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Synthesis of Feedforward Networks in Supremum
Error Bound

Krzysztof Ciesielski, Jaroslaw P. Sacha, Member, IEEE, and Krzysztof J. Cios, Senior Member, IEEE

Abstract—The main result of this paper is a constructive proof of
a formula for the upper bound of the approximation error in
(supremum norm) of multidimensional functions by feedforward
networks with one hidden layer of sigmoidal units and a linear
output. This result is applied to formulate a new method of neural-
network synthesis. The result can also be used to estimate com-
plexity of the maximum-error network and/or to initialize that net-
work weights. An example of the network synthesis is given.

Index Terms—Approximation error, complexity, feedforward
networks, Radon transform, sigmoidal functions, supremum
norm, synthesis.

I. INTRODUCTION

UNIVERSAL approximation capabilities for a broad range
of neural-network topologies have been established by re-

searchers like Cybenko [1], Funahashi [2], Horniket al. [3], Ito
[4], and Leshnoet al. [5]. Their work focused on the existence
of an approximating network and was fundamental for estab-
lishing validity of artificial neural networks.

Problem of complexity and realizability of networks with
two hidden layers using step (threshold) units was addressed
by Blum and Li [6]. The authors presented a method for
construction of such networks and specified upper bound of
the approximation error. Korain [7] extended approach of
Funahashi [2] and established a method for constructing single
hidden layer networks with step function neurons and a linear
output; he also estimated complexity and the upper bound of
the approximation error. A network using either step, ramp, or
sigmoid functions was studied by Bulsari [8]. He gave the upper
bound of approximation error for networks with one-dimen-
sional (1-D) input using step and ramp functions. Realizability
of networks based on Kolmogorov’s representation theorem
was investigated by K̇urková [9] and Sprecher [10]. The latter
presented a method for constructing transfer functions for
hidden layers neurons. Sprecher [11] discussed numerical as-
pects of implementing Kolmogorov’s representation approach.

More recently an important result has been established for
approximation in the norm or mean squared error. Several
authors (Jones [12], Barron [13], Girosi and Anzellotti [14],
Murata [15]) have shown for various classes of sufficiently
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smooth functions that feedforward networks, with one hidden
layer of sigmoidal nodes, achieve integrated square error of
order , where is the number of neurons in the
hidden layer. This result is significant since it demonstrates
that approximation with neural networks in norm can be
free of the “curse of dimensionality” i.e., approximation rate
is independent of the dimensionality of the space. However,
the “curse” was avoided only in terms of the accuracy of
approximation but not in terms of computational complexity
[13].

Learning algorithms like backpropagation are based on mini-
mization of the error in norm (mean square error). A number
of applications exist, however, where approximation in the
norm (maximum error) is more advantageous then using
norm. A typical example is manipulation of a robot arm, or other
control applications, where one requires that the maximum de-
viation be within certain bounds, e.g., safety limits. To that end
an interesting new learning algorithm that performs minimiza-
tion of the error in norm have been proposed by Meltseret
al. [16]. The algorithm is used for networks with a hidden layer
of sigmoidal nodes and a linear output layer.

The main result of this paper is a constructive proof of
a formula for the upper bound of the approximation error
in (supremum norm) of multidimensional functions by
feedforward networks with one hidden layer of sigmoidal units
and a linear output. This result is used to formulate a new
method of neural-network synthesis. The method specifies
network topology and all its weights and can be used to
initialize learning algorithms based on the norm, like the
one proposed by Meltseret al. [16], or simply to estimate com-
plexity of a maximum-error network. Note, that the synthesis
method presented here does not provide for direct learning from
examples, it assumes that full information about the function
being approximated is given.

In what follows, we will consider a one-hidden-layer net-
work:

(1)

For any bounded subset of we can find the one hidden
layer network for which

where is the target function and is the desired
approximation error. A constructive solution to this problem, in
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Fig. 1. A plain waveb (x ; x ) = sinc(2x + x ).

which the complexity of the approximating network (number of
neurons in the hidden layer) is , will be presented.

