range.

For functions fromR to R many generalized continu-
ities mentioned above can be viewed in the context ofpath

limit P -limx→x0 f (x)
def= limx→x0, x∈P f (x) wherex0 is in

the closure ofP ∩ (x0,∞) and ofP ∩ (−∞, x0). Thus, for
a continuous function the pathP at x0 must be an interval;
for f ∈ PR a path must be a perfect set; forf ∈ PC (i.e.,
weakly continuous) any pathP works; for an approximately
continuous functionx0 must be a density point of a pathP ;
in any symmetric version of these notions the paths must be
symmetric with respect tox0. Luzin’s theorem implies that
every bounded measurable functionf :R → R is approxi-
mately continuous almost everywhere. Blumberg’s theorem
and Sierpínski–Zygmund’s example illustrate the extent to
which arbitrary functions have sets of restricted continu-
ity.

Certainly, the above discussion barely touches the tip of
the iceberg of different notions of generalized continuities.
From the notions not mentioned so far probably the most
studied is that of quasi-continuity introduced in 1932 by
Kempisty. (See [13, Section 6].) Thus, a functionf from
a topological spaceX into R is quasi-continuous, f ∈
QC(X), if for every x ∈ X and open setsU � x andV �
f (x) there exists a nonempty openW ⊂U with f [W ] ⊂ V .
The other two closely related classes are defined as follows.
A functionf :X → R is cliquish, f ∈ CLIQ(X), if for every
x ∈ X, openU � x, and ε > 0 there is a nonempty open
W ⊂ U such that|f (y) − f (z)| < ε for all y, z ∈ W ; f
is almost continuous in sense of Husain, f ∈ ACH(X), if
for everyx ∈ X and openV � f (x) point x belongs to the
interior of the closure off−1(V ). It is not difficult to see
that QC(X) ⊂ CLIQ(X) and that everyf ∈ CLIQ(X) has
theBaire property. Quasi-continuous functions need not to
be in PC, as witnessed byχ(0,∞). Also, Ext �⊂ CLIQ(R),
since Ext+ Ext= RR �= CLIQ(R)= CLIQ(R)+ CLIQ(R).
The relation Ext�⊂ ACH(R) �⊂ D is justified by a sin(1/x)-
function and the characteristic function of the set of rational
numbers, respectively. However, we have ACH(R) ⊂ PC.
Also, QC(R) �⊂ ACH(R) and ACH(R) �⊂ CLIQ(R), where
the second relation is justified by the characteristic function
of a Bernstein set.



hart v.2003/06/25 Prn:27/08/2003; 14:57 F:hartc13.tex; VTEX/J p. 5

130 Section C: Maps and general types of spaces defined by maps

References

[1] J. Brown, P. Humke and M. Laczkovich,Measur-
able Darboux functions, Proc. Amer. Math. Soc.102
(1988), 603–610.

[2] A.M. Bruckner, Differentiation of Real Functions,
CMR Series, Vol. 5, Amer. Math. Soc., Providence, RI
(1994).

[3] K. Ciesielski,Set theoretic real analysis, J. Appl. Anal.
3 (2) (1997), 143–190.

[4] K. Ciesielski,Characterizing derivatives by preimages
of sets, Real Anal. Exchange23 (1997–1998), 553–
565.

[5] K. Ciesielski,Decomposing symmetrically continuous
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