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Abstract. In the paper we formulate an axiom CPAgame
prism, which is

the most prominent version of the Covering Property Axiom CPA, and
discuss several of its implications. In particular, we show that it implies
that the following cardinal characteristics of continuum are equal to ω1,
while c = ω2: the independence number i, the reaping number r, the
almost disjoint number a, and the ultrafilter base number u. We will
also show that CPAgame

prism implies the existence of crowded and selective
ultrafilters as well as nonselective P -points. In addition we prove that
under CPAgame

prism every selective ultrafilter is ω1-generated. The paper
finishes with the proof that CPAgame

prism holds in the iterated perfect set
model.

1. Introduction and preliminaries

The Covering Property Axiom, CPA, constitutes an attempt to axioma-
tize the iterated perfect set (Sacks) model. In this paper we will consider its
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prominent version, CPAgame
prism, as well its three weaker variations: CPAprism,

CPAgame
cube , and CPAcube. They are related to each other by the following

implications.

CPAgame
prism

��
��1

PPPPq

CPAgame
cube

CPAprism

PPPPq

��
��1 CPAcube

Chart 1.

Although in some cases the stronger versions of CPA are useful (see e.g. [8,
Chapter 6]), it is known that the axiom CPAgame

prism captures the essence of the
Sacks model concerning the standard cardinal characteristics of continuum.
This follows from a resent result of J. Zapletal [27] who proved that for a
“nice” cardinal invariant κ if κ < c holds in any forcing extension then κ < c
follows already from CPAgame

prism.
The Covering Property Axiom is quite simple in formulation and use,

nevertheless it requires some new concepts. To facilitate the absorption of
these concepts we decided to introduce the axiom in three steps, beginning
with its simplest form. (More on CPA can be found in [8].) Thus, in
Section 2 we formulate the simplest version of the axiom, CPAcube, and
show that it implies that every selective ultrafilter is generated by ω1 sets
and that the reaping number r is equal to ω1. In Section 3 we will formulate
axiom CPAgame

cube and show that it implies CPAcube as well as the existence
of a family F ⊂ [ω]ω of cardinality ω1 which is simultaneously maximal
almost disjoint, MAD, and reaping. In particular, CPAgame

cube implies that
a = ω1 < c. In Section 4 we will formulate axioms CPAgame

prism and CPAprism

and show that CPAgame
prism implies all other versions of the axiom. We will

also show there that CPAgame
prism implies the existence of selective and crowded

ultrafilters as well as nonselective P -points. In addition we prove there that
CPAgame

prism implies the existence of a family F ⊂ [ω]ω of cardinality ω1 which
is simultaneously independent and splitting. In particular, under CPAgame

prism
we have s = i = u = ω1 < c. In the last section of the paper we will prove
the prism fusion lemma, which has been used in Section 4, and show that
CPAgame

prism holds in the iterated perfect set model.

Our set theoretic terminology is standard and follows that of [6]. In
particular, |X| stands for the cardinality of a set X and c = |R|. A Cantor
set 2ω will be denoted by a symbol C. We use the term Polish space for a
complete separable metric space without isolated points. For a Polish
space X, the symbol Perf(X) will stand for the collection of all subsets of
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X homeomorphic to a Cantor set C. For a function f : X → R and A ⊂ X
an image of A under f is denoted by f [A], that is, f [A] = {f(x) : x ∈ A}.

For an ideal I on ω containing all finite subsets of ω we will use the
following generalized selectivity terminology. We say (see Farah [14]) that
an ideal I is selective provided for every sequence F0 ⊃ F1 ⊃ · · · of sets
from I+ def= P(ω) \ I there exists an F∞ ∈ I+ (called a diagonalization of
this sequence) such that F∞ \ {0, . . . , n} ⊂ Fn for all n ∈ F∞. Notice that
this definition agrees with the definition of selectivity given by Grigorieff
in [15, p. 365]. (The ideals selective in the above sense Grigorieff calls
inductive but he also proves [15, Corollary 1.15] that the inductive ideals
and the ideals selective in his sense are the same notions.)

For A,B ⊂ ω we will write A ⊆∗ B when |A \ B| < ω. A set D ⊂ I+

is dense in I+ provided for every B ∈ I+ there exists an A ∈ D such
that A ⊆∗ B; set D is open in I+ if B ∈ D provided there is an A ∈ D
such that B ⊆∗ A. For D̄ = 〈Dn ⊂ I+ : n < ω〉 we say that F∞ ∈ I+

is a diagonalization of D̄ provided F∞ \ {0, . . . , n} ∈ Dn for every n < ω.
Following Farah [14] we say that an ideal I on ω is semiselective provided
for every sequence D̄ = 〈Dn ⊂ I+ : n < ω〉 of dense and open subsets of I+

the family of all diagonalizations of D̄ is dense in I+.
Following Grigorieff [15, p. 390] we say that I is weakly selective (or weak

selective) provided for every A ∈ I+ and f : A → ω there exists a B ∈ I+

such that f � B is either one-to-one or constant. (Farah in [14, Section 2]
terms such ideals as having the Q+-property. Note also that Baumgartner
and Laver in [2] call such ideals selective, despite the fact that they claim
to use Grigorieff’s terminology from [15].)

We have the following implications between these notions. (See Farah
[14, Section 2].)
I is selective =⇒ I is semiselective =⇒ I is weakly selective

All these notions represent different generalizations of the properties of the
ideal [ω]<ω. In particular, it is easy to see that [ω]<ω is selective.

We say that an ideal I on a countable set X is selective (weakly selective)
provided it is such upon an identification of X with ω via an arbitrary
bijection. A filter F on a countable set X is selective (semiselective, weakly
selective) provided so is its dual ideal I = {X \ F : F ∈ F}.

It is important to note that a maximal ideal (or an ultrafilter) is selective
if and only if it is weakly selective. This follows, for example, directly
from the definitions of these notions as in Grigorieff [15]. Recall also that
the existence of selective ultrafilters cannot be proved in ZFC. (Kunen [21]
proved that there are no selective ultrafilters in the random real model.
This also follows from the fact that every selective ultrafilter is a P -point,
while Shelah proved that there are models with no P -points, see e.g. [1,
Theorem 4.4.7].)
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2. Axiom CPAcube and its consequences

For a Polish space X we will consider Perf(X) as ordered by inclusion.
Thus, a family E ⊂ Perf(X) is dense in Perf(X) provided for every P ∈
Perf(X) there exists a Q ∈ E such that Q ⊂ P .

Axiom CPAcube will be of the form
if E ⊂ Perf(X) is appropriately dense in Perf(X) then some por-
tion E0 of E covers almost all of X in a sense that |X \

⋃
E0| < c.

If the word “appropriately” in the above is ignored, then it implies the
following statement.

Naive-CPA: If E is dense in Perf(X) then |X \
⋃
E| < c.

It is a very good candidate for our axiom in the sense that it implies all
the properties we are interested in. It has, however, one major flaw — it is
false! This is the case since S ⊂ X \

⋃
E for some dense set E in Perf(X)

provided
for each P ∈ Perf(X) there is a Q ∈ Perf(X) such that Q ⊂ P \S.

This means that the family G of all sets of the form X \
⋃
E , where E is

dense in Perf(X), coincides with the σ-ideal s0 of Marczewski’s sets, since
G is clearly hereditary. Thus we have

s0 =
{
X \

⋃
E : E is dense in Perf(X)

}
. (2.1)

However, it is well known (see e.g. [24, Theorem 5.10]) that there are s0-sets
of cardinality c. Thus, our Näıve-CPA “axiom” cannot be consistent with
ZFC.

In order to formulate the real axiom CPAcube we need the following ter-
minology and notation. A subset C of a product Cη of the Cantor set is
said to be a perfect cube if C =

∏
n∈η Cn, where Cn ∈ Perf(C) for each n.

For a fixed Polish space X let Fcube stand for the family of all continuous
injections from a perfect cube C ⊂ Cω onto a set P from Perf(X). We
consider each function f ∈ Fcube from C onto P as a coordinate system
imposed on P .1 We say that P ∈ Perf(X) is a cube if it is determined by
an (implicitly given) witness function f ∈ Fcube onto P , and Q is a subcube
of a cube P ∈ Perf(X) provided Q = f [C], where f ∈ Fcube is the witness
function for P and C is a subcube of the domain of f .

We say that a family E ⊂ Perf(X) is Fcube-dense (or cube-dense) in
Perf(X) provided every cube P ∈ Perf(X) contains a subcube Q ∈ E . More
formally, E ⊂ Perf(X) is Fcube-dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (2.2)

1In a language of forcing a coordinate function f is simply a nice name for an element
from X.
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It is easy to see that the notion of Fcube-density is a generalization of the
notion of density as defined in the first paragraph of this section:

if E is Fcube-dense in Perf(X) then E is dense in Perf(X).

On the other hand, the converse implication is not true, as shown by the
following simple example.

Example 2.1. Let X = C × C and let E be the family of all P ∈ Perf(X)
such that either
• all vertical sections of P are countable, or
• all horizontal sections of P are countable.

Then E is dense in Perf(X), but it is not Fcube-dense in Perf(X).

With these notions in hand we are ready to formulate our axiom2 CPAcube.
CPAcube: c = ω2 and for every Polish space X and every Fcube-dense

family E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and
|X \

⋃
E0| ≤ ω1.

It is also worth noticing that in order to check that E is Fcube-dense it is
enough to consider in condition (2.2) only functions f defined on the entire
space Cω, that is

Fact 2.2. E ⊂ Perf(X) is Fcube-dense if and only if

∀f ∈ Fcube, dom(f) = Cω, ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (2.3)

Proof. To see this, let Φ be the family of all bijections h = 〈hn〉n<ω between
the perfect cubes

∏
n∈ωDn and

∏
n∈ω Cn in Cω such that each hn is a

homeomorphism between Dn and Cn. Then

f ◦ h ∈ Fcube for every f ∈ Fcube and h ∈ Φ with range(h) ⊂ dom(f).

Now take an arbitrary f : C → X from Fcube and choose an h ∈ Φ mapping
Cω onto C. Then f̂ = f ◦h ∈ Fcube maps Cω into X and, using (2.3), we can
find a ĝ ∈ Fcube such that ĝ ⊂ f̂ and range(ĝ) ∈ E . Then g = f � h[dom(ĝ)]
satisfies (2.2).

One of the most convenient tools for proving Fcube-density is the following
fact.

2This version of the axiom, as well as its prism version CPAprism, can be also formulated
replacing the inequalities “≤ ω1” with “< c” and removing the condition “c = ω2.” Such
a version of CPAcube implies c ≥ ω2. Also all consequences of the axioms CPAcube and
CPAprism presented in this paper follow also from the modified versions of these axioms.
However, we do not know if the modified axioms are consistent with c > ω2. We know
only that the modified CPAprism implies that c is a successor cardinal. (See [7] or [8].)
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Claim 2.3. Consider Cω with its usual topology and its usual product mea-
sure. If G ⊂ Cω is either comeager or of full measure in Cω then it contains
a perfect cube

∏
i<ω Pi.

Proof. It follows easily, by induction on coordinates, from the following
well known fact.

For every comeager (full measure) subset H of C × C there
are a perfect set P ⊂ C and a comeager (full measure) subset
Ĥ of C such that P × Ĥ ⊂ H.