The proposed network synthesis method consist of three
stages. First, the problem of multidimensional approximation
is replaced by several simpler 1-D problems. Second, each
of the 1-D problems is solved by finding an approximation
subnetwork. Third, the subnetworks are combined together to
form the final approximation network.

In the first stage function is approximated by a finite sum
of plane waves, or ridge functions

where is a constant. A characteristic feature of a plain wave
is that it can be represented by a 1-D function and a directional
vector [17]. Let us denote this 1-D function by and
the directional vector by . Then

Fig. 1 shows an example of a plain wave

sinc

sinc

where

sinc

In the second stage of the method, 1-D functionsassoci-
ated with plane waves are approximated be single-input single-
output subnetworks . First, functions are rep-
resented as a difference of two monotonic functions. Second,
neural networks are synthesized to approximate each of these
monotonic functions. The most significant implication of the
second part of the method is constructive specification of the

upper bound of an approximation error for networks with sig-
moidal functions.

The third stage combines subnetworks into the final ap-
proximation network

The reduction of dimensionality (the first approximation
stage) is done by means of the inverse Radon transform of
function . It is based on the proposed here revision of Carroll
and Dickinson [18] method. Some of the constrains posed
by these authors on the function being approximated will
be eliminated and, at the same time, the upper bound of the
approximation error, by a finite number of plain waves, will be
lowered.

Carroll and Dickinson [18] used inverse Radon transform
approach to provide an alternative proof of universal approx-
imation properties of neural networks with mean square error
norm. They first decompose a mutltidimensional function into
scalar functions using inverse Radon transform. Then they ap-
proximate scalar functions with single layer neural networks
using steplike approximation—weights of sigmoidal neurons
are made to tend to infinity so that the neural transfer functions
approach step functions. However, they do not provide actual
values of network parameters needed to achieve the desired ac-
curacy. (This part of their proof is existential.)

The method presented in this paper was inspired by the work
of Carroll and Dickinson [18], but is similar to it only in the
way it uses inverse Radon transform to decomposed multidi-
mensional functions into scalar functions. In contrast to Carroll
and Dickinson [18] we are interested in maximum approxima-
tion error rather than mean square error. We also perform ap-
proximation of scalar functions differently. We use finite neural
weights and provide the actual values needed to achieve the de-
sired error rate. The weights are assigned so that derivative of
the neural transfer function near the center of the scaled-shifter
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Fig. 2. Approximation of an increasing function with ramp transfer functions.

sigmoid is finite and close to the derivative of the approximated
function for the similar value of the argument.

Application of the inverse Radon transform for construction
of representation networks was also studied by Ito [19]. He con-
centrated on delivering the results for uniform approximation
on the entire space (not on a compact subset) and use of
a step and sigmoidal functions without scaling. However, his
mainly constructive proof is existential in the part specifying
partitioning for the approximation of the integral representation
(not only of the unit sphere, as in our case, but of the entire space

), and no estimation of the approximation error was given.
The method of network synthesis presented in this paper is

noniterative. The decision on the network size is made before the
weights of the network are calculated. This decision is usually
based on the required upper bound of the approximation error.
The method can also be used to estimate number of neurons
in the hidden layer given the approximation error limit and the
target function, without the need of calculating network weights.

We start by presenting our initial result: the constructive proof
that any one (real) variable monotone function can be approx-
imated, with an arbitrary accuracy, by a neural network with
sigmoidal transfer functions. Next, we show how this result can
be used to approximate multidimension functions. We prove the
upper bound of the maximum error of the multidimensional ap-
proximation and show an illustrative example of applying our
method for network synthesis. Section V gives an example of
applying the proposed method. Some remarks on practical use
of the method are presented in Section VI. Proofs of the theo-
rems and corollaries are given in the Appendix.

