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Abstract

Answering a question of J. Lawson (formulated also earlier, in 1984, by Kamimura and
Tang [Theoret. Comput. Sci. 34 (1984) 275-288]) we show that every Polish space admits a bounded
complete computational model, as defined below. This results from our construction, in each Polish
space(X, t), of a countable family of non-empty closed subsets ¥fsuch that:

(cp) each subset @f with the finite intersection property has non-empty intersection;

(br) if x € T andT e 7 then there exist§ € C such thatx € int(C) andC c T; and

(r*) forevery C € C andx € X \ C there is aD € C such thatC C int(D) andx ¢ D.

These conditions assure us that there is another compact topetogyr on X such that the
bitopological spacéX, z, t*), is pairwise regular. The existence of such a topology is also shown
equivalent to admitting a bounded complete computational mad2002 Elsevier Science B.V. All
rights reserved.
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1. Background: what isa bounded complete computational model?

In this section we will introduce the notions coming from theoretical computer science
and necessary for understanding the main problem. These notions are standard in domain
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theory, but are unknown to many topologists. Thus, we take extra time and space to explain
the motivation behind these notions.

In the past few decades theoretical computer science has considered the basic problem:
What is the best way to approximate mathematical objects? One of the most fundamental
of such questions is about the representation of a real number. A common theoretical
approach to this problem is to identify each real numbeith a collection of intervals
whose intersection ig-}. In such a representation a smaller interval gives more information
about a number than a bigger interval. So an intefvahrries more information than an
interval J, which we represent by writing < 1, provided that/ > 1.

An approximation of a number (some knowledge accumulated about it) is stored in the
partially ordered setPr, < ) whose elements aif®, and all its closed bounded intervals
including singletons, and whose partial ord€r,is reverse set inclusiom. The numbers
themselves are represented by singletons, denoted here byPMasince they are the
maximal elements oPr. Each element oPy is below a maximal element.

More generally, certain partially ordered séfs < ) each of whose elements is below a
maximal element, can be considered as models for approximating their maximal elements.
This idea has been explored by many authors (see, e.g., Scott [19], Edalat [6], Edalat and
Heckmann [7], or Lawson [18]) and led to a field known as domain theory. An authoritative
reference in this area is [2], which has set much of the standard notation in the subject.

To make approximation in a model computationally feasible a p@&sehust have
several nice properties. The most fundamental is that after we go through all the work
of approximation, we have actually approximated an object. We see that this is embodied
by the following:

Definition 1. A poset(P, <) is directed complete (abbreviated adlcpo) provided each
directed subseD of P has a supremuny/ D. It is bounded complete (abbreviated as
bepo) if it is a dcpo and each subset which is bounded above has a supremum.

The importance of the notion of dcpo is that when increasingly fine approximations are
obtained, they indeed approximate some object; for example, this would be false if we
usedPg to try to compute rational numbers.

Foradcpo P, < ), eachx € P is below the join (i.e., supremum) of a maximal chain of
elements> x, which is certainly an element of M&R).

The definition of dcpo also requires the existence of a bottom elerkéft,which in
the case ofPy is equal taR. Certainly Pr is bounded complete wity D =) D for any
directed or bounded subset Bf .

As we shall see, bounded completeness has important consequences, although its
theoretical value is less clear. Note that a dcpo in which pairs that are bounded above
have suprema, is bounded complete (since for any bounded set, the set of suprema of its
finite subsets then is directed, thus must have a supremum and that is the supremum of the
original set).

The nextissue is that of “observability”; the idea that we should be able to see whether
is in one of its supposed approximations. For exampleidgfan endpoint of the intervdl,
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no magnification of the real line would make it possible to see whetleractually in/

or not. Similarly, for another interval € Pg, if either the left endpoints of and J are
identical, or their right endpoints are, it will not be possible under any magnification of the
real line to see whether one of the intervals contains the other. This problem has an obvious
answer involving topology: given two intervalsJ in the pose{Pg, D ), J is observably
below I if I is a subset of the interior iaif) of J. But this can be expressed just in terms

of posets:

Definition 2. For a dcpo and, y € P we say thatv is way-below y (written x < y) if
whenevery < \/ D andD is directed, then there is some D such thatx < z.