The category version is easy and can be found in [20, Exercise 19.3]. (Its
version for R2 is also proved, for example, in [9, condition (?), p. 416].) The
measure version follows easily from the fact that

for every full measure subset H of [0, 1] × [0, 1] there are a
perfect set P ⊂ C and a positive inner measure subset Ĥ of
[0, 1] such that P × Ĥ ⊂ H

which is proved by Eggleston [13] and, independently, by Brodskǐı [4].

Next we will proceed to demonstrate some consequences of CPAcube. The
most important combinatorial fact for us concerning semiselective ideals is
the following property. (See Theorem 2.1 and Remark 4.1 in [14].) This is a
generalization of a theorem of Laver [22] who proved this fact for the ideal
I = [ω]<ω.

Proposition 2.4 (Farah [14]). Let I be a semiselective ideal on ω. For
every analytic set S ⊂ Cω × [ω]ω and every A ∈ I+ there exist a B ∈
I+∩P(A) and a perfect cube C in Cω such that C× [B]ω is either contained
in or disjoint with S.

With this fact in hand we can prove the following theorem.

Theorem 2.5. Assume that CPAcube holds. If I is a semiselective ideal
then there is a family W ⊂ I+, |W| ≤ ω1, such that for every analytic set
A ⊂ [ω]ω there is a W ∈ W for which either [W ]ω ⊂ A or [W ]ω ∩A = ∅.

Proof. Let S ⊂ C × [ω]ω be a universal analytic set, that is such that the
family {Sx : x ∈ C} (where Sx = {y ∈ [ω]ω : 〈x, y〉 ∈ S}) contains all analytic
subsets of [ω]ω. (See e.g. [18, Lemma 39.4].) In fact, we will take S such
that for any analytic set A in [ω]ω

|{x ∈ C : Sx = A}| = c. (2.4)

(If U ⊂ C× [ω]ω is a universal analytic set then S = C× U ⊂ C× C× [ω]ω

satisfies (2.4), where we identify C × C with C.) For this particular set S
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consider the family E of all Q ∈ Perf(C) for which there exists a WQ ∈ I+

such that

Q× [WQ]ω is either contained in or disjoint from S. (2.5)

Note that, by Proposition 2.4, the family E is Fcube-dense in Perf(C). So,
by CPAcube, there exists an E0 ⊂ E , |E0| ≤ ω1, such that |C \

⋃
E0| < c. Let

W = {WQ : Q ∈ E0}.

It is enough to see that this W is as required.
Clearly |W| ≤ ω1. Also, by (2.4), for an analytic set A ⊂ [ω]ω there exist

a Q ∈ E0 and an x ∈ Q such that A = Sx. So, by (2.5), {x} × [WQ]ω is
either contained in or disjoint from {x} × Sx = {x} ×A.

Recall (see e.g. [1] or [26]) that a family W ⊂ [ω]ω is a reaping family
provided

∀A ∈ [ω]ω ∃W ∈ W (W ⊂ A or W ⊂ ω \A).

The reaping (or refinement) number r is defined as the minimum cardinality
of a reaping family. Also, a number rσ is defined as the smallest cardinality
of a familyW ⊂ [ω]ω such that for every sequence 〈An ∈ [ω]ω : n < ω〉 there
exists a W ∈ W such that for every n < ω either W ⊆∗ An or W ⊆∗ ω \An.
(See [5] or [26].) Clearly r ≤ rσ.

Corollary 2.6. If CPAcube holds then for every semiselective ideal I there
exists a family W ⊂ I+, |W| ≤ ω1, such that for every A ∈ [ω]ω there is a
W ∈ W for which either W ⊆∗ A or W ⊆∗ ω \A.

In particular, CPAcube implies that r = ω1 < c.

Proof. The familyW from Theorem 2.5 works: since [A]ω is analytic in [ω]ω

there exists a W ∈ W such that either [W ]ω ⊂ [A]ω or [W ]ω ∩ [A]ω = ∅.

Corollary 2.7. If CPAcube holds then every selective ultrafilter F on ω is
generated by a family of size ω1 < c.

Proof. If F is a selective ultrafilter on ω then I = P(ω) \ F is a selective
ideal and I+ = F . Let W ⊂ I+ = F be as in Corollary 2.6. Then W
generates F .

Indeed, if A ∈ F then there exists a W ∈ W such that either W ⊂ A or
W ⊂ ω \A. But it is impossible that W ⊂ ω \A since then we would have
∅ = A ∩W ∈ F .
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As mentioned above, in Theorem 4.8 we will prove that some version of
our axiom implies that there exists a selective ultrafilter on ω. In particular,
the assumptions of the next corollary are implied by such a version of our
axiom.

Corollary 2.8. If CPAcube holds and there exists a selective ultrafilter F
on ω then rσ = ω1 < c.

Proof. Let W ∈ [F ]≤ω1 be a generating family for F . We will show that
it justifies rσ = ω1. Indeed, take a sequence 〈An ∈ [ω]ω : n < ω〉. For every
n < ω let A∗n belong to F ∩ {An, ω \ An}. Since F is selective, there exists
an A ∈ F such that A ⊆∗ A∗n for every n < ω. Let W ∈ W be such that
W ⊂ A. Then for every n < ω either W ⊆∗ An or W ⊆∗ ω \An.

We are particularly interested in the number rσ since it is related to
different variants of sets of uniqueness coming from harmonic analysis, as
described in the survey paper [5]. In particular, from [5, Theorem 12.6] it
follows that an appropriate version of our axiom implies that all covering
numbers described in the paper are equal to ω1.

3. CPAgame
cube and numbers a and r

Before we get to the formulation of our next version of the axiom it is good
to note that in many applications we would prefer to have a full covering of
a Polish space X rather that the almost covering as claimed by CPAcube.
To get better access to the missing singletons we will extend the notion of
a cube by allowing also the constant cubes: a family Ccube(X) of constant
“cubes” is defined as the family of all constant functions from a perfect cube
C ⊂ Cω into X. We define also F∗cube(X) as

F∗cube = Fcube ∪ Ccube. (3.1)

Thus, F∗cube is the family of all continuous functions from a perfect cube
C ⊂ Cω into X which are either one-to-one or constant. Now the range of
every f ∈ F∗cube belongs to the family Perf∗(X) of all sets P such that either
P ∈ Perf(X) or P is a singleton. The terms “P ∈ Perf∗(X) is a cube” and
“Q is a subcube of a cube P ∈ Perf∗(X)” are defined in a natural way.

Consider also the following game GAMEcube(X) of length ω1. The game
has two players, Player I and Player II. At each stage ξ < ω1 of the game
Player I can play an arbitrary cube Pξ ∈ Perf∗(X) and Player II must
respond with a subcube Qξ of Pξ. The game 〈〈Pξ, Qξ〉 : ξ < ω1〉 is won by
Player I provided ⋃

ξ<ω1

Qξ = X;
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otherwise the game is won by Player II.
Recall also that a strategy for Player II is any function S with the property

that S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) is a subcube of Pξ, where 〈〈Pη, Qη〉 : η < ξ〉
is any partial game. A game 〈〈Pξ, Qξ〉 : ξ < ω1〉 is played according to a
strategy S for Player II provided Qξ = S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) for every
ξ < ω1. A strategy S for Player II is a winning strategy for Player II
provided Player II wins any game played according to the strategy S.

Here is our new version of the axiom.3

CPAgame
cube : c = ω2 and for any Polish space X Player II has no winning

strategy in the game GAMEcube(X).

Notice that

Proposition 3.1. Axiom CPAgame
cube implies CPAcube.

Proof. Let E ⊂ Perf(X) be Fcube-dense. Thus for every cube P ∈ Perf(X)
there exists a subcube s(P ) ∈ E of P . Now, for a singleton P ∈ Perf∗(X)
put s(P ) = P and consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = s(Pξ).

By CPAgame
cube it is not a winning strategy for Player II. So there exists a

game 〈〈Pξ, Qξ〉 : ξ < ω1〉 in which Qξ = s(Pξ) for every ξ < ω1 and Player II
loses, that is, X =

⋃
ξ<ω1

Qξ. Now, let E0 = {Qξ : ξ < ω1 & Qξ ∈ Perf(X)}.
Then |X \

⋃
E0| ≤ ω1, so CPAcube is justified.

Recall that a family A ⊂ [ω]ω is almost disjoint provided |A∩B| < ω and
it is maximal almost disjoint, MAD, provided it is not a proper subfamily
of any other almost disjoint family. The cardinal a is defined as follows:

a = min{|A| : A is infinite and MAD}.

The fact that a = ω1 holds in the iterated perfect set model was apparently
first noticed by Spinas (see Andreas Blass [3, Section 11.5]) though it seems
that the proof of this result was never provided.

Theorem 3.2. CPAgame
cube implies that a = ω1.

Our proof of Theorem 3.2 is based on the following lemma.

3Note that if we remove the assumption c = ω2 from the axiom then the remaining part
follows from the continuum hypothesis. Thus, for most of our applications the assumption
that c ≥ ω2 is essential. On the other hand, the main body of the axiom and c ≥ ω2 imply
that c = ω2.
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Lemma 3.3. For every countably infinite almost disjoint family W ⊂ [ω]ω

and a cube P ∈ Perf([ω]ω) there exist a W ∈ [ω]ω and a subcube Q of P
such that W∪{W} is almost disjoint but W∪{W,x} is not almost disjoint
for every x ∈ Q.

Proof. Let W = {Wi : i < ω}. For every i < ω choose sets Vi ⊂ Wi such
that: the Vi’s are pairwise disjoint, each Wi\Vi is finite, but Vω = ω\

⋃
i<ω Vi

is infinite. Let
B = {x ∈ P : (∀i ≤ ω) |x ∩ Vi| < ω}

and notice that B is a Borel subset of P . (In fact, B is an Fσδ-set.) So, by
Claim 2.3, there is a subcube P ∗ of P such that either P ∗ ⊂ B or P ∗∩B = ∅.

If P ∗ ∩ B = ∅ then W = Vω and Q = P ∗ satisfy the conclusion of
the lemma. So, suppose that P ∗ ⊂ B. Let h : Cω → P ∗, h ∈ Fcube, be
a coordinate function making P ∗ a cube, let λ be the standard product
probability measure on Cω, and define a Borel measure µ on P ∗ by the
formula µ(B) = λ(h−1(B)).

For i, n < ω let
Pni = {x ∈ P ∗ : x ∩ Vi ⊂ n}.

Then all the sets Pni are Borel (in fact, they are closed) and P ∗ =
⋃
n<ω P

n
i

for every i < ω. Thus for each i < ω there exists an n(i) < ω such that

µ
(
P
n(i)
i

)
> 1− 2−i.

Then the set T =
⋃
j<ω

⋂
j<i<ω P

n(i)
i has a µ-measure 1 so, by Claim 2.3,

there is a subcube Q of P ∗ which is a subset of T . Let

W =
⋃
i<ω

[Vi ∩ n(i)] .

We claim that W and Q satisfy the lemma.
It is obvious that W is almost disjoint with each Wi. So, fix an x ∈ Q.

To finish the proof it is enough to show that

x ⊆∗ W.