II. A PPROXIMATION OF1-D MONOTONEFUNCTIONS

We shall start with discussion of approximation with ramp
transfer functions. It is included here because it illustrates well
the intuition behind the more complex approach—approxima-
tion with sigmoidal transfer functions.

Let be continuous strictly increasing function
defined on an interval . Function maps onto
interval . Let us assume that the network used
for approximation of has neurons in the hidden layer. Next,
denote

for

and divide interval into equal subintervals
. Define

for

A. Ramp Transfer Functions

Results presented in this section are similar to well-known
results using polynomial and spline approximation. They are
presented here in the context of neural networks. The following
definition of the ramp function is used:

.

(2)

Let each of the neurons in the hidden layer correspond to one
of the intervals defined above; they “approximate” function

in these intervals. Assume that the mapping of the network
and the function take the same values at each

for

Fig. 2 illustrates this situation (the approximation network has
neurons in the hidden layer). Circles represent points
in which values of and are assumed to be the same.

Shaded areas correspond to regions where the target function
and its approximation are allowed to differ. Since both,and

are monotonically increasing the difference is less then
. This value constitutes the upper error bound of
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approximating a monotonic function with ramp functions. It is
summarized in the following proposition.

Proposition 1: Let function be continuous
strictly increasing on , a neural network given by (1), the
ramp transfer function given by (2), and the network weights
be assigned as follows:

Then, the upper bound of the approximation error of function
by network on interval is

B. Sigmoidal Transfer Functions

Let us assume that a sigmoidal transfer function is the hyper-
bolic tangent

The results presented in this section work for any other
increasing continuous function with bounded range, but
parameters have to be slightly changed.1 We derive the result
for the hyperbolic tangent since it is commonly used in neural
networks.

Since ramp functions vary only on a finite interval, it was rea-
sonable to require that and take the same values at points

, see Fig. 2. However, this requirement is not practical
for a transfer function like hyperbolic tangent or other sigmoids
which change their values on an infinite interval. In order to find
the solution and the error’s upper bound for sigmoids we shall
relax this matching requirement at a cost of a slightly higher
value of the approximation error, but without compromising the
approximation rate. The following theorem specifies the net-
work weights and the upper bound of the approximation error.

Theorem 2: Let be a strictly increasing
continuous function, and for every natural numberlet

be defined by (1)

where and parameterss and s are defined
as below. Then

1The parameters remain the same for any such� for which�(�x) = ��(x)
andlim  (x) = 1.

where

In particular converges to (as in sup-norm. Here
we use, for

(3)

III. A PPROXIMATION OF1-D FUNCTIONS

Any function of bounded variation can be represented as a
difference of two monotonic increasing functions [20]. Thus we
can approximate any continuous function of bounded variation
with a neural network using the result presented in the previous
section. Let be a continuous function of bounded variation.
Function can be represented as difference of two monotone
increasing functions and

(4)

and using Jordan decomposition2 [20]

(5)

where is the total variation of function on interval

To ensure that and are strictly increasing we can modify
the above by the following assignment:

(6)

Strictly increasing functions and can be approximated
by networks and , respectively. The network approx-
imating function is given by

(7)

2If  is continuously differentiable then the decomposition can be easier de-
scribed by the formulas (x) = g(a)+ maxf0; g (t)g dt and (x) =

minf0; �g (t)gdt.
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Fig. 3. Approximation of an increasing function with sigmoid transfer functions.

where .
Lemma 3: Let be of bounded variation. For

every natural number let be defined by (7).
Then is in the form of (1)

where and coefficients are chosen from those for
and . Moreover

(8)

IV. A PPROXIMATION OFMULTIDIMENSIONAL FUNCTIONS

Multidimensional functions are first decomposed into 1-D
functions using plain waves. 1-D functions are approximated
using results from the preceding sections.

