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(Communicated by Alan Dow)

Abstract. We show that the property
(P) for every Darboux function g : R → R there exists a continuous nowhere

constant function f : R→ R such that f + g is Darboux
follows from the following two propositions:
(A) for every subset S of R of cardinality c there exists a uniformly continuous

function f : R→ [0, 1] such that f [S] = [0, 1],
(B) for an arbitrary function h : R → R whose image h[R] contains a non-

trivial interval there exists an A ⊂ R of cardinality c such that the re-
striction h � A of h to A is uniformly continuous,

which hold in the iterated perfect set model.

Our set theoretic terminology is standard and follows that of [3]. In particular,
functions are identified with their graphs and |X | stands for the cardinality of a
set X . The symbol c stands for |R| and C(R) denotes the family of all continuous
functions from R into R. A function f : R → R is Darboux if a conclusion of
the intermediate value theorem holds for f or, equivalently, when f maps every
interval onto an interval; f is a Sierpiński-Zygmund function if its restriction f � Y
is discontinuous for every subset Y of R of cardinality c; f is nowhere constant if it
is not constant on any non-trivial interval.

The class of Darboux functions has been studied for a long time as one of pos-
sible generalizations of the class of continuous functions. However, it has some
peculiar properties. For example, it is not closed under addition. In fact, in 1927
Lindenbaum [8] noticed that every function f : R → R can be written as a sum of
two Darboux functions (see also [9]) while Erdős [5] showed that if additionally f is
measurable, then both of the summands can be chosen to be measurable. In 1990
Kirchheim and Natkaniec showed that there are some truly bad Darboux functions
by proving the following.

Proposition 1 (Kirchheim, Natkaniec [6]). If the union of less than c many mea-
ger subsets of R is meager (thus under CH or MA), then there exists a Darboux
function g : R → R such that f + g is not Darboux for every continuous nowhere
constant function f : R→ R.
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The problem of whether the additional set-theoretic assumptions are necessary
in this theorem was investigated in 1992 by Komjáth [7] and was settled in 1995 by
Steprāns.

Proposition 2 (Steprāns [11]). It is consistent with ZFC that
(P) for every Darboux function g : R→ R there exists a continuous nowhere con-

stant function f : R→ R such that f + g is Darboux.

In his paper Steprāns showed that (P) holds in the iterated perfect set model.
His direct forcing argument is quite complicated and difficult to follow. We will
show that (P) follows from the principles (A) and (B) defined in the abstract. Since
the proofs that (A) and (B) hold in the the iterated perfect set model are much
simpler than the argument given in [11], our argument for (P) is essentially more
accessible.

The proof that (A) holds in the iterated perfect set model is due to Miller [10].
The proof that (B) holds in this model is due to Balcerzak, Ciesielski, and Natkaniec
[1] and consists of a page-long argument based on the results from [10]. In addition,
properties (A) and (B) follow quite easily from the Covering Property Axiom (CPA)
as shown by the authors in [4]. For more on the Darboux property see also the
survey article [2].

Note also that condition (B) is equivalent to its following seemingly stronger
version:
(B∗) for an arbitrary S ⊂ R and a function h : S → R whose image h[S] contains

a non-trivial interval there exists an A ⊂ S of cardinality c such that the
restriction h � A of h to A is uniformly continuous.

Clearly (B∗) implies (B). To see the other implication let h be as in (B∗) and
f : R→ R be Sierpiński-Zygmund. Put h∗ = f � (R \ S) ∪ h and apply (B) to find
A∗ ⊂ R of cardinality c such that h∗ � A∗ is uniformly continuous. Then A = A∗∩S
is as in (B∗).

Our main theorem is the following.

Theorem 3. Assume that (A) and (B) hold. Then for every Darboux function
d : R → R there exist a complete metric ρ on C(R) and a dense Gδ subset G of
〈C(R), ρ〉 of nowhere constant functions such that d+ g is Darboux for every g ∈ G.

In particular (A)&(B) implies (P).

Our proof will be based on the following two lemmas.

Lemma 4. Let d : R → R be Darboux and D ⊂ R be such that d � D is dense in
d. If g : R→ R is continuous and such that

[(d+ g)(α), (d+ g)(β)] ⊂ (d+ g)[[α, β]] for all α, β ∈ D,(1)

then d+ g is Darboux.

Proof. An easy proof can be found in [11, lemma 4.1].