But x ∈ Q ⊂
⋃
j<ω

⋂
j<i<ω P

n(i)
i . Thus, there exists a j < ω such that x ∈⋂

j<i<ω P
n(i)
i . So, x∩

⋃
j<i<ω Vi =

⋃
j<i<ω(x∩Vi) ⊂

⋃
j<i<ω(Vi∩n(i)) ⊂W

and the set

x \W ⊂ x ∩

Vω ∪⋃
i≤j

Vi

 = (x ∩ Vω) ∪
⋃
i≤j

(x ∩ Vi)

is finite.
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Proof of Theorem 3.2. For a countably infinite almost disjoint family
W ⊂ [ω]ω and a cube P ∈ Perf([ω]ω) let W (W, P ) ∈ [ω]ω and a subcube
Q(W, P ) of P be as in Lemma 3.3. For P = {x} ∈ Perf∗([ω]ω) we put
Q(W, P ) = P and define W (W, P ) as some arbitrary W almost disjoint
with each set fromW and such that A∩x is infinite for some A ∈ W∪{W}.

Let A0 ⊂ [ω]ω be an arbitrary infinite almost disjoint family and consider
the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(A0 ∪ {Wη : η < ξ}, Pξ),

where Wη’s are defined inductively by Wη = W (A0 ∪ {Wζ : ζ < η}, Pη). In
other words, Player II remembers (recovers) the sets Wη associated with the
sets Pη played so far, and he uses them (and Lemma 3.3) to get the next
answer Qξ = Q(A0 ∪ {Wη : η < ξ}, Pξ), while remembering (or recovering
each time) the set Wξ = W (A0 ∪ {Wη : η < ξ}, Pξ).

By CPAgame
cube strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which Player II
loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ.
Now, notice that the family A = A0 ∪ {Wξ : ξ < ω1} is a MAD family. It

is clear that A is almost disjoint, since every set Wξ was chosen as almost
disjoint with every set from A0 ∪ {Wζ : ζ < ξ}. To see that A is maximal it
is enough to note that every x ∈ [ω]ω belongs to a Qξ for some ξ < ω1, and
so there is an A ∈ A0 ∪ {Wη : η ≤ ξ} such that A ∩ x is infinite.

By Theorem 3.2 we see that CPAgame
cube implies the existence of MAD family

of size ω1. Next we will show that such a family can be simultaneously a
reaping family. This result is similar in flavor to that from Theorem 4.20.

Theorem 3.4. CPAgame
cube implies that there exists a family F ⊂ [ω]ω of

cardinality ω1 which is simultaneously MAD and reaping.

Proof. The proof is just a slight modification of that for Theorem 3.2.
For a countably infinite almost disjoint family W ⊂ [ω]ω and a cube

P ∈ Perf([ω]ω) let W0 ∈ [ω]ω and a subcube Q0 of P be as in Lemma 3.3.
Let A ∈ [ω]ω be almost disjoint with every set from W ∪ {W0}. By Laver’s
theorem [22] we can also find a subcube Q1 of Q0 and a W1 ∈ [A]ω such
that
• either W1 ∩ x = ∅ for every x ∈ Q1,
• or else W1 ⊂ x for every x ∈ Q1.

Let Q(W, P ) = Q1 and W(W, P ) = {W0,W1}. If P ∈ Perf∗([ω]ω) is a
singleton then we put Q(W, P ) = P and we can easy find W0 and W1
satisfying the above conditions.
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Let A0 ⊂ [ω]ω be an arbitrary infinite almost disjoint family and consider
the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q
(
A0 ∪

⋃
{Wη : η < ξ}, Pξ

)
,

where Wη’s are defined inductively by Wη =W(A0 ∪
⋃
{Wη : η < ξ}, Pη).

By CPAgame
cube strategy S is not a winning strategy for Player II. So there ex-

ists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which and Player II
loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ. Then the family F = A0 ∪
⋃
{Wξ : ξ < ω1}

is MAD and reaping.

4. On CPAgame
prism, selective and crowded ultrafilters, nonselective

P -points, and numbers i and u

The axioms CPAgame
cube and CPAcube dealt with the notion of Fcube-density,

where Fcube is the family of all injections f : C → X with C being a perfect
cube in Cω. In the applications of these axioms we were using the facts
that different subfamilies of Perf(X) were Fcube-dense. Unfortunately, in
many cases the notion of Fcube-density is too weak to do the job — in the
applications that follow the families E ⊂ Perf(X) will not be Fcube-dense,
but they will be dense in a weaker sense defined below. Luckily, this weaker
notion of density still leads to consistent axioms.

4.1. Prisms and CPAgame
prism.

To define this weaker notion of density, let us first take another look at
the notion of cube. Let A be a non-empty countable set of ordinal numbers.
The notion of a perfect cube in CA can be defined the same way as it was
done for Cω. However, it will be more convenient for us to define it as
follows. Let Φcube be the family of all continuous injection f : CA → CA
such that

f(x)(α) = f(y)(α) for all α ∈ A and x, y ∈ CA with x(α) = y(α).

In other words Φcube is the family of all functions of the form f = 〈fα〉α∈A,
where each fα is an injection from C into C. Then the family of all perfect
cubes in CA for an appropriate A is equal to

CUBE = {range(f) : f ∈ Φcube}

and Fcube is the family all continuous injections f : C → X with C ⊂ Cω
and C ∈ CUBE.
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In the definitions that follow the notion of “cube” will be replaced by
that of a “prism.” So, let Φprism(A) be the family of all continuous injection
f : CA → CA with the property that

f(x) � α = f(y) � α ⇔ x � α = y � α for all α ∈ A and x, y ∈ CA (4.1)

or, equivalently, such that for every α ∈ A

f �� α def= {〈x � α, y � α〉 : 〈x, y〉 ∈ f}
is a one-to-one function from CA∩α into CA∩α. For example, if A = {0, 1, 2}
then f ∈ Φprism(A) provided there exist continuous functions f0 : C → C,
f1 : C2 → C, and f2 : C3 → C such that

f(x0, x1, x2) = 〈f0(x0), f1(x0, x1), f2(x0, x1, x2)〉

for all x0, x1, x2 ∈ C and maps f0, 〈f0, f1〉, and f are one-to-one. Functions
f from Φprism(A) were first introduced, in more general setting, in [19] where
they are called projection-keeping homeomorphisms. Note that

Φprism(A) is closed under compositions (4.2)

and that for every ordinal number α > 0

if f ∈ Φprism(A) then f �� α ∈ Φprism(A ∩ α). (4.3)

Let
PA = {range(f) : f ∈ Φprism(A)}.

We will write Φprism for
⋃

0<α<ω1
Φprism(α) and define

Pω1
def=
⋃

0<α<ω1
Pα = {range(f) : f ∈ Φprism}.

Following [19] we will refer to elements of Pω1 as iterated perfect sets. Also
let Fprism(X) (or just Fprism, if X is clear from the context) be the family of
all continuous injections f : P → X where P ∈ Pω1 and X is a fixed Polish
space.

We say that a family E ⊂ Perf(X) is Fprism-dense provided

∀f ∈ Fprism ∃g ∈ Fprism (g ⊂ f & range(g) ∈ E).

Similarly as in Fact 2.2, using (4.2) we can also prove that

Fact 4.1. E ⊂ Perf(X) is Fprism-dense if and only if

∀α < ω1 ∀f ∈ Fprism, dom(f) = Cα ∃g ∈ Fprism

(g ⊂ f & range(g) ∈ E) (4.4)
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Notice also that Φcube ⊂ Φprism, so every cube is also a prism. From this
and Fact 4.1 it also easy to see that

if E ⊂ Perf(X) is Fcube-dense then E is also Fprism-dense. (4.5)

The converse of (4.5), however, is false. (See [8, Remark 3.3.2].)
We also adopt the shortcuts similar to that for cubes. Thus, we say that

P ∈ Perf(X) is a prism if we consider it with an (implicitly given) witness
function f ∈ Fprism onto P . By Fact 4.1 to establish Fprism-density we can
always assume that the witness function f is in a standard form, that is,
defined on the entire set Cα for an appropriate α < ω1. Then Q is a subprism
of a prism P ∈ Perf(X) provided Q = f [E], where f ∈ Fprism is as above
and E ∈ Pα. Also singletons {x} in X will be identified with constant
functions from E ∈ Pω1 to {x}, and these functions will be considered as
elements of F∗prism, similarly as in (3.1).

Now we are ready to state the next version of our axiom, in which the
game GAMEprism(X) is an obvious generalization of GAMEcube(X).

CPAgame
prism: c = ω2 and for any Polish space X Player II has no winning

strategy in the game GAMEprism(X).
Notice that if a prism P ∈ Perf(X) is considered with a witness function

f ∈ Fprism in a standard form (i.e., f is from Cα onto P ) then P is also a
cube and any subcube of P is also a subprism of P . Thus, any Player II
strategy in a game GAMEcube(X) can be translated to a strategy in a
game GAMEprism(X). (You need to identify appropriately Cα with Cω:
first you identify Cα with Cω × Cα\{0}, which is important for a finite α,
and then this second space identify with Cω coordinatewise.) In particular,
CPAgame

prism implies CPAgame
cube . Also, essentially the same argument as used for

Proposition 3.1 gives also the following.

Proposition 4.2. Axiom CPAgame
prism implies the following prism version of

the axiom CPAcube:
CPAprism: c = ω2 and for every Polish space X and every Fprism-dense

family E ⊂ Perf(X) there exists an E0 ⊂ E such that |E0| ≤ ω1 and
|X \

⋃
E0| ≤ ω1.

By (4.5) it is also obvious that CPAprism implies CPAcube. All these
implications are summarized in Chart 1.

In what follows for a fixed 0 < α < ω1 and 0 < β ≤ α the symbol πβ
will stand for the projection from Cα onto Cβ. We will always consider Cα
with the following standard metric ρ: fix an enumeration {〈βk, nk〉 : k < ω}
of α× ω and for distinct x, y ∈ Cα define

ρ(x, y) = 2−min{k<ω : x(βk)(nk) 6=y(βk)(nk)}. (4.6)
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The open ball in Cα with a center at z ∈ Cα and radius ε > 0 will be denoted
by Bα(z, ε). Notice that in this metric any two open balls are either disjoint
or one is a subset of another. Also for every γ < α and ε > 0

πγ [Bα(s, ε)] = πγ [Bα(t, ε)] for every s, t ∈ Cα with s � γ = t � γ. (4.7)

It is also easy to see that any Bα(z, ε) is a clopen set and, in fact, it is a
perfect cube in Cα, so it belongs to Pα. In fact, more can be said:

if Bα
def= {B ⊂ Cα : B is clopen in Cα} then Bα ⊂ Pα. (4.8)

This is the case, since any clopen E in Cα is a finite union of disjoint open
balls, each of which belongs to Pα, and it is easy to see that Pα is closed
under finite unions of disjoint sets.

From this we conclude immediately that

a clopen subset of E ∈ Pα belongs to Pα (4.9)

and

a clopen subset of a prism is its subprism. (4.10)

Notice also that if P ∈ Pα then

P ∩ π−1
β (P ′) ∈ Pα for every P ′ ∈ Pβ with P ′ ⊂ πβ[P ]. (4.11)

Indeed, let f ∈ Φprism(β) and g ∈ Φprism(α) be such that f [Cβ] = P ′ and
g[Cα] = P . Let Q = (g � β)−1[P ′] = (g � β)−1 ◦ f [Cβ] ∈ Pβ. Then π−1

β (Q)
belongs to Pα and P ∩ π−1

β (P ′) = g[π−1
β (Q)] ∈ Pα.