A. Plain Wave Decomposition

Let function be infinitely differentiable rapidly
decreasing.3 Let denote the Radon transform of function
[21]

(9)

where
unit vector in ;
scalar product;
differential form used to integrateover all hyper-
planes .

3Function f defined on R is rapidly decreasing when
lim jx . . .x jf(x) = 0 for any nonnegativek s.

The Radon transform inversion formula

(10)

is an integration of plain waves, , over any closed
surface enclosing the origin of space . A plain wave can
be computed as follows [21]:

for odd

for even
(11)

where the integral over is understood in terms of its regular-
ization, and

In the context of the inverse Radon transform the plain waves
are traditionally called the backprojection data. We

use integral representation (10) as a basis for reduction of di-
mensionality, utilizing the fact that is a 1-D function
for any fixed .

Assume some suitable partitioning of the integration surface

Now, approximate integral (10) by the sum

(12)
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where

The upper bound of the approximation error of (12) is given
by the following theorem. This theorem is a correction of the
result presented in [18].

Theorem 4: Let be infinitely differentiable
rapidly decreasing. Let be the Radon transform of and

be the corresponding backprojection data. Set the
number of partitions to where is a positive integer.
Then the error of approximation (12) is bounded by

(13)

where the gamma function is given by

Notice, that is constant for fixed , hence the error can be
arbitrarily small as the number of partitions increases.

B. Multidimensional Representation by Neural Networks

For a fixed , , the
function is one dimensional. To simplify no-
tation denote , and . Each
function can be approximated using decomposition discussed
in Section II and Theorem 2 by appropriate .
We shall assume that each of the subnetworkshas the same
number of neurons in the hidden layer,. To represent -dimen-
sional backprojection data mappings there is a
need to implement the inner product . This can be
done by extending the number of inputs of the subnetwork from
one to , and identifying the weights ,
with and , defined as
follows

(14)

Weights and , for , are identified with
appropriate and , and ,
and remain unchanged. The mapping of network

, the final approximated representation of function
, is the superposition of the mappings

(15)

where .

Theorem 5: Let be infinitely differentiable
rapidly decreasing. Let be a single hidden layer network,
given by (1), with neurons in the hidden layer,

. Then there exists an approximated represen-
tation of function by network such that

where

and is the respective domain of function .
Observe that for a given function parameters and are

constant. Theorem 5 specifies the upper bound of the multidi-
mensional approximation error using single hidden-layer net-
work. On the other hand, it can be used to find the number of
hidden layer neurons needed to guarantee the required approx-
imation error.

Corollary 6: The upper bound of the approximation error of
infinitely differentiable rapidly decreasing function

by a single hidden layer network using sigmoidal (hyperbolic
tangent) function neurons is proportional to the inverse of the

th-root of the number of neurons in the hidden layer

Fig. 3 shows the Approximation of in increasing function with
sigmoid transfer functions. In other words functioncan be
realized with accuracyby a single hidden-layer network using

neurons in the hidden layer.

V. EXAMPLE

This section shows an example of the network synthesis
method proposed in the paper. The method performs three
steps.

Step 1) Find approximation of functionby a finite number
of plain waves using (9), (11), and (12).

Step 2) Decompose 1-D functions , associated with
plain waves , into monotonic functions

and using (6). Then find subnetworks
approximating each of these functions using The-
orem 2.

Step 3) Find final approximation network by combining
subnetworks found in STEP 2 using (14) and (15).

Let us consider the following two-dimensional (2-D) function

(16)
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Fig. 4. Functionf(x ; x ).

Fig. 5. Plain waveb(x ; x )j .

A plot of the function is shown in Fig. 4. A 2-D example is
chosen so that all of the steps of the method can be graphically
illustrated. The method was numerically implemented using
MATLAB.