Lemma 5. Assume that (A) holds and for every n < ω let An ∈ [R]c. Then for
every n < ω there exists a Bn ∈ [An]c such that the closures of Bn’s are pairwise
disjoint.

Proof. First note that (A) implies

∀〈Cn ∈ [R]c : n < ω〉 ∃C ∈ [C0]c ∀n < ω |Cn \ cl(C)| = c.(2)
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Indeed, by condition (A), we can find a continuous function f : R → [0, 1] such
that |C0 ∩ f−1(c)| = c for every c ∈ [0, 1]. (Just take a composition of a function
from (A) with the Peano curve followed by a projection.) Identify 2ω with a subset
of [0, 1] and by induction on n < ω choose an increasing sequence sn ∈ 2n+1 such
that |Cn \ f−1({c ∈ 2ω : sn ⊂ c})| = c. Put s =

⋃
n<ω sn. Then C = C0 ∩ f−1(s)

satisfies (2).
Next note that there exists a sequence 〈Dn : n < ω〉 of closed subsets of R

such that
∣∣An ∩ (Dn \

⋃
i<nDi

)∣∣ = c. This sequence is constructed by using
induction on n < ω with each set Dn chosen by applying (2) to the sequence
〈Ak \

⋃
i<nDi : n ≤ k < ω〉.

Finally, since each set Dn \
⋃
i<nDi is an Fσ-set, we can find closed subsets of

them, En, with Bn = En ∩An having cardinality c. It is easy to see that the sets
Bn are as required.

Remark 6. Note that Lemma 5 cannot be proved in ZFC. Indeed, if we assume
that there exists a c-Luzin set1 and 〈An ∈ [R]c : n < ω〉 is a sequence of c-Luzin
sets such that every non-empty open interval contains one of An’s, then for such a
sequence there are no Bn’s as in the lemma.

Lemma 7. Assume that (A) and (B) hold and d : R → R is a Darboux function.
If D is a countable subset of R such that

(∗) for every α < β from D for which d(α) = d(β) there exist p, q ∈ R such that
α < p < q < β and d[(p, q)] = {f(α)},

then there exists a countable family A ⊂ [R]c such that
(a) different elements of A have disjoint closures,
(b) d � A is uniformly continuous for every A ∈ A, and
(c) for every α, β ∈ D there exists an A ∈ A with the property that d � A ⊂

[α, β] × [d(α), d(β)].

Proof. First for every α < β from D we choose Aβα ∈ [R]c such that the family
A0 = {Aβα : α, β ∈ D & α < β} satisfies (b) and (c). For this fix α < β from D.

If d(α) = d(β), then it is enough to put Aβα = (p, q), where p and q are from (∗).
So, assume that d(α) 6= d(β). Then I = [d(α), d(β)] is a non-trivial interval, which
is a subset of d[[α, β]], since d is Darboux. Let S = [α, β] ∩ d−1(I) and notice that
h = d � S maps S onto I. So, by (B∗), we can find an Aβα ∈ [S]c such that d � Aβα
is uniformly continuous.

It is easy to see that A0 satisfies (b) and (c) so it is enough to decrease its
elements to get condition (a), while assuring that they still have cardinality c. This
can be done by applying Lemma 5.

Proof of Theorem 3. Take a Darboux function d : R → R and choose a countable
dense set D ⊂ R satisfying condition (∗) from Lemma 7 such that d � D is dense
in d. Let A ⊂ [R]c be the family from Lemma 7 and let {An : n < ω} be an
enumeration of A∪ {{d} : d ∈ D \

⋃
A}. Let ρ0 be the uniform convergence metric

on C(R), that is,

ρ0(f, g) = min{1, sup{|f(x)− g(x)| : x ∈ R}}

1A set L ⊂ R is a c-Luzin set if |L| = c but |L ∩ N | < c for every nowhere dense subset N
of R. It is well known (see, e.g., [10, sec. 2]) and easy to see that no c-Luzin set can be mapped
continuously onto [0, 1]. Thus (A) implies that there is no c-Luzin set.
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and, for f, g ∈ C(R), let

ρ1(f, g) = 2−min{n<ω : f�An 6=g�An}.