4.2. Fusion Lemmas.
One of the main technical tools used to prove that a family of perfect

sets is dense is the so called fusion lemma. It says that for an appropriately
chosen decreasing sequence {Pn : n < ω} of perfect sets its intersection
P =

⋂
n<ω Pn, called the fusion, is still a perfect set. The simple structure

of perfect cubes makes it quite easy to formulate a “cube fusion lemma”
in which the fusion set P is also a cube. However, so far we did not have
any need for such a lemma (at least in an explicit form), since its use
was always hidden in the proofs of the results we quoted, like Claim 2.3
or Proposition 2.4. On the other hand, the new and more complicated
structure of prisms does not leave us the option of avoiding fusion arguments
any longer — we have to face it up front.

For a fixed 0 < α < ω1 let {〈βk, nk〉 : k < ω} be an enumeration of α× ω
used in the definition (4.6) of the metric ρ and let

Ak = {〈βi, ni〉 : i < k} for every k < ω. (4.12)
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Lemma 4.3 (Fusion Sequence). Let 0 < α < ω1 and for every k < ω
let Ek =

{
Es ∈ Pα : s ∈ 2Ak

}
. Assume that for every k < ω, s, t ∈ 2Ak ,

r ∈
⋃
i<ω 2Ai, and β < α we have:

(i) the diameter of Es is less than or equal to 2−k,
(ii) if r ⊂ s then Es ⊂ Er,

(ag) (agreement) if s � (β × ω) = t � (β × ω) then πβ[Es] = πβ[Et],
(sp) (split) if s � (β × ω) 6= t � (β × ω) then πβ[Es] ∩ πβ[Et] = ∅.
Then Q =

⋂
k<ω

⋃
Ek belongs to Pα.

Proof. For x ∈ Cα let x̄ ∈ 2α×ω be defined by x̄(β, n) = x(β)(n).
First note that, by conditions (i) and (sp), for every k < ω the sets in Ek

are pairwise disjoint and each of the diameter at most 2−k. Thus, taking
into account (ii), the function h : Cα → Cα defined by

h(x) = r ⇐⇒ {r} =
⋂
k<ω

Ex̄�Ak

is well defined and is one-to-one. It is also easy to see that h is continuous
and that Q = h [Cα]. Thus, we need to prove only that h ∈ Φprism(α), that
is, that h is projection-keeping.

To show this fix β < α, put S =
⋃
i<ω 2Ai , and notice that, by (i) and

(ag), for every x ∈ Cα we have

{h(x) � β} = πβ

[⋂
{Ex̄�Ak : k < ω}

]
=

⋂
{πβ[Ex̄�Ak ] : k < ω}

=
⋂
{πβ[Es] : s ∈ S & s ⊂ x̄}

=
⋂
{πβ[Es] : s ∈ S & s � (β × ω) ⊂ x̄}.

Now, if x � β = y � β then for every s ∈ S
s � (β × ω) ⊂ x̄ ⇔ s � (β × ω) ⊂ ȳ

so h(x) � β = h(y) � β.
On the other hand, if x � β 6= y � β then there exists a k < ω big enough

such that for s = x̄ � Ak and t = ȳ � Ak we have s � (β × ω) 6= t � (β × ω).
But then {h(x) � β} and {h(y) � β} are subsets of πβ[Es] and πβ[Et],
respectively, which, by (sp), are disjoint. So, h(x) � β 6= h(y) � β.

In all of our applications the task of constructing sequences 〈Ek : k < ω〉
satisfying specific conditions (ag) and (sp) can be reduced to checking some
simple density properties listed in our next lemma. In its statement we
consider Pα as ordered by inclusion and use the standard terminology from
the theory of partially ordered sets: D ⊂ Pα is dense provided for every
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E ∈ Pα there is an E′ ∈ D with E′ ⊂ E; it is open provided for every
E ∈ D if E′ ∈ Pα and E′ ⊂ E then E′ ∈ D. Moreover, for a family E
of pairwise disjoint subsets of Pα we say that E ′ ⊂ Pα is a refinement of E
provided E ′ = {PE : E ∈ E} where PE ⊂ E for all E ∈ E .

Lemma 4.4. Let 0 < α < ω1 and k < ω. If Ek =
{
Es ∈ Pα : s ∈ 2Ak

}
satisfies (ag) and (sp) then
(A) there exists an Ek+1 =

{
Es ∈ Pα : s ∈ 2Ak+1

}
such that (i), (ii), (ag),

and (sp) hold for all s, t ∈ 2Ak+1 and r ∈ 2Ak .
Moreover, if D ⊂ [Pα]<ω is a family of pairwise disjoint sets such that ∅ ∈ D,
D is closed under refinements, and

(†) for every E ∈ D and E ∈ Pα which is disjoint with
⋃
E there exists an

E′ ∈ Pα ∩ P(E) such that {E′} ∪ E ∈ D
then
(B) there exists a refinement E ′k ∈ D of Ek satisfying (ag) and (sp),
(C) there exists an Ek+1 as in (A) such that Ek+1 ∈ D.

The proof of this lemma will be postponed to the last section of this paper.
One of the most important consequences of Lemma 4.4 is the following.

Corollary 4.5. Let 0 < α < ω1 and let {Dk : k < ω} be a collection of
dense open subsets of Pα. If for every k < ω

D∗k =
{⋃
D : D ∈ [Dk]<ω and the sets in D are pairwise disjoint

}
then D̄ =

⋂
k<ωD

∗
k is open and dense in Pα.

Proof. It is clear that D̄ is open. To see its density notice that the families

Dk =
{
D ∈ [Dk]<ω and sets in D are pairwise disjoint

}
satisfy condition (†). Let E ∈ Pα, choose an E∅ ∈ D0 ⊂ D∗0 below E, and
put E0 = {E∅}. Applying (C) from Lemma 4.4 by induction we can define
families Ek ∈ Dk, k < ω, such that conditions (i), (ii), (ag), and (sp) from
Lemma 4.3 are satisfied. But then Q =

⋂
k<ω

⋃
Ek ⊂ E belongs to D̄.

4.3. Selective ultrafilters and number u.
Recall that every weakly selective ultrafilter is selective and that the ideal

I = [ω]<ω is selective. Another example of a weakly selective ideal which
we will use in what follows is given below.

Fact 4.6. The ideal I of nowhere dense subset of rationals Q is weakly
selective.
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Proof. Let A ∈ I+ and take an f : A → ω. If there is a B ∈ I+ ∩ P(A)
such that f � B constant then we are done. So, assume that it is not the
case and let A0 ⊂ A be dense on some interval. By induction on n < ω
define a sequence {bn ∈ A0 : n < ω} dense in A0 such that f restricted to
B = {bn : n < ω} is one-to-one. Then B is as desired.

In what follows we will also need the following fact about weakly selective
ideals, which can be found in Grigorieff [15, Proposition 14].

Proposition 4.7. Let I be a weakly selective ideal on ω and A ∈ I+. If
T ⊂ A<ω is a tree such that

A \ {j < ω : ŝ j ∈ T} ∈ I for every s ∈ T
then there exists a branch b of T such that b[ω] ∈ I+.

Theorem 4.8. CPAgame
prism implies that for every selective ideal I on ω there

exists a selective ultrafilter F on ω such that F ⊂ I+.
In particular if CPAgame

prism holds then there is a selective ultrafilter on ω.

The proof is based on the following lemma.

Lemma 4.9. Let I be a weakly selective ideal on ω.
(a) For every A ∈ I+ and every prism P in ωω there exist a B ∈ I+,

B ⊂ A, and a subprism Q of P such that either
(i) g � B is one-to-one for every g ∈ Q, or else
(ii) there exists an n < ω such that g � B is constant equal to n for

every g ∈ Q.
(b) For every A ∈ I+ and every prism P in [ω]ω there exist a B ∈ I+,

B ⊂ A, and a subprism Q of P such that either
– x ∩B = ∅ for every x ∈ Q, or else
– B ⊂ x for every x ∈ Q.

Proof. (a) Fix an A ∈ I+, an f ∈ Fprism(ωω) from Cα onto P , and assume
that for no subprism Q of P and B ∈ I+ ∩ P(A) condition (ii) holds. We
will find Q satisfying (i).

For i, n < ω let D(i, n) = {E0 ∈ Pα : (∀g ∈ E0) f(g)(i) 6= n} and for
γ ≤ α, E ∈ Pα, and A′ ⊂ ω put Dγ(E, i, n) = {πγ [E0] : E0 ∈ D(i, n)∩P(E)}
and

Dγ(E,A′, n) =
⋂
i∈A′

Dγ(E, i, n).

Notice that the sets Dγ(E, i, n) and Dγ(E,A′, n) are open in Pγ . By induc-
tion on 0 < β ≤ α we are going to prove the following property.
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ψβ: For all 0 < γ ≤ β, E ∈ Pα, n < ω, and Â ∈ I+ ∩ P(A) there exists an
A′ ∈ I+ ∩ P(Â) such that Dγ(E,A′, n) 6= ∅.

In what follows for k < ω and Ek =
{
Es ∈ Pβ : s ∈ 2Ak

}
satisfying (i), (ag),

and (sp) from Lemma 4.3 and Ek+1 =
{
Es ∈ Pβ : s ∈ 2Ak+1

}
we will write

Ek+1 ≺ Ek
provided (i), (ii), (ag), and (sp) hold for all s, t ∈ 2Ak+1 and r ∈ 2Ak . One
of the main facts used in the proof of ψβ is the following property.

(∗) If ψγ holds for all γ < β, Ā ∈ I+ ∩ P(A), n < ω, E ∈ Pα, Ek is as
above and such that

⋃
Ek ⊂ πβ[E], and

Z(Ā, Ek, n) =
{
i ∈ Ā : (∃Ek+1 ≺ Ek)

⋃
Ek+1 ∈ Dβ(E, i, n)

}
then Ā \ Z(Ā, Ek, n) ∈ I.

In order to prove (∗) fix an Â ∈ P(Ā) ∩ I+ and note that it is enough
to show that Â ∩ Z(Ā, Ek, n) 6= ∅. Fix an Ēk+1 = {Ēs ∈ Pβ : s ∈ 2Ak+1}
such that Ēk+1 ≺ Ek. We can find such an Ēk+1 by Lemma 4.4(A). Let
γ = max{δ : 〈δ,m〉 ∈ Ak+1} < β.

First assume that γ = 0. Then for every s ∈ 2Ak+1 the set

Zs =
{
i ∈ Â : Dβ(E, i, n) ∩ P(Ēs) = ∅

}
belongs to I, since otherwise Q = f

[
π−1
β [Ēs] ∩ E

]
and B = Zs ∈ I+∩P(A)

would satisfy the condition (ii), contradicting our assumption. Let us define
A′ = Â \

⋃
{Zs : s ∈ 2Ak+1} ∈ I+ and notice that A′ ⊂ Z(Ā, Ek, n). Indeed,

take an i ∈ A′ and for every s ∈ 2Ak+1 choose Es ∈ Dβ(E, i, n) ∩ P(Ēs).

Then Ek+1
def= {Es : s ∈ 2Ak+1} ≺ Ek, since (i), (ii), and (sp) hold for Ek+1

as they were true for Ēk+1, and (ag) is satisfied trivially, by the maximality
of γ. Condition

⋃
Ek+1 ∈ Dβ(E, i, n) is guaranteed by the choice of Es’s, so

indeed i ∈ Z(Ā, Ek, n).
Next assume that γ > 0. Let B = {〈δ,m〉 ∈ Ak+1 : δ < γ}, and define

E∗k+1 = {E∗t ∈ Pγ : t ∈ 2B}, where E∗t = πγ [Ēs] for any s ∈ 2Ak+1 with t ⊂ s.
Note that, by (ag), the definition of E∗t is independent of the choice of s. It
is easy to see that E∗k+1 satisfies (ag) and (sp), where α is replaced by γ. For
Â0 ∈ P(Â) ∩ I+ and t ∈ 2B define D(Â0, t) as the collection of all E0 ∈ Pγ
for which there exists an A′ ∈ P(Â0) ∩ I+ such that

E0 ∈
⋂{

Dγ

(
π−1
β [Ēs] ∩ E,A′, n

)
: t ⊂ s ∈ 2Ak+1

}
.