The compactness of the elementsfafimmediately implies thakK € Pg is way-below
M € Py if and only if M C int(K). The reader should check that#fis the collection of
all compact subsets of a locally compact topological spgdben(P U{X}, D ) is adcpo,
andM c int(K) ifand only if K < M.
In any dcpo, the bottom elemeny, @, is way-below itself. This is the only element B
that is way-below itself, and in what follows we will be mainly concerned with posets for
whichx « x only for the bottom element. However, there is much interest, both in domain
theory and in algebra, in continuous posets in which each elemsnthe supremum of
the set{y < x: y <« y}, and this set is directed. These are cabdgkebraic posets, and
include the algebraic lattices (such as the collection of all ideals of a ring, ordered by
and many other examples). See [13] or [2] for further discussion, and [11] for discussion
of a topological example of interest in domain theory (ultrametric separable spaces).
The interpretation of the definition of continuous dcpo which follows, is that sufficient
information needed to compute any object is available in the objects way-below it.

Definition 3. For A C P we definefA ={x € P: a < x forsomea € A} and|JA = {x €
P: x < a for somea € A}. Fora € P the symbolsfta and a stand forfr{a} and }{a},
respectively.

A continuousdcpois a dcpoP such that for every € P, |Jx is directed and = \/({}x).

Clearlyfor[p, q] € Pr we have\/(}[p,q]) =([r,s]: r <p<q <s}=1[p,ql,SOPRr
is a continuous dcpo.

Let us note thatk satisfies a transitivity condition and it is stronger than

(str) if x < y thenx < y;

(trans) ifw <x Ky < zthenw K z.
(To see the (str) condition take = {y} in the definition of«.)

The properties (str) and (trans) immediately imply thatlx) c |x. The reverse
inclusion is not automatic, however it holds for continuous dcpo’s.

Fact 4. If P isa continuousdcpo then |l ({}x) = |x for every x € P.
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Proof. We need only show thatx c J({}x). So, first note that
U ({Jx) is directed

Indeed, ify « y « x andz « 7/ <« x then, sincelx is directed, we can find & € |x
such thay’, z/ < w. Thus, by (trans)y, z < w. SincelJw is directed, we can finda< w
for whichy, z <wv. Butv e Y (Jx). So({x) is directed.

Next note that ify € Jx then |y C y(x), soy =V Iy <V IWUx). Thusx =
Vdx <V I {x), so by definition ofk, if y € {x (i.e.,y < x), theny < w for some
we lx),andsoy e J(x). O

We restate the conclusion of Fact 4 in a form in which we will use it:
(interpolation) ifx <« y then there exists ae P such thakr <« z < y.

In the case ofPr the interpolation property is obvious. Later we will consider similarly-
defined posets for more general topological spaces, and the interpolation property for these
will follow from the normality of the topology.

Finally, computation requires the existenceHrof a nice countable subsét (called a
basis) whose elements may be used to recursively approximate maximal eleménts of
The full information on a maximal elementof P can be represented as the filf€y of
all elements inB which are above.. However, we should imagine that at any particular
moment of approximating we have access only to the elementggfbut not to the entire
Fx. (The situation is quite similar to that in forcing—a generic number is represented by
a generic filterF, but in the ground model we have access only to elements @t not
the entireF.)

Definition 5. Following [13, p. 168] we say that a subgetof a dcpoP is abasisfor P
provided for every « y from P there exists @ in D such thatt <d <« y. A posetP is
w-continuous provided it is a continuous dcpo and has a countable basis.

Notice that if D is a basis for a dcp® then
x=\/(DNyx) foreveryxe P.

Itis also easy to see that i has the interpolation property théhis a basis forP if and
only if D is «-dense inP in the sense that

if x <« y then there existsd € D such thatr « d < y.

Clearly the family of all intervals with rational endpoints form a countaklelense subset
of Pg.

Note, that the propertyx = \/(D N Jx) means thatx is uniquely determined by
F(x) = D N Jx which is a filter inD. This means that the “learning process” about the
objectx € Max(P) can be done by coding the incoming information using the elements
from the countable seb. In fact, we do not need to know the entire structurePofo
recover the elements of MaR); we just need to know the full order structure of the
set D. Moreover, notice that our knowledge abauts “continuously approaching” full
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information, since is a limit of DN x. Thus, the bounded-continuous dcpo’s (or, more
precisely, theirg-dense subsets) are a tool to recover the information on the structure of
Max(P). Thatis, the knowledge gathered inarcontinuous poset allows us to reconstruct
the set MaxP).

Confronted with the situation described above to compute real numbers, it is natural to
ask when we can find a similar model for a topological sp&cen w-continuous poset
(P, <) which approximates the elements ¥f Can the structure o® also encode the
topological structure oxX?