Step 1) Function is approximated by a finite number of
plain waves, using (12). Let as assume initially that
the number of plain waves used is . Figs.
5–7 show some of the plain waves ,
obtained from . Note, that in a unit vector can
be parameterized by a single parameter, which is
the angle of rotation of the unit vector. We have

Each of the plain waves is represented by a 1-D func-
tion and a unit vector or, equivalently, by
a rotation angle . For

Figs. 8 and 9 show approximation of function
using six and 12 plain waves, respec-

tively.
Step 2) Each of the 1-D functions is decomposed

into two monotonic increasing functions, and
, using (5). Then, these monotonic functions

are approximated by single hidden-layer networks,
as is illustrated in Figs. 10–12. Solid lines repre-
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Fig. 6. Plain waveb(x ; x )j .

Fig. 7. Plain waveb(x ; x )j .

sent functions , and , respectively.
Dotted lines represent their approximation with
neural networks based on Theorem 2. In this ex-
ample nine neurons in the hidden layer are used. Fig.
13 compares the upper bound of the approximation
error obtained from (8) with the actual approxima-
tion error for different numbers of neurons in the
hidden layer of the approximating network. Note,
that the scale-on the vertical axis is logarithmic.

Step 3) The networks approximating functions are
combined together, using (14) and (15), to form the
final approximation network. Examples of approx-
imation of the function (16) with ,

and , are shown in Figs. 14 and 15,
respectively.

VI. REMARKS

Although the emphasis of the paper is on giving analytical
solution of the problem of neural-network synthesis assuming
a perfect information about the function being approximation,
we would like to comment on what happens when this is not the
case. We addressed assumptions on the function, computational
error, and complexity of the method. It should be stress that
we just touch here the tip of the iceberg and that more precise
treatment of these issues calls for a separate study.
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Fig. 8. Representation with six plain waves.

Fig. 9. Representation with 12 plain waves.

A. Information about a Function and Computational Error

In general, to apply our method for estimating function
on a bounded subset of we need to assume

that our function is rapidly decreasing4 infinitely many times
differentiable on some open subsetcontaining the closure of

. This requirement comes from the use of Radon transform
for reduction of the multidimensional case to 1-D problem. This

4In practice, we do not need assume the “rapidly decreasing” part, since we
estimate our function only on the bounded setB. More precisely, instead of
estimatingf we can always apply our method to the functionf = f � g, where
g : R 7! R is infinitely many times differentiable, is equal 1 onB, and
is equal to zero on the complement ofU . Thenf is equal tof onB, while it
satisfies the “rapidly decreasing” requirement.

assumption serves well the current discussion, however, it can
be relaxed in more general treatments of the Radon transform
[21], [17], [22].

Consider case when our original functionis one dimen-
sional. It can be equal to a function . This re-
duces our requirements onessentially, since from we re-
quire only that it is continuous and of bounded variation (see
Section III). The situation becomes especially easy when the
number is finite, for
example, when has a continuous derivative. In this case for
any the representation
of as a difference of two strictly monotone increasing func-
tions can be achieved just by putting
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Fig. 10. b (t)j .

Fig. 11. b (t)j .

and . Note, that an error of an es-
timation of has no impact on this representation as long as

. It is also interesting to realize that our estima-
tion of a strictly increasing function obtained
this way (i.e., equals or ) has very clear computational
complexity and does not depend much on error of calculating
function . More precisely, in order to find reasonable estima-
tions of s (see Section II-B) used in calculating coefficients in
our representation we need to calculate the values ofonly at
points for , where is the smallest number

for which , and .5 Thus the
number of computations needed for finding an approximation of

is of order: constant ( ) times . Finally note
that if the values of are calculated within an error, this
can increase the error of theestimation of just by .
(This is the case since our method for finding the parameters is
noniterative; and in calculating the values of the method

5Estimate by the firsta+j� for whichj (a+j�)�( (a)+i(�=N))j <
(�=N). This will increase the error estimate in Theorem 2 from(3�=N) to
(4�=N).
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Fig. 12. b (t)j .

Fig. 13. Approximation error and its upper bound.

essentially relies only to on the information to which interval
point belongs.)