It is clear that eachD(Â0, t) is open, since so is eachDγ

(
π−1
β [Ēs] ∩ E,A′, n

)
.

It is also important to notice that D(Â0, t) is dense below E∗t . To see
it, fix an E0 ∈ Pγ ∩ P(E∗t ) and let {s1, . . . , sm} be an enumeration of
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{s ∈ 2Ak+1 : t ⊂ s}. By induction on i ≤ m define two decreasing se-
quences {Ei ∈ Pγ : i ≤ m} and {Âi ∈ I+ : i ≤ m} such that Ei ∈
Dγ

(
π−1
γ (Ei−1) ∩ (π−1

β [Ēsi ] ∩ E), Âi, n
)

provided 0 < i ≤ m. The induc-
tive step can be made since condition ψγ holds. Then

Em ∈
⋂{

Dγ

(
π−1
β [Ēs] ∩ E, Âm, n

)
: t ⊂ s ∈ 2Ak+1

}
and we have Em ∈ D(Â0, t) ∩ P(E0).

Let D be the collection of all pairwise disjoint families E ∈ [Pγ ]<ω for
which there exists an A′ ∈ P(Â)∩I+ working simultaneously for all E0 ∈ E ,
that is, such that for all t ∈ 2B and E0 ∈ E if E0 ⊂ E∗t then

E0 ∈
⋂{

Dγ

(
π−1
β [Ēs] ∩ E,A′, n

)
: t ⊂ s ∈ 2Ak+1

}
.

Notice that D satisfies condition (†) from Lemma 4.4 used with α replaced
by γ. Indeed, if E ∈ D is witnessed by A′ ∈ P(Â)∩I+ and E ∈ Pγ is disjoint
with

⋃
E choose E′ ∈ Pγ below E which is either disjoint with

⋃
E∗k+1 or

contained in some E∗t ∈ E∗k+1. If E′ ∩
⋃
E∗k+1 = ∅ then {E′} ∪ E ∈ D is

witnessed by A′. If E′ ⊂ E∗t ∈ E∗k+1 by the density of D(A′, t) below E∗t we
can find an A′′ ∈ P(A′) ∩ I+ and

E′′ ∈ P(E′) ∩
⋂{

Dγ

(
π−1
β [Ēs] ∩ E,A′′, n

)
: t ⊂ s ∈ 2Ak+1

}
.

Then {E′′} ∪ E ∈ D is witnessed by A′′.
Now, by Lemma 4.4(B), there exists an Êk+1 =

{
Êt ∈ D : t ∈ 2B

}
∈ E

satisfying (ag) and (sp) such that Êt ⊂ E∗t for all t ∈ 2B. Let A′ ∈ P(Â)∩I+

witness Êk+1 ∈ E . We will show that A′ ⊂ Z(Ā, Ek, n). So fix an i ∈ A′.
Since for every t ∈ 2B and t ⊂ s ∈ 2Ak+1 we have Êt ∈ Dγ(π−1

β [Ēs]∩E,A′, n)
there exists an Ês ∈ D(π−1

β [Ēs] ∩ E, i, n) with πγ [Ês] = Êt. Let Es =

πβ[Ês] ⊂ Ēs and notice that Ek+1
def= {Es : s ∈ 2Ak+1} ≺ Ek. Indeed,

Ek+1 satisfies (i), (ii), and (sp) since they were true for Ēk+1 and Ek+1 is
a refinement of Ēk+1. Condition (ag) is satisfied by Ek+1 since, by the
maximality of γ, it is non-trivial for β̂ ≤ γ and for such β̂ it guaranteed by
(ag) for Êk+1. Finally,

⋃
Ek+1 ∈ Dβ(E, i, n) is guaranteed by our definition,

so indeed i ∈ Z(Ā, Ek, n). This finishes the proof of (∗).
To prove ψβ assume that ψγ holds for all γ < β. Fix E ∈ Pα, n < ω, and

Â ∈ I+∩P(A). We need to find an A′ ∈ I+∩P(Â) such that Dβ(E,A′, n) 6=
∅, that is,

⋂
i∈A′ Dβ(E, i, n) 6= ∅. We will construct a tree T ⊂ Â<ω and the

mapping T 3 s 7→ Es ∈ [Pβ]<ω such that E∅ = {E} and for every r ∈ T and
s = r î ∈ T we have Es ≺ Er and

⋃
Es ∈ Dβ(E, i, n). Notice that, by (∗),

for every r ∈ T we can define Erˆi for all i ∈ Z(Â, Er, n). So we can ensure
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that T satisfies the assumptions of Proposition 4.7. Let b be a branch of T
with A′ = b[ω] ∈ I+. By Lemma 4.3 E0 =

⋂
k<ω

⋃
Eb�k belongs to Pβ and

E0 ∈
⋂
i∈A′ Dβ(E, i, n). This concludes the proof of ψβ.

For the conclusion of the proof we first need to refine the prism P . For
every i < ω let hi : Cα → ω ⊂ R be defined by hi(g) = f(g)(i). Clearly each
hi is continuous. Hence each set h−1

i (n) is open in Cα, so

Di = {E ∈ Pα : hi is constant on E}
is dense and open in Pα. Thus, by Corollary 4.5, there exists an E ∈⋂
i<ωD

∗
i , where

D∗i =
{⋃
D : D ∈ [Di]2

i
and the sets in D are pairwise disjoint

}
.

Let P0 = f [E]. Then P0 is a subprism of P . We will find a subprism Q
of P0. Notice also that, by our construction, for every i < ω there is a set
Vi ∈ [ω]≤2i such that

f(g)(i) ∈ Vi for all g ∈ E and i < ω.

Notice also that since ψα holds, so is the conclusion of (∗) for β = α.
In particular, for every n < ω and Ek =

{
Es ∈ Pα : s ∈ 2Ak

}
satisfying (i),

(ag), and (sp) from Lemma 4.3 and such that
⋃
Ek ⊂ E we have

Z(A, Ek, n) =
{
i ∈ A : (∃Ek+1 ≺ Ek)

⋃
Ek+1 ∈ D(i, n)

}
and A \ Z(A, Ek, n) ∈ I.

We will construct a tree T ⊂ A<ω as in Proposition 4.7 and the mapping
T 3 s 7→ Es ∈ [Pα]<ω. The construction is done by induction on the levels
of T . We start with E∅ = {E} and, for every r ∈ T and s = r î ∈ T , we
ensure that Es ≺ Er and⋃

Es ∈
⋂
{D(i, n) : n ∈ Vj for some j ∈ range(r)} . (4.13)

Notice that for every r ∈ T if Zr =
⋂{

Z(A, Er, n) : n ∈
⋃
j∈range(r) Vj

}
then

A \ Zr ∈ I. Moreover, for all i ∈ Zr we can find Erˆi as in (4.13). So, T as
above can be constructed. Take a branch b of T with B = b[ω] ∈ I+ and
E0 =

⋂
k<ω

⋃
Eb�k ∈ Pβ. Then B and Q = f [E0] satisfy (i). This finishes

the proof of (a).

(b) Since the characteristic function χ gives an embedding from [ω]ω into
2ω ⊂ ωω the prism P can be identified with χ[P ] = {χx : x ∈ P}. Applying
part (a) to χ[P ] we can find a subprism Q of P , k < 2, and B ∈ I+, B ⊂ A,
such that χx � B ≡ k for every x ∈ Q. If k = 0 this gives x ∩ B = ∅ for
every x ∈ Q. If k = 1 we have B ⊂ x for every x ∈ Q.
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Proof of Theorem 4.8. Let I be a selective ideal on ω. For a countable
family A ⊂ I+ linearly ordered by ⊂∗ let C(A) ∈ I+ be such that C(A) ⊂∗
A for every A ∈ A.

For A ∈ I+ and f ∈ Fprism(ωω) put P = range(f) and let B(A,P ) ∈ [A]ω

and a subprism Q(A,P ) of P be as in Lemma 4.9(a). If f ∈ Cprism(ωω) and
P = range(f) = {x} then we put Q(A,P ) = P and take B(A,P ) ∈ [A]ω

satisfying the conclusion of Lemma 4.9(a).
Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(C({Bη : η < ξ}), Pξ),
where the sets Bη are defined inductively by Bη = B(C({Bζ : ζ < η}), Pη).

By CPAgame
prism strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which and
Player II loses, that is, ωω =

⋃
ξ<ω1

Qξ.
Now, let F be a filter generated by {Bξ : ξ < ω1} and notice that F is

a selective ultrafilter. It is a filter, since {Bξ : ξ < ω1} is decreasing with
respect to ⊂∗. It also easy to see that

for every f ∈ ωω there exists a B ∈ F such that f � B is either
one-to-one or constant.

Indeed, if f ∈ ωω then there exists a ξ < ω1 such that f ∈ Qξ. Then B = Bξ
is as desired.

Now, to see that F is an ultrafilter take an A ⊂ ω and let f ∈ ωω be a
characteristic function of A. Then B ∈ F as above is a subset of either A
or its complement.

It is easy to see that the above two properties imply that F is a selective
ultrafilter.

Notice that CPAgame
prism implies also that we have many different selective

ultrafilters. The consistency of this fact, in a model obtained by adding
many side-by-side Sacks reals, was first noticed by Hart in [16].

Remark 4.10. CPAgame
prism implies that there are ω2 different selective ultra-

filters.

Proof. This can be easily deduced by a simple transfinite induction from
(∗) for every family U = {Fξ : ξ < ω1} of ultrafilters on ω there is a

selective ultrafilter F /∈ U .
Property (∗) is proved as above, where we use I = [ω]<ω and the operator
C({Bη : η < ξ}) is replaced with Cξ({Bη : η < ξ}) /∈ Fξ.

Now, from the above we obtain that “2ω1 = ω2”+CPAgame
prism (which is

consistent) implies that there are 2ω1 different selective ultrafilters. Since
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CPA is also consistent with 2ω1 > ω2 it is worth noticing that the existence
of 2ω1 different selective ultrafilters can be also deduced from a slightly
stronger version of CPAgame

prism also in this case. This can be found in [8].
Recall that the number u is defined as the smallest cardinality of the base

for a non-principal ultrafilter on ω. Thus Theorem 4.8 and Corollaries 2.7
and 2.8 imply that

Corollary 4.11. CPAgame
prism implies that u = rσ = ω1.

4.4. Non-selective P -points and number i.
Recall that an ultrafilter F on ω is a P -point provided for every partition

P of ω either P ∩ F 6= ∅ or there is an F ∈ F such that |F ∩ P | < ω for
all P ∈ P. Clearly every selective ultrafilter is a P -point. Thus, CPAgame

prism
implies the existence of a P -point. On the other hand, Shelah proved that
there are models with no P -points. (See e.g. [1, thm. 4.4.7].) Hart in [16]
proved that in a model obtained by adding many side-by-side Sacks reals
there is a P -point which is not selective. Next, we will prove that this
follows also from CPAgame

prism. The main idea of the proof is the same as that
used in [16].