The topological spaces for which such a boun@decbntinuous dcpo can be found were
studied by Lawson in [18], where he calls such spaces maximal point spaces. To define
the notion of a maximal point space precisely we need to recall that each pasat
be equipped with the information-motivat&dott topology o; certainly, it is natural to
think of a set,C, as “knowledge-closed’< Scott-closed) if, whenever < y € C, then
x € C, and wheneveD C C is directed, then its supremulf D € C. Of course, then a
setT is Scott-open if, as the complement of a Scott-closed set, whepevere T, then
y € T, and wheneveb is directed and/ D € T, then D meetsT. For a poset with the
interpolation property, it is easy to check that the collection of gatsith x € P, is a
base for the topology .

Definition 6. A topological spacéX, t) is amaximal point space provided there exists an
w-continuous dep@ and a bijection : X — Max(P) such that:
(i) i is a homeomorphism betwed, ) and Max P) considered with a subspace
topology of (P, o);
(i) foreveryx e P the seti—1({y € Max(P): x < y}) is r-closed.
Such a poseP is acomputational model for X, and if the poseP is bounded complete,
then P is abounded complete computational model for X.

It is easy to see that for each locally compact spsidbe posetP formed with X and
all compact subsets df, and ordered by the reverse inclusion, is a bcpo. If furtkids a
separable locally compact metrizable space, thés a bounded complete computational
model forX.

Lawson [18] shows that a topological space is a maximal point space if and only if it
is a Polish space. Also, using “formal balls”, Edalat and Heckmann [7] provide a simple
explicit construction of a maximal point spaég for every Polish spac&. Lawson’s
characterization and the Edalat-Heckmann construction are remarkable achievements, but
they lack some desirable properties. In particular, poggtsconstructed by them are
not bounded complete. Thus, at the North Bay Summer Conference, Jimmie Lawson
asked whether every Polish space is the maximal point spacéairaled complete w-
continuous poset. (The same question was also posed earlier, in 1984, by Kamimura and
Tang [16].) The goal of this paper is to give an affirmative answer for this question.

It should be pointed out that the property of bounded completeness of the representation
Px of X gives advantages that are not preseifis just directed complete. For example,
given a Scott continuous function from a maximal point sp&geinto another,Py, its
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restriction to MaxX) (identified with X) is a continuous function fronX into Y. It is
desirable (cf., Escardé [9]) that every continuous n¥ap> Y also extends to a Scott
continuous function fronPy into Py. This is the case iPy and Py are bounded complete
computational models fax andY, respectively?

2. Topological reduction of the problem

The motivation for the definitions stated above came from a situation, which we now

describe in the language of general Hausdorff topological spgtes). We considered

a family Px of non-empty closed subsets &fwhose interiors formed a base f&r We
orderedPyx by reverse inclusion, introduced Ry a way-below relatiorg, and noted that

in our particular cas& <« M was equivalent ta/ C int(K). Then we found ax-dense
subfamily D of Py and identified eacl € X with the filter F(x) = D N {x. In the case

we considered, the interiors of sets framalso formed a base for sets fra so for each

K € D we could also define the following filter kD, D)

jJM)=DNYM={(K e D: K LM}

and note thaj (M) still uniquely determines/, sinceM = (") j(M). Now, let P¢ (D) (we
will write only Py where D is clear from the context) be the family of all filtess in
(D, D) with the property that

for everyF e F there exists & € F such thatk C int(F).* (1)

Py is ordered by the inclusioa.

It is not difficult to see that ifX is locally compact andPy is the family of all compact
sets, thenP} is a bounded complete computational model fowith j (restricted to
singletons) being a homeomorphism witnessing it. The main reason for this is that in
this particular situation the mapping Py — Px, given byk(F) = F, is an order
isomorphism betwee®y and Px. If X is a Polish space which is not locally compact
the mappingt will need not even be one-to-one. The next theorem gives (implicitly) the
properties of the familie®x andD (denoted there by") which imply thatPy is a bounded
complete computational model faf.

Of course, each familyp generates a smallest topolog¥ on X such that all sets iD
are closed. Since sets i are closed inc, we haver* C r. Note that even in the case
of Pr, t* was strictly smaller tham. So our notion of bounded complete computational
model carries the bitopological structutg, z, 7*). In our next theorem we will show that
such a structure is not just a convenience—a bitopological structure is always associated
with a computational model.

270 see this it is enough to notice that M@ ) is dense in the Scott topology and every continuous function
defined on a dense subset of a bounded completentinuous poseP (considered with the Scott topology)

can be extended continuously #o[13, Exercise Il, 3.19].