(If {n < ω : f � An 6= g � An} = ∅ we assume that ρ1(f, g) = 0.) Then ρ1 is a
pseudometric on C(R). Consider C(R) with the following metric ρ:

ρ(f, g) = max{ρ0(f, g), ρ1(f, g)}
and notice that 〈C(R), ρ〉 forms a complete metric space. We will prove that if G
is the set of all nowhere constant continuous functions g : R → R for which d + g
satisfies (1) of Lemma 4, then G contains a dense Gδ subset of 〈C(R), ρ〉. For this
we will show that for every α < β from D the following two types of sets contain
dense open subsets of 〈C(R), ρ〉:

Hβ
α = {g ∈ C(R) : g is not constant on (α, β)}

and

Gβα = {g ∈ C(R) : [(d+ g)(α), (d + g)(β)] ⊂ (d+ g)[[α, β]]}.
Then ⋂{

Hβ
α ∩Gβα : α, β ∈ D & α < β

}
⊂ G

will contain a dense Gδ subset of 〈C(R), ρ〉.
To see that Hβ

α contains a dense open subset first note that, by (a) and (c) of
Lemma 7, elements of A are nowhere dense. Next, take an f ∈ C(R), and fix an
ε > 0. Let B(f, ε) be the open ρ-ball centered at f and of radius ε. We will find
g ∈ B(f, ε) and δ > 0 such that B(g, δ) ⊂ B(f, ε)∩Hβ

α . So take an n < ω such that
2−n < ε/4, choose a non-empty open interval J ⊂ (α, β)\

⋃n
i=1 Ai, and pick different

x, y ∈ J . It is easy to find g ∈ C(R) such that g(x) 6= g(y), g � (R\J) = f � (R\J),
and ρ0(f, g) < 2−n. Then, by the choice of J we also have ρ1(f, g) < 2−n, so
g ∈ B(f, ε/4). Now, if δ = min{|g(x)− g(y)|/4, ε/4}, then B(g, δ) ⊂ B(f, ε) ∩Hβ

α .
To see that each Gβα contains a dense open subset take f ∈ C(R) and ε > 0. As

previously we will find g ∈ B(f, ε) and δ > 0 such that B(g, δ) ⊂ B(f, ε)∩Gβα. Find
α = x0 < x1 < · · · < xm = β, xi ∈ D, such that the variation of f on each interval
[xi, xi+1] is less than ε/8. Also, since d � [xi, xi+1] is Darboux, we can partition
each [xi, xi+1] even further to also get that |d(xi)− d(xi+1)| < ε/8 for all i < m.

Pick an n < ω such that 2−n < ε/8 and {xi : i ≤ m} ⊂
⋃n
i=1 Ai. For every

i < m choose an index ki > n such that d � Aki ⊂ (xi, xi+1)× [d(xi), d(xi+1)]. By
(A) for every i < m we can also pick a uniformly continuous function hi from Aki
onto [(d+ f)(xi), (d+ f)(xi+1)]. For each i < m define h � Aki = (hi− d− f) � Aki
and note that

h[Aki ] ⊂ hi[Aki ]− d[Aki ]− f [Aki ] ⊂ [−ε/2, ε/2]

since [(d+f)(xi), (d+f)(xi+1)] ⊂ [d(xi)+f(xi)−ε/4, d(xi)+f(xi)+ε/4], d[Aki ] ⊂
[d(xi), d(xi+1)] ⊂ [d(xi)− ε/8, d(xi) + ε/8], and f [Aki ] ⊂ (f(xi)− ε/8, f(xi) + ε/8).
Also define h as 0 on

⋃n
i=1 Ai and extend it to a uniformly continuous function

from R into [−ε/2, ε/2]. Put g = f + h and note that ρ(f, g) ≤ ε/2. Also let
k = max{n, k0, . . . , km−1} and δ ∈ (0, 2−k). We claim that B(g, δ) ⊂ B(f, ε)∩Gβα.

Indeed, it is easy to see that B(g, δ) ⊂ B(f, ε). To see that B(g, δ) ⊂ Gβα take a
g0 ∈ B(g, δ). By the choice of δ, h, and g for every i ≤ m we have

(d+ g0)(xi) = (d+ g)(xi) = (d+ f + h)(xi) = (d+ f)(xi)
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and, for A =
⋃
j<m Akj ,

g0 � A = g � A = (f + h) � A = (f + (hi − d− f)) � A = (hi − d) � A.