For m < ω let Pm = {n < ω : 2m − 1 ≤ n < 2m+1 − 1} and define a
partition P of ω by P = {Pm : m < ω}. Consider the following ideal Ī on ω

Ī =
{
A ⊂ ω : lim sup

m→∞
|A ∩ Pm| < ω

}
(4.14)

and notice the following simple fact.

Fact 4.12. If A ∈ [Ī+]≤ω is linearly ordered by ⊂∗ then there is a C(A) ∈
Ī+ such that C(A) ⊂∗ A for all A ∈ A.

Proof. Let {An : n < ω} ⊂ A be a ⊂∗-decreasing sequence coinitial with
A. For every i < ω choose mi < ω and Ci ∈ [Pmi ]

i such that Ci ⊂
⋂
j≤iAj .

Then C(A) =
⋃
i<ω Ci is as desired.

To construct a nonselective P -point we are going to prove the following
theorem.

Theorem 4.13. If CPAgame
prism holds then there exists a ⊂∗-decreasing se-

quence B = {Bξ ∈ Ī+ : ξ < ω1} such that the filter F generated by B is an
ultrafilter on ω.

Notice that from this we will immediately deduce the required result.

Corollary 4.14. If CPAgame
prism holds then there exists a nonselective P -point.
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Proof. Let F be as in Theorem 4.13. Clearly F is nonselective, since P is
disjoint with Ī+ ⊃ F and every selector of P is in Ī ⊂ P(ω) \ F . The fact
that F is a P -point follows from the fact that F has a base linearly ordered
by ⊂∗. Indeed, if {Sn : n < ω} ⊂ P(ω) \F is a partition of ω then for every
m < ω there is ξm < ω1 such that Bξm ⊂∗ ω \

⋃
n≤m Sn. Let β < ω1 be such

that Bβ ⊂∗ Bξm for all m < ω. Then F = Bβ ∈ F is such that |F ∩Sn| < ω
for all n < ω.

The proof of Theorem 4.13 will be based on the following lemma, which is
analogous to Lemma 4.9. Note, that although the statement of this lemma
is identical to that of Lemma 4.9(b), we cannot apply this lemma here, since
the ideal Ī is not weakly selective.

Lemma 4.15. Let Ī be as in (4.14). Then for every A ∈ Ī+ and a prism
P in 2ω there exist a B ∈ Ī+, B ⊂ A, a subprism Q of P , and a j < 2 such
that

(◦) g � B is constant equal to j for every g ∈ Q.

Proof. Fix an A ∈ Ī+ and an f ∈ Fprism(2ω) from Cα onto P . Since A∈Ī+,
for every k < ω we can find an mk < ω such that |A∩Pmk | ≥ k 22k . First we
will construct a subprism Q0 of P and a sequence 〈Ak ∈ [A∩Pmk ]k : k < ω〉
such that for every k < ω

g � Ak is constant for every g ∈ Q0. (4.15)

This will be done using Lemmas 4.4 and 4.3. So, for each k < ω let Dk be
the collection of all pairwise disjoint families E ∈ [Pα]<ω such that for every
E ∈ E

f(h) � Pmk = f(h′) � Pmk for all h, h′ ∈ E. (4.16)

Clearly each Dk satisfies condition (†) from Lemma 4.4, so by an easy in-
duction we can find a sequence 〈Ek ∈ Dk : k < ω〉 satisfying the assumptions
of Lemma 4.3. Let E0 =

⋂
k<ω

⋃
Ek ∈ Pα. We will show that Q0 = f [E0]

satisfies (4.15).
Indeed, fix a k < ω and notice that Ek = {Ei : i < 2k}. For each i < 2k

choose an hi ∈ Ei and define ϕ : A∩Pmk → 22k by ϕ(p)(i) = f(hi)(p). Since
|A ∩ Pmk | ≥ k 22k , by the pigeon hole principle we can find an s ∈ 22k such
that |ϕ−1(s)| ≥ k. Choose an Ak ∈ [ϕ−1(s)]k. Then for every i < 2k and
p ∈ Ak we have f(hi)(p) = ϕ(p)(i) = s(i). So, f(hi) � Ak is constant equal
to s(i). Combining this with the inclusion Ak ⊂ Pmk and the condition
(4.16) we obtain (4.15).

To finish the proof fix a selector Ā from the family {Ak : k < ω}. Then
Ā ∈ I+, where I is the ideal of finite subsets of ω. Applying Lemma 4.9(a)
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to Ā and Q0 we can find a j < 2, an S ∈ [Ā]ω, and a subprism Q of Q0 such
that g � S is constant equal to j for every g ∈ Q. Put B =

⋃
k∈S Ak. Then,

by (4.15), g � B is constant equal to j for every g ∈ Q.
It is clear that B ∈ Ī+ ∩ P(A), since it is a union of infinitely many sets

Ak ∈ [A ∩ Pmk ]k.

Note also that, similarly as for Remark 4.10, the conclusion of the follow-
ing fact holds in a model obtained by adding many side-by-side Sacks reals.
This was first noticed by Hart in [16].

Remark 4.16. CPAgame
prism implies that there are ω2 different nonselective

P -points.

The existence of 2ω1 different such ultrafilters follows also from a slightly
stronger version of CPAgame

prism. This can be found in [8].
Recall also that a family J ⊂ [ω]ω is an independent family provided the

set ⋂
A∈A

A ∩
⋂
B∈B

(ω \B)

is infinite for every disjoint finite subsetsA and B of J . It is often convenient
to express this definition in a slightly different notation. Thus, for W ⊂ ω
let W 0 = W and W 1 = ω \W . A family J ⊂ [ω]ω is independent provided
the set ⋂

W∈J0

W τ(W )

is infinite for every finite subset J0 of J and τ : J0 → {0, 1}.
The independence cardinal i is defined as follows:

i = min{|J | : J is infinite maximal independent family}.
According to Andreas Blass [3, Section 11.5] the fact that the equation
i = ω1 holds in the iterated perfect set model was first proved by Eisworth
and Shelah (unpublished).

Theorem 4.17. CPAgame
prism implies that i = ω1.

The proof of the theorem is based on the following lemma. We say that
a family W ⊂ [ω]ω separates points provided for every k < ω there are
U, V ∈ W such that k ∈ U \ V .

Lemma 4.18. For every countable independent familyW ⊂ [ω]ω separating
points and a prism P in [ω]ω there exist W ∈ [ω]ω and a subprism Q of P
such that W ∪ {W} is independent but W ∪ {W,x} is not independent for
every x ∈ Q.
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Proof. Let W = {Wi : i < ω} and let ϕ : ω → 2ω be a Marczewski function
for W, that is, for i, k < ω

ϕ(k)(i) =
{

1 for k ∈Wi

0 for k /∈Wi.

Note that ϕ is one-to-one, since W separates points. Notice also that for
every k, n < ω and τ ∈ 2n

k ∈
⋂
i<n

W
τ(i)
i ⇔ (∀i < n) k ∈W τ(i)

i ⇔ (∀i < n) ϕ(k)(i) = τ(i)⇔ τ ⊂ ϕ(k).

Now, if [τ ] = {t ∈ 2ω : τ ⊂ t} then sets {[τ ] : τ ∈ 2<ω} form a base for 2ω

and

k ∈
⋂
i<n

W
τ(i)
i ⇔ ϕ(k) ∈ [τ ]. (4.17)

Thus, independence of W implies that ϕ[ω] is dense in 2ω, so it is home-
omorphic to the set Q of rational numbers. Note also that from (4.17) it
follows immediately that

(a) if W ⊂ ω is such that ϕ[W ] and ϕ[ω] \ϕ[W ] are dense then W ∪{W}
is independent;

(b) if W,x ⊂ ω are such that for some τ ∈ 2<ω either ϕ[x ∩W ] ∩ [τ ] = ∅
or ϕ[W ] ∩ [τ ] ⊂ ϕ[x] then W ∪ {W,x} is not independent.

Let I be the ideal of nowhere dense subsets of ϕ[ω]. Then, by Fact 4.6, I
is weakly selective, since ϕ[ω] is homeomorphic to Q. So, identifying ϕ[ω]
with ω and applying Lemma 4.9(b), we can find a subprism Q of P and a
V ∈ [ω]ω \ I such that either

• x ∩ V = ∅ for every x ∈ Q, or else
• V ⊂ x for every x ∈ Q.

Since V /∈ I, there exists a τ ∈ 2<ω such that ϕ[V ] is dense in [τ ]. Trimming
V , if necessary, we can assume that ϕ[V ] ⊂ [τ ] and that ϕ[ω \ V ] is also
dense in [τ ]. Now let W ⊃ V be such that ϕ[W ] ∩ [τ ] = ϕ[V ] and both
ϕ[W ] and ϕ[ω \W ] are dense in ϕ[ω]. Then, by (a) and (b), W ∪ {W} is
independent while W ∪ {W,x} is not independent for every x ∈ Q.

Proof of Theorem 4.17. For a countable independent family W ⊂ [ω]ω

separating points and an f ∈ Fprism([ω]ω) define P = range(f) and let
W (W, P ) ∈ [ω]ω and a subprism Q(W, P ) of P be as in Lemma 4.18. If
f ∈ Cprism([ω]ω) and P = range(f) = {x} then we put Q(W, P ) = P and
define W (W, P ) as an arbitrary W such thatW∪{W} is independent while
W ∪ {W,x} is not.
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Let A0 ⊂ [ω]ω be an arbitrary countable independent family separating
points and consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(A0 ∪ {Wη : η < ξ}, Pξ),

where sets Wη are defined inductively by Wη = W (A0 ∪ {Wζ : ζ < η}, Pη).
By CPAgame

cube strategy S is not a winning strategy for Player II. So there ex-
ists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which and Player II
loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ.
Now, notice that the family J = A0 ∪ {Wξ : ξ < ω1} is a maximal inde-

pendent family. It is clear that J is independent, since every set Wξ was
chosen so that A0 ∪ {Wζ : ζ ≤ ξ} is independent. To see that J is maximal
it is enough to note that every x ∈ [ω]ω belongs to a Qξ for some ξ < ω1,
and so A0 ∪ {Wζ : ζ ≤ ξ} ∪ {x} is not independent.

By Theorem 4.17 we see that CPAgame
prism implies the existence of an inde-

pendent family of size ω1. Next, answering a question of Michael Hrušák [17]
we show that such a family can be simultaneously a splitting family. This
is similar in flavor to Theorem 3.4. In the proof we will use the following
lemma.

Lemma 4.19. For every countable family V ⊂ [ω]ω and a perfect set P in
[ω]ω there exists a W1 ∈ [ω]ω such that V ∪ {W1} is independent and W1
splits every A ∈ P .

Proof. We follow the argument from [11, p. 121] that s ≤ d.
For every A ∈ [ω]ω let bA be a strictly increasing bijection from ω onto

A. Then b : [ω]ω → ωω defined by b(A) = bA is continuous. In particular
b[P ] = {bA : A ∈ P} is compact, so there exists a strictly increasing f ∈ ωω
such that bA(n) < f(n) for every A ∈ P and n < ω. For n < ω let fn denote
the n-fold composition of f and let Sn = {m < ω : fn(0) ≤ m < fn+1(0)}.
Then fn(0) ≤ bA(fn(0)) < f(fn(0)) = fn+1(0) for every A ∈ P and n < ω.
In particular, for every A ∈ P

Sn ∩A 6= ∅.