4For D = P(X) filters satisfying (1) are sometimes callemlind filters (in a topological spac).
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In what follows we will need the following definition (see [17]):

Definition 7. Given a propertyQ, a bitopological spacéX, z, t*) is pairwise Q if both it
and itshitopological dual, (X, *, t) areQ.

Let (X, t,t*) be a bitopological space. We say itreggular provided that for each
xeUertthereisaV €t suchthatt € V and ci+(V) C U.

It is normal provided for every pair of disjoint sets:closedE andt*-closedF*, there
exist disjoint setd/* € t* andV € r suchthatE c U* andF* C V.

In fact, if (X, 7, t*) is normal, then notice that it is pairwise normal. Below, we use the
terminology “pairwise normal” for this situation, and “normal” only for topological spaces.
In what follows we will need the following fact.

Fact 8. If a bitopological space (X, 7, t*) is pairwise regular and X considered with the
jointopology T v t* isLindel6f then (X, 7, t*) is pairwise normal.

Proof. This can be shown by a small adjustment of the usual proof that a regular Lindel6f
space is normal:

Take disjoint set& and F* such thatE is r-closed andrF* is 7*-closed. By pairwise
regularity, and sinc& and F* aret v t*-closed, we can find a famil§p+ = {C;: i < w}
of t*-closed sets such that

Ec|Jx\C) and F*c()int(C)

i<w i<w

and a familyBg = {B;: i < w} of r-closed sets such that

Frc|Jx\B) and Ec()int-(B).
i<w i<w
Now, define the set&f * € t* andV e t as in the standard proof that every Lindel6f space
is normal:

v =J <intr*(Bn)\ N C,-) er* and V=|J <intr(Cn) () B,~> et

n<w i<n n<w i<n

ButthenU* > E andV O F* are disjoint. So{X, t, t*) is pairwise normal. O

Theorem 9. The following are equivalent for a topological space (X, t).
(1) X hasa bounded complete computational model.
(2) Thereisa countable family C of nonempty 7-closed subsets of X such that:
(cp) each subset of C with thefiniteintersection property has nonempty intersection,
(br) if x e T and T € t then there exists C € C such that x e int(C) and C C T,
and
(r*) if x e X \ C for some C € C then there exists a D € C such that x ¢ D and
C Cint(D).
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(3) (X, 1) issecond countable and T7, and there is a compact topology z* C 7 on X
such that (X, t, ™) is pairwise regular.

Proof. (3)=(2): By the regularity of X, t*, t), for everyt*-closed setF' andx € X\ F
there exists a*-open sefl, such that € T, and cf T, C X\ F. Sincer =t v t*is second
countable, so is its restriction to the subspacgF; thus this restriction is Lindel6f. In
particular, there exists a countable subfamilyBf: x € X\ F} which coversX\ F. LetCr
be the set of complements of elements of this countable family. Thea countable and

F Cint(C) foreveryC eCrandF =(\Cr. 2)

Let B be a countable base f@¢X, t) andCo = {cl.«(B): B € B}. Define a sequence
(Cn: n < w) by putting

Carr=CaU | Cr
FeC,
for everyn < w. Then eacl€, is a countable family of *-closed sets. Thus=1J,,_, C»
is also a countable family af*-closed sets and it is easy to see tfha as required.

To show(2) = (1) first note that, by (br)z-interiors of the sets frond form a base
for . Thus (X, t) is second countable. Next, let' be the topology generated by the
complements of sets frofy Then condition (cp) implies thad, *) is compact.

Note also that (br) implies also thdX, r, t*) is regular, while the regularity of
(X, t*, ) follows from (r*). Thus(X, t, *) is pairwise regular. Moreovet, v t* =t
is Lindel6f (as second countable) so, by Fact®, t, t*) is pairwise normal. Thus, for
every pair(A, B) of subsets ofX where A is t*-closed andA C int;(B) there exists a
t*-closed set(A, B) such thatA C int(c(A, B)) andc(A, B) C int(B).

Let I be the closure of under the binary operations of uniah intersectiom, andc
defined above. More directly, we piiy = C U {X}, for eachk € w let

= J{{cAa.B), BUC.BNC}: A,B.C eIk, BNC#0, ACint(B)}

and definel” as| J,,, I't- ThenI" is a countable family of *-closed sets which satisfies
conditions (br), (r*), and (cp), while it is closed under finite intersections, finite unions,
and the operation.