B. Complexity of the Method

Let assume that computation of a plain wavefrom a func-
tion has complexity , and the complexity evaluation of
function for a given is negligible. Then complexity of 1-D
approximation, is proportional to the number of neurons
in the hidden layer

Complexity of multidimensional approximation is proportional
to complexity , number of 1-D approximations and
complexity of each of these approximations

where is the total number of neurons in a hidden layer of
a neural network. Thus complexity of approximating multidi-
mensional function is directly proportional to the complexity
of computing a plain wave . Applications of Radon transform
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Fig. 14. Approximation with 12 plain waves and 9 neurons.

Fig. 15. Approximation with 12 plain waves and 18 neurons.

are gaining in popularity in recent years. Initially there were re-
stricted to subjects related to computational medical imaging.
Recently the transform is used in many new fields like optics
and holographic interferometry, geophysics, radio astronomy,
and pure mathematics. A good discussion of relatively recent
advances in Radon transform and its applications can be found
in [23], [22]. In general, computation of plain waves and inverse
Radon transform is a challenging problem. However, there have
been a significant progress in addressing practical issues of in-
verse Radon transform computations, for instance wavelet trans-
form based methods introduced in [24] and [25].

VII. CONCLUSION

The goal of this paper was twofold. First, it was to determine
the upper bound of the approximation error for single hidden-
layer feedforward networks using sigmoidal transfer function
neurons. Second, it was to develop the method for synthesis of
networks to approximate functions of several variables.

A constructive proof have been presented that the upper
bound of the maximum approximation error using sigmoidal
(hyperbolic tangent) function neurons is proportional to

, where is dimension of the space and is the



CIESIELSKI et al.: SYNTHESIS OF FEEDFORWARD NETWORKS IN SUPREMUM 1225

number of neurons in the hidden layer. The proof of the error’s
upper bound was used to introduce a new method of network
synthesis.

The presented method for network synthesis consists of three
main parts. In part one, the dimensionality of the approxima-
tion problem is reduced by applying the inverse Radon trans-
form. In the second part, 1-D problems are approximately rep-
resented by single hidden-layer subnetworks. Then these sub-
networks are combined into the final approximation network.
The method fully determines the network topology, including
the neural weights.

APPENDIX

Proof of Proposition 1: The proof is identical to that of
Theorem 2 if we define . This also makes respective
weights the same.

Proof of Theorem 2:Note that the choice of guarantees
that and the choice of s is made to ensure
that maps onto , that
is that maps
onto .

To see the estimation fix , and
and note that

Now, for we have and so

Similarly for we have and so

Thus

Since we also have

we conclude that indeed
finishing the argument.

Proof of Lemma 3:Using (4), (6), Theorem 2, and as-
suming ( and are number of neurons in
approximating networks, ) we have

Proof of Theorem 4:Assume fixed . Let be the unit
sphere and assume uniform partitioning

where is a distance between pointsand on
the unit sphere. Since the partitioning is uniform we have

The surface of the unit sphere is

Hence
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Maximizing over we obtain the upper bound of approximation
error

Proof of Theorem 5:Form Lemma 3 we have

The error of approximation of function by network , (12),
is the sum of approximation errors of functionsby networks

. Assume that each network has the same number of
neurons , hence

(17)

Thus from inequalities (13) and (17)

Proof of Corollary 6: From Theorem 5 we have that ap-
proximation’s error upper bound is

(18)

Let us relax conditions onand and assume that they can take
any positive value, not only integer. Further assume that number
of units in the hidden layer, , is constant and then
find minimum value of .

Substitute into (18)

(19)

Differentiate in respect to

(20)

Check if it is a minimum of function

(21)

Formula (21) is positive for any positive value of, hence we
have the minimum. Now, substitute (20) into (19)

(22)

Thus, we have proportional relation

since other components of (22) are constant for given function
. And
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