So, if T ⊂ ω be infinite and co-infinite and W1 =
⋃
n∈T Sn then W1 splits

every A ∈ P . Thus, it is enough to take infinite and co-infinite T ⊂ ω such
that V ∪ {W1} is independent.

Theorem 4.20. CPAgame
prism implies that there exists a family F ⊂ [ω]ω of

cardinality ω1 which is simultaneously independent and splitting.
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Proof. The proof is just a slight modification of that for Theorem 4.17.
(Compare also Theorem 3.4.)

For a countable independent family W ⊂ [ω]ω separating points and an
f ∈ Fprism([ω]ω) put P = range(f) and let W0 ∈ [ω]ω and a subprism Q of
P be as in Lemma 4.18. Let W1 be as in Lemma 4.19 used with P = Q and
V =W ∪ {W0}. We put Q(W, P ) = Q1 and W(W, P ) = {W0,W1}.

If f ∈ Ccube([ω]ω) and P = range(f) = {x} then we put Q(W, P ) = P
and W(W, P ) = {W0,W1}, where W0 and W1 are such that W ∪{W0,W1}
is independent and W1 splits P = {x}.

Let A0 ⊂ [ω]ω be an arbitrary countable independent family separating
points and consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(A0 ∪
⋃
{Wη : η < ξ}, Pξ),

where Wη’s are defined inductively by Wη =W(A0 ∪
⋃
{Wη : η < ξ}, Pη).

By CPAgame
prism strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which and
Player II loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ. Then the family F =
A0 ∪

⋃
{Wξ : ξ < ω1} is independent and splitting.

4.5. Crowded ultrafilters on Q.
Let Perf(Q) stand for the family of all closed subsets A of Q without

isolated points, that is, such that their closures clR(A) in R are perfect
sets. Recall that an ideal I on Q of is crowded provided I+ = P(Q) \ I is
generated by the sets from Perf(Q). Crowded ultrafilters were studied by
several authors (see e.g. [12, 10]) in connection with the reminder βQ \ Q
of the Čech-Stone compactification βQ of Q.

In what follows we will also use the following simple fact, in which a
non-scattered subset of Q is understood as a set containing a subset dense
in itself.

Fact 4.21. Every non-scattered set B ⊂ Q contains a subset from Perf(Q).

Proof. Since B is non-scattered, decreasing it, if necessary, we can assume
that B is dense in itself. Let {kn ≤ n : n < ω} be an enumeration of
ω with infinitely many repetitions and let Q \ B = {an : n < ω}. By
induction construct a sequence 〈〈pn, Un〉 ∈ B ∩ P(Q) : n < ω〉 such that
pn ∈ B \

⋃
i<n Ui and |pn − pkn | < 2−n while Un 3 an is a clopen subset of

Q \ {pi : i ≤ n}. Then Q \⋃n<ω Un ⊂ B is as desired.

The following theorem answers in positive a question of M. Hrušák [17] on
whether there exists a crowded ultrafilter in the iterated perfect set model.
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Theorem 4.22. CPAgame
prism implies there exists a non-principal ultrafilter on

Q which is crowded.

Fix a p ∈ R \Q and for a family D ⊂ P(Q) let F (D) denote a filter on Q
generated by the family D∪{In∩Q : n < ω}, where In = [p−2−n, p+ 2−n].
The proof of the theorem is based on the following lemma, in which [Q]ω is
considered with the same topology as [ω]ω upon natural identification.

Lemma 4.23. Let D ⊂ Perf(Q) be a countable family such that F (D) is
non-trivial. Then for every prism P in [Q]ω there exist a subprism Q of P
and a Z ∈ Perf(Q) such that F (D ∪ {Z}) is non-trivial and either

(i) Z ∩ x = ∅ for every x ∈ Q, or else
(ii) Z ⊂ x for every x ∈ Q.

Proof. In what follows we will identify [Q]ω with 2Q, the identification
mapping given by the characteristic function. Thus, we will consider P as
a prism in 2Q. Fix an f ∈ Fprism(2Q) from Cα onto P .

Let {Dn ∈ Perf(Q) : n < ω} be a cofinal sequence in F (D) with a property
thatDn+1 ⊂ Dn ⊂ In for every n < ω. Choosing a subsequence, if necessary,
we can find disjoint intervals Jn such that Kn = Dn ∩ Jn ∈ Perf(Q).

First we will show that there exist a sequence 〈Bn ⊂ Kn : n < ω〉 of
non-scattered sets and a subprism P0 of P such that

g � Bn is constant for every g ∈ P0 and n < ω. (4.18)

For each n < ω let Dn be the collection of all pairwise disjoint families
E ∈ [Pα]<ω for which there exists a non-scattered set Bn ⊂ Kn with the
property that

g � Bn is constant for every g ∈ f [
⋃
E ].

To see that the families Dn satisfy condition (†) from Lemma 4.4 it is enough
to notice that for every non-scattered set B ⊂ Q and every prism P1 there
is a subprism Q1 of P1 and a non-scattered subset B′ of B such that g � B′
is constant for every g ∈ Q1. But B contains a subset W homeomorphic
to Q. So, by Fact 4.6, the ideal I of nowhere dense subsets of W is weakly
selective. So, applying Lemma 4.9 to this ideal and the prism P1 we can
find a B′ ∈ I+, which clearly is not scattered, and a Q1 as desired.

Thus, using Lemma 4.4, we can find a sequence 〈En ∈ Dn : n < ω〉 satis-
fying the assumptions of Lemma 4.3. Let E0 =

⋂
n<ω

⋃
En ∈ Pα. It is easy

to see that the sets Bn witnessing En ∈ Dn and Q0 = f [E0] satisfy (4.18).
Notice also that by Fact 4.21 we can assume that Bn ∈ Perf(Q) for every
n < ω.

Now let A be a selector from the family {Bn : n < ω}. Then A ∈ I+,
where I is the ideal of finite subsets of Q. Applying Lemma 4.9(a) to A and
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P0 we can find i < 2, S ∈ [A]ω, and a subprism Q of P0 such that g � S is
constant equal to i for every g ∈ Q. Put Z =

⋃
n∈S Bn. Then, by (4.18),

g � Z is constant for every g ∈ Q. Finally, note that Z ∈ Perf(Q) since Z is
closed, as Bn → p /∈ Q.

Proof of Theorem 4.22. For a prism P in [Q]ω and a countable family
D ⊂ Perf(Q) for which F (D) is non-trivial let Z(D, P ) ∈ Perf(Q) and
a subprism Q(D, P ) of P be as in Lemma 4.23. Consider the following
strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q({Zη : η < ξ}, Pξ),

where sets Zη are defined inductively by Zη = Z({Zζ : ζ < η}, Pη).
By CPAgame

prism strategy S is not a winning strategy for Player II. So there
exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which Player II
loses, that is, [Q]ω =

⋃
ξ<ω1

Qξ.
Now, let F = F ({Zξ : ξ < ω1}). Then clearly F is a crowded non-

principal filter. To see that it is maximal, take an x ∈ [Q]ω. Then there is
a ξ < ω1 such that x ∈ Qξ. Then either Zξ ∩ x = ∅ or Zξ ⊂ x. Thus, either
x or its complement belong to F .

Note also that similarly as for Remarks 4.10 and 4.16 we can argue that
there are many non-principal crowded ultrafilters.

Remark 4.24. CPAgame
prism implies that there are ω2-many different crowded

non-principal ultrafilters.

The existence of 2ω1 different such ultrafilters follows also from a slightly
stronger version of CPAgame

prism. This can be found in [8].
The construction of crowded ultrafilters is quite similar to that of selective

ultrafilters and of nonselective P -points. This similarity suggests that it may
be possible to construct a crowded ultrafilter which is also selective. This,
however, cannot be done:

Proposition 4.25. There is no non-principal crowded ultrafilter on Q which
is also a P -point.

Proof. Let F be a non-principal crowded ultrafilter on Q and let {x} =⋂
F∈F clR(F ) ∈ R \ Q. Then In = (x − 2−n, x + 2−n) ∩ Q belongs to F

for every n < ω. Let P = {In \ In+1 : n < ω} ∪ {Q \ I0}. Then P is a
partition of ω disjoint with F . It is also easy to see that if F ⊂ ω is such
that |F ∩ P | < ω for every P ∈ P then F /∈ F .
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It is also not difficult to show that no non-principal crowded ultrafilter
on Q can be a Q-point.

It is worth mentioning that CPAgame
prism implies also the existence of many

other kinds of ultrafilters, like those constructed in [16]. In fact, many con-
structions that are done under CH can be carried out also under CPAgame

prism.
However, this always needs some combinatorial lemma, such as Lemma 4.9,
which allows replacing points with prisms.

5. Proof of fusion Lemma 4.4 and of consistency of CPAgame
prism

Proof of Lemma 4.4. For s ∈ 2Ak and j < 2 let ŝ j stand for the function
s ∪ {〈〈βk, nk〉, j〉} ∈ 2Ak+1 .

Let {si : i < 2k+1} be an enumeration of 2Ak+1 . By induction on i < 2k+1

we will construct a sequence 〈xsi ∈ Cα : i < 2k+1〉 such that for every
i < 2k+1

(a) if si = ŝ j, where s ∈ 2Ak and j < 2, then xsi ∈ Es,
(b) if m < i and β = max{β̄ : si � (β̄ × ω) = sm � (β̄ × ω)} then

xsi � β = xsm � β and xsi(β) 6= xsm(β).
The point xs0 is chosen arbitrarily from Es0�Ak . To make an inductive step,
if for some 0 < i ≤ 2k+1 points {xsm : m < i} are already constructed
choose an m̄ < i for which β as in (b) is maximal. Notice that by the in-
ductive assumption and the condition (ag) we have xsm̄ � β ∈ πβ[Esm̄�Ak ] =
πβ[Esi�Ak ]. So we can choose an xsi ∈ Esi�Ak extending xsm̄ � β and such
that xsi(β) 6= xsm(β) for all m < i. It is easy to see that such xsi satisfies
(a) and the condition (b) for m = m̄. For other m < i condition (b) follows
from the maximality of β and the assumption that Ek satisfies (ag) and (sp).

Conditions (a) and (b) imply that E ′k+1 =
{
{xs} : s ∈ 2Ak+1

}
satisfy (A)

except for being a subset of Pα. Let ε ∈ (0, 2−(k+1)] be small enough
that for every m < i < 2k+1 and β as in (b) we have πβ+1[Bα(xsi , ε)] ∩
πβ+1[Bα(xsm , ε)] = ∅. For s ∈ 2Ak and j < 2 define

Esˆj = Es ∩Bα(xsˆj , ε).

Then Ek+1 =
{
Es : s ∈ 2Ak+1

}
is a subset of Pα by (4.9). Conditions (i) and

(ii) are clear from the construction, while (ag) for Ek+1 follows from (b) and
(4.7). Property (sp) holds by (b) and the choice of ε, since (sp) was true
for E ′k+1. We have completed the proof of (A).

To prove condition (B), fix an enumeration {si : i < 2k} of 2Ak and define
γ = max{β0, . . . , βk} < α. Also for i,m < 2k put E−1

si = Esi and

βmi = max{β ≤ γ : si � (β × ω) = sm � (β × ω)}.
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By induction we will construct the sequences 〈{Emsi ∈ Pα : i < 2k} : m < 2k〉
and 〈Pm ∈ Pα : m < 2k〉 such that for every j,m < 2k

(a) Em = {Emsi : i < 2k} satisfies (ag),
(b) Emsj ⊂ E

m−1
sj and if x ∈ Em−1

sj and πγ(x) ∈ πγ [Emsj ] then x ∈ Emsj ,
(c) πγ [Pm] = πγ [Emsm ],
(d) Pm ⊂ Em−1

sm and {Pi : i ≤ m} ∈ D.