So,

[(d+ g0)(α), (d + g0)(β)] = [(d+ f)(x0), (d+ f)(xm)]

⊂
⋃
j<m

[(d+ f)(xj), (d+ f)(xj+1)]

=
⋃
j<m

hj [Akj ]

=
⋃
j<m

(d+ (hj − d))[Akj ]

=
⋃
j<m

(d+ g0)[Akj ]

⊂ (d+ g0)[[α, β]]

proving that g0 ∈ Gβα. This finishes the proof of the theorem.

We say that a function f : R→ R is a D1 function if it is differentiable with its
derivative f ′(x) finite at every x ∈ R; f is in the class “D1” provided its derivative
f ′(x) exists at every point, but it can have an infinite value. We say that f belongs
to C1 (to “C1”) if it belongs to D1 (to “D1”, respectively) and its derivative f ′ is
continuous.

Let us also notice that in (P) we cannot require that function g is “C1”. This
follows from the following fact which, for the functions from the class C1, was first
noticed by Steprāns [11, p. 118]. Since Steprāns leaves his statement without any
comments concerning its proof, we include here a missing argument.

Proposition 8. There exists, in ZFC, a Darboux function d : R → R such that
d+ f is not Darboux for every non-constant “C1” function f .

Proof. Let R = {xξ : ξ < c} and let {fξ : ξ < c} be an enumeration of all non-
constant “C1” functions. Notice that for every ξ < c there exists a non-empty
open interval Iξ such that fξ � Iξ is strictly monotone. (Just take an x ∈ R such
that f ′ξ(x) 6= 0, which exists since fξ is non-constant. Then Iξ is chosen as a
neighborhood of x on which f ′ξ is non-zero.)

The function d that we construct will be strongly Darboux in a sense that d−1(r)
is dense in R for every r ∈ R. For such d in order to show that d+fξ is not Darboux
it is enough to show that (d + fξ)−1(yξ) is not dense in R for some yξ ∈ R. (See,
e.g., [3, prop. 7.2.4].)

By induction we construct a sequence {〈Qξ, dξ, yξ〉 : ξ < c} such that for every
ξ < c we have:

(i) Sets {Qη : η ≤ ξ} are countable and pairwise disjoint, and xξ ∈
⋃
η≤ξ Qη.

(ii) dξ : Qξ → R and d−1
ξ (xξ) is dense in R.

(iii) yζ /∈ (dη + fζ)[Qη ∩ Iζ ] for every ζ, η ≤ ξ.
Notice that if we have such a sequence, then, by (i), R =

⋃
ξ<c

Qξ so d =⋃
ξ<µ dξ : R→ R. It is strongly Darboux by condition (ii), while, by (iii), for every
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ζ < c the set (d + fζ)−1(zζ) is not dense in R, since it misses Iζ . Thus, d is as
desired.

To make an inductive ξ-th step first choose a countable dense subset Q0
ξ of R

disjoint with ⋃
η<ξ

Qη ∪
⋃
ζ<ξ

(
Iζ ∩ f−1

ζ (yζ − xξ)
)
.

This can be done since, by the choice of of the intervals Iζ ’s, each of the sets
Iζ ∩ f−1

ζ (yζ − xξ) has at most one element.
Define dξ � Q0

ξ as constantly equal to xξ. This guarantees (ii), while condition
(iii) is satisfied for the part defined so far: for every ζ < ξ and x ∈ Iζ ∩Q0

ξ we have
dξ(x)+fζ(x) = fζ(x)+xξ 6= yζ , since otherwise we would have x ∈ Iζ∩f−1

ζ (yζ−xξ)
contradicting the choice of Q0

ξ.
If xξ ∈

⋃
η<ξ Qη we define Qξ = Q0

ξ. Otherwise we put Qξ = Q0
ξ ∪ {xξ} and if

dξ(xξ) is not defined yet (i.e., if xξ /∈ Q0
ξ) we define dξ(xξ) by choosing dξ(xξ) /∈

{yζ − fζ(xξ) : ζ < ξ}. This guarantees that (i) is satisfied, while (iii) is preserved.
Finally, we choose yξ to have

yξ ∈ R \
⋃
η≤ξ

(dη + fξ)[Qη].

This will guarantee that (iii) also holds for ζ = ξ.

Let us also note that the following question, for the case ofD1 due to Steprāns [11,
Question 5.1], remains open.

Problem 9. Does there exist, in ZFC, a Darboux function d : R → R such that
d + f is not Darboux for every nowhere constant “D1” function f? What if we
restrict the choice of f to D1?
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