Let Py = P3(I") be defined as in (1) near the beginning of this section. We will show
that P is a bounded complete computational modelXoP

First note that for every e I" the filter j(A) = {B € I"': A Cint;(B)} belongs toP;;,
sincerl is closed under the operation

It should also be clear that 8 C Py is directed therl J S is a filter, in which case
US =V S e P;. In particular,P§ is a dcpo. It is also bounded completeSifc Py is
bounded by aiF € Py, thenu(S) = {{J F: F afinite subset of J S} is a directed subset
of F,s0\/ S ={Ju(S) € Pg.

Next note that for every, F € Py

ELKF << @AFeF)ECjF). 3)

5 This construction is closely related to that of rounded ideal completion, which is discussed in some detail in [2].
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To see this first assume that there existsFag F such thatf C j(F) and letS C Py
be a directed set wittF C \/ S = [J S. Then there exists affp € S with F € Fy. So,
ECj(F)CFo.

To see the other implication assume tak F and consider the famil§ = {j (F): F €
F}. Clearly S is directed and, by (1)F = S=V/S.

With (3) in hand it is clear thaPy is a continuous dcpo: iF € Py then | F = {€ €
P} 3F e F)EC j(F)yandso, by (1)F = |F.

The above shows also immediately that the farfilly= {j (A): A € I'} forms a basis for
Py . Thus, P} is a bounded complete-continuous dcpo. To finish the proof it is enough
to show thatP} is a complete computational model f&t

We do this by showing that a homeomorphisnX — Max(Py) can be defined by
i(x) = j({x}).

To see the maximality of eaattx), leti(x) C F € Py and, by way of contradiction,
assume that there is ahe 7 \ i(x). Then there is & € F N I" such thatD c int(A); if
D €i(x) thenA € i(x), contradicting our assumption. Thus D, and so by (br), there is
aCerl'sothatx eint(C)cCc X\ D,soX \ D ei(x)C F,acontradiction tdD € F.
Thusi (x) is maximal.

Since(X, t) is Ty, {x} =()i(x), S0i is one-to-one. To see that $as onto Max Py)
take anF € Max(Py). The compactness af* guarantees thdt) 7 # ¢. If x € (| F and
F #i(x), thenF is a proper subset af(x), contradicting the maximality of~. Thus
F =i(x), Soi is onto.

To see that is a homeomorphism we need to show that the sets

UF)={xeX: j({x}) enrF}={xeX: F<j({x})}
with 7 e Py form a base for. But, by (3),
U(F)={xeX: 3AD, € j({x}). FCj(Dv}.

Thus theU (F) are open: for note that if € U(F) thenx e int;(D,) C U(F). On the

other hand, by (br), for everyy € t andx € W there exists @ € I" with x € int; (D) C W

and it is easy to see thate U(j (D)) C int; (D) C W. Thus,i is a homeomorphism.
Finally we need to show that for evefy € Py the set

K(F)=i" (| eMax(P}): Fc&})={xeX: Fcj({x})}
is T-closed. For this it is enough to prove that

KF)=()F.

But if x € K(F) and F € F then F € j({x}) implying that x € int,(F) C F. So,
KF)cNF.

Conversely, assume thate (| F and letF € F. Then, by (1), there exists af € F
with E C int;(F). Sincex € (| F C E we conclude thaF € j({x}).

(1)=(3): Assume(P, < ) is a bounded complete computational model({®r z) as in
Definition 6. We will identify(Max(P), o), with (X, ), since they are homeomorphic. Let
D be a countable-dense subset a?. Then, for everyp € P, by interpolation:

(tp) NMax(P) = J{(g) "\Max(P): p < ¢, q € D}.
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The sets(ftqg) N Max(P), g € D, form a countable base fgMax(P), o). So,(X, t) is
second countable.

To see that X, t) is T1 take anx € Max(P) and recall that by the continuity a? we
havex =\/({x), so that

b= [{y eMax(P): z< y}.
<X
Since the setgy € Max(P): z < y} arer-closed,(X, ) is Tx.

Now, let C be the family of all set€; = {y € Max(P): d < y} with d € D and let
¥ be the smallest topology for which all sets frahare closed. ThugX, t*) is second
countable, since itis generated by the countable sulibaseX \ C: C € C}. SinceB C r,
we also have™ C 7.

Next we will show that X, t*) is compact. For this first note that

the familyC satisfies the condition (cp).

Indeed, ifDg C D is such thay = {C;: d € Do} has the finite intersection property then
the setDg is directed: for if D1 is a finite subset oDy andx € ﬂdeDl Cy then{x} is
an upper bound ob;. SinceP is a dcpo, the supremuly Dy is well defined. Now, let
{x} € Max(P) be such thal\/ Do < {x}. Thenx € [ Co. Now, the Alexander subbasis
theorem implies thatX, t*) is compact.
To see that X, t, t*) is regular, takec € U € t. Clearly, we can assume th&t" is a
basic open set, say = (fp) N Max(P). Thereforep « x and we can find & € D with
p Kd<x.ThenV = ({td) N Max(P) is as desired, sincee V and c}«(V) c C; C U.
For the regularity of X, t*, ), takex € U* € t*. We need to find &* € t* for which
x € V*and cl(V*) c U*. Clearly it will do to prove this for everyy* from the subbasB.
So, assume thdf* = X \ C4 for somed € D. Thusx ¢ C,4. Sinced = \/({d) we have
that

Ca=(){y eMax(P): z<y}.
z=<d
Thus, there iz « d such thatx ¢ {y € Max(P): z < y}. Takedp,d1 € D such that
7 L do < di <« d. Then we haveC; C (frd1) NMax(P) € r andx € X \ Cg, € T*. S0,
V* =X\ Cq, is as desired. O

3. Construction of the other topology

By Theorem 9, in order to learn whether each Polish space has a bounded complete
computational model we must determine whether or not it has a countable f@roily
t-closed subsets satisfying (cp), (br) and (r*). Indeed, it does:

Theorem 10. Every Polish space (X, t) has a bounded complete computational model.

Proof. It is enough to show that for every Polish spakethere exists a countable
collectionC of closed sets satisfying conditions (cp), (br), and (r*) from Theorem 9(2).
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The set theoretic and topological terminology and notation used are standard and
follow [3,8], respectively. For a subsét of a metric spacéM, d) and a nhumber > O,
the symbolB, (K) will denote the open ball centered ki with radiusr, that is,B, (K) =
{xeM: d(x,K)<r}. Forx e M we will write B, (x) for B, ({x}).
Since X is Polish, there exists a compact metrizable spad¢er,) with metricd such
thatX is a dense&ss-subspace oM. Thus there are dense open subséis> W1 > We D
--- of M such thatX = ", _, Wa.. For everyi < w let B; be a finite cover of/ by open
balls of diametex 2~ and let{B,: n < w} be an enumeration & = \U; <, Bi- Note that
Bis abase fol and that the sequen¢diam(B,,): n < w) of diameters oB,,’s converges
to 0. In addition for every:, i < w define the sets

K} = {x e M: Byi(x) C B, N W,}
={xeM: d(x, M\ (B,NW,))>2"}.
Then
eachk}, is closed K/, c int(K;*) and | ] K} = B, N W,. 4)
i<w

To begin constructing our famil§y we need the following notions. Let

o0

S=1se U 7" 5(0) = 0> s(i) for everyi > O}.
n=1

Thus,S is the set of finite nonempty sequences of integers, whose first entry is nonnegative

and others are negative. Théris totally ordered by the lexicographic order For future

use note that for any,r € S if s C ¢ (i.e.,z is an extension of) thens < r; also let<

denote the strict order defined byx r whens < r ands #t. We sometimes denote such

sequences ao, ..., i,—1) (Simply (i) if in ®b); if s = (ig,...,in—1) €S and 0> i € Z
thens™i denotegig, ..., in_1,1).
Of course, if for O< n < w we set
n—1
So=J{0....n =L x {~(n—D).....~ 1) =S N (=n,m) <",
k=0

then S = [ ;21 S,. Below, we inductively define finite collection&,, indexed by
{0,...,n—=1} x S,: F, ={Cj: s € S, k <n}, and consisting of closed sets. The sequence
(Fn: n < w) is to satisfy six properties. Here are the first three, which are used to show
(br) and (r*).
() Ki c ! cint(Ki+1) fors = (i) € .

(i) If seSand0>i eZ, thenCs ' C By (CS).

(i) For s,z € Sif s <t thenC; Cint(C).
With all the 7,,’s (solJ,, ., Fn = {C;: s € S, n < w}) constructed, we defir@, = {C;: s €
s}, C= Up<owCnrandC={CNX: Ce C}. Then we have the following:

Lemma 11. If C is defined as above and the conditions (i)—(iii) hold then C satisfies (br)
and (r*).
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Proof. For (br) first notice that, by (i) and (ii)k! C C,ﬁ” and C; C C,