So, assume that for some m < 2k the sequence 〈Pi : i < m〉 and the family
Em−1 satisfying (ag) are already constructed. Notice that, by (b), sets
in Em−1 are pairwise disjoint, since this was the case for E−1 = Ek. So, by
condition (†) applied to E = {Pi : i < m}, we can choose Pm ∈ Pα∩P(Em−1

sm )
such that {Pm} ∪ {Pi : i < m} ∈ D. This guarantees (d).

Next, for i < 2k define

Emsi = Em−1
si ∩ π−1

βmi
(πβmi [Pm]) =

{
x ∈ Em−1

si : x � βmi ∈ πβmi [Pm]
}

and notice that πβmi [Pm] ⊂ πβmi [Em−1
sm ] = πβmi [Em−1

si ]. So, by (4.11), Emsi ∈
Pα. Also, the definition ensures (b) since βmi ≤ γ.

Note that, by the inductive assumption (a), for all i < 2k we have

πβmi [Emsi ] = πβmi [Em−1
si ] ∩ πβmi [Pm] = πβmi [Em−1

sm ] ∩ πβmi [Pm] = πβmi [Pm].

Since βmm = γ, this implies (c). To prove (a) pick β < α and different
i, j < 2k such that si � (β × ω) = sj � (β × ω). If β ≤ βmi then also β ≤ βmj
and πβ[Emsi ] = πβ[Pm] = πβ[Emsj ]. So, assume that β > βmi and β > βmj .
Then βmi = βmj and

πβ[Emsi ] =
{
πβ(x) : x ∈ Em−1

si & x � βmi ∈ πβmi [Pm]
}

=
{
πβ(x) : x ∈ Em−1

sj & x � βmj ∈ πβmj [Pm]
}

= πβ[Emsj ].

So Em satisfies (a). This finishes the construction.
Notice that by the maximality of γ and the properties (a) and (c) the

family E ′k = {Pm : m < 2k} satisfies (ag). Since it is a refinement of Ek it
also satisfies (sp). So (B) is proved.

To find Ek+1 as in (C) first take an E ′k+1 satisfying (A) and then use (B)
to find its refinement E ′k+1 ∈ D satisfying (ag) and (sp).

In what follows we will show that CPAgame
prism holds in the generic extension

V [G] of a model V of ZFC+CH, where G is a V -generic filter over Sω2 , the ω2
countable support iteration of Sacks forcing. We will use here terminology
from [1].

Let P = 〈Perf(C),⊂〉. Recall that perfect set (Sacks) forcing S is usually
defined as the set of all trees T (P ) = {x � n ∈ 2<ω : x ∈ P & n < ω}, where
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P ∈ P, and is ordered by inclusion, that is, s ∈ S is stronger than t ∈ S,
s ≤ t, if s ⊂ t. It is important to realize that

P ⊂ Q if and only if T (P ) ⊂ T (Q),

so T : P→ S establishes isomorphism between forcings P and S. Also if for
s ∈ S we define lim(s) = {x ∈ 2ω : ∀n < ω (x � n ∈ s)} then lim: S → P is
the inverse of T .

Perfect set forcing is usually represented as S rather that in its more
natural form P since the conditions in S are absolute, unlike those in P.
However, in light of our axiom, it is important to think of this forcing in
terms of P.

Recall also that for a countable A ⊂ ω2 we defined Φprism(A) as the family
of all projection-keeping homeomorphisms f : CA → CA. For A ⊂ α ≤ ω2
define

PαA = {[range(f)]α : f ∈ Φprism(A)},
where [E]α = {g ∈ Cα : g � A ∈ E} for every E ⊂ CA. Also, we put

Pα =
⋃{PαA : A ∈ [α]≤ω

}
and order it by inclusion. (Thus, for a countable α we have two different
definitions of Pα. However, it is not difficult to see that they describe the
same family.)

It is known that forcing Pα is equivalent to Sα, a countable support
iteration of S of length α. This fact is stated explicitly by Kanovei in [19],
though it was also used, in less explicit form, in earlier papers of Miller [23]
and Steprāns [25]. More precisely, in [23] and [25] the authors consider the
family SDα ⊂ Pα of determined conditions in Pα, which form a dense subset
of Pα, and notice that SDα is equivalent to Sα. This fact is most precisely
described by the following fact, whose explicit proof can be found in [8].

Fact 5.1. Sα is order isomorphic to SDα for every 0 < α ≤ ω2. In particular,
forcings Sα and Pα are equivalent.

In the proof of the consistency of CPAgame
prism we will use the following

proposition, which is of interest by its own. In its statement the symbol
CPAgame

prism[X] stands for CPAgame
prism for a fixed Polish space X.

Proposition 5.2. For any Polish space X axiom CPAgame
prism[X] implies the

full axiom CPAgame
prism.

Proof. Let X be a Polish space. First notice the following two facts.
(F1) If Y is a Polish subspace of X then CPAgame

prism[X] implies CPAgame
prism[Y ].
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To see it, by way of contradiction assume that Player II has a winning
strategy S in GAMEprism(Y ). For each prism P in X let QP be its subprism
such that either QP ∩ Y = ∅ or QP ⊂ Y . Such a subprism can be found by
Claim 2.3 since Y is a Gδ subset of X. Define a strategy S̄ for Player II in
the game GAMEprism(X) by putting

S̄(〈〈Pη, Qη〉 : η < ξ〉, P ) = S(〈〈Pη, Qη〉 : η < ξ & QPη ⊂ Y 〉, QP )

provided QP ⊂ Y , and S̄(〈〈Pη, Qη〉 : η < ξ〉, P ) = QP otherwise. It is
easy to see that S̄ is a winning strategy for Player II in GAMEprism(X),
contradicting CPAgame

prism[X]. So (F1) is proved.

(F2) If a Polish space Y is a 1−1 continuous image of X then CPAgame
prism[X]

implies CPAgame
prism[Y ].

Indeed, let f be a continuous bijection from X onto Y and by way of contra-
diction assume that Player II has a winning strategy S in GAMEprism(Y ).
Define a strategy S̄ for Player II in GAMEprism(X) by putting

S̄(〈〈Pη, Qη〉 : η < ξ〉, P ) = S̄(〈〈f [Pη], f [Qη]〉 : η < ξ〉, f [P ]).

(Here if h is a coordinate function for a prism P then prism f [P ] is consid-
ered with a coordinate system h ◦ f .) It is easy to see that S̄ is a winning
strategy for Player II in GAMEprism(X), contradicting CPAgame

prism[X]. So
(F2) is proved.

To finish the proof take a Polish space X for which CPAgame
prism[X] holds

and recall that the Baire space ωω is homeomorphic to a subspace of X
(since X contains a copy of C and C contains a copy of ωω). Thus, by (F1),
CPAgame

prism[Z] holds for an arbitrary Polish subspace Z of ωω. Now, if Y is an
arbitrary Polish space then there exists a closed subset F of ωω such that
Y is a one-to-one continuous image of F . (See e.g. [20, Theorem 7.9].) So,
by (F2), CPAgame

prism[Y ] holds as well.

Theorem 5.3. CPAgame
prism holds in the iterated perfect set model. In partic-

ular, it is consistent with ZFC set theory.

Proof. Start with a model V of ZFC+CH and let V [G] be a generic exten-
sion of V with respect to forcing Pω2 . By Fact 5.1 forcing Pω2 is equivalent
to Sω2 , so it preserves cardinals and c = ω2 in V [G]. For α ≤ ω2 let
Gα = G � α. Then Gα is V -generic over Pα. By Proposition 5.2 it is enough
to prove only CPAgame

prism[X] for X = C.
Let {cα : α < ω2} be an enumeration, in V [G], of C such that for every

α-th element ω1 α of Γ, α > 0, we have:
• {cξ : ξ < ω1 α} = C ∩ V [Gα];
• cω1 α is the Sacks generic real in V [Gα+1] over V [Gα].
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We will show that this sequence satisfies CPAgame
prism in V [G].

So let S be a strategy for Player II. Thus, S is a function from a sub-

set of D =
⋃
ξ<ω1

(
F∗prism(X)×F∗prism(X)

)ξ
× F∗prism(X) into F∗prism(X).

(Here each prism is considered with its explicit coordinate function from
F∗prism(X).) Since Pω2 is ω2-cc and satisfies axiom A, there is an α ∈ Γ such
that ω1 α = α and4

S ∩ V [Gα] = S ∩ [(D ×F∗prism(X)) ∩ V [Gα]] ∈ V [Gα]. (5.1)

Since the quotient forcing Pω2/Pα is equivalent to Pω2 we can assume that
α = 0, that is, that V [Gα] is our ground model V .

Let 〈〈fξ, gξ〉 : ξ < ω1〉 be a game played according to the strategy S in
which Player I plays in such a way that {fξ : ξ < ω1} = F∗prism(X) ∩ V .
Then G = {gξ : ξ < ω1} ∈ V is F∗prism-dense. It is enough to show that

X \ V ⊂
⋃

gξ∈Fprism

range(gξ).

So, take an r ∈ X \ V . Then there exists a Pω2-name τ for r such that

Pω2 ‖− τ ∈ X \ V.

We can also choose τ such that it is a P(A)-name for some A ∈ [ω2]≤ω with
0 ∈ A. Then all the information on r is coded by GA = G � A. Therefore
r ∈ V [{cω1 ξ : ξ ∈ A}]. Assume that A has an order type α. Clearly α < ω1
and P(A) is isomorphic to Pα. Applying this isomorphism we can assume
that τ is a Pα-name for r and Pα ‖− τ ∈ X \V . Picking the smallest α with
this property, we can also assume that for every β < α we have

Pα ‖− τ ∈ X \ V [Gβ].

Now, for any such a name τ and any R ∈ Pα there exist P ∈ Pα, P ⊂ R,
and a continuous injection function f : P → X (so f ∈ Fprism(X)∩V ) which
“reads τ continuously” in the sense that

Q ‖− τ ∈ f [Q] (5.2)

for every Q ⊂ P , Q ∈ Pα. (See [25, Lemma 3.1] or [23, Lemma 6, p. 580].
This also can be deduced from [8, Lemma 3.2.2].) So, the set

D = {Q ∈ Pα : (∃ξ < ω1) Q = dom(gξ) & Q ‖− τ ∈ gξ[Q]} ∈ V
is dense in Pα. (For R ∈ Pα take f as in (5.2), find ξ < ω1 with f = fξ, and
notice that Q = dom(gξ) justifies the density of D.)

4Formally no f ∈ F∗prism(X) ∩ V [Gω2 ] belongs to V [Gα] with α < ω2. However in this
proof the expression “f ∈ F∗prism(X) ∩ V [Gα]” will be understood as “Code(f) belongs
to V [Gα]”, where for dom(f) = P ⊂ Cα with P = range(g), g ∈ Φprism(α), and Dα ∈ V
being a fixed countable dense subset of Cα we define Code(f) = f � g[Dα].
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Take Q ∈ D ∩ Gω1 and ξ < ω1 such that Q = dom(gξ). Then there is a
z ∈ Q such that gξ(z) = r. This finishes the proof.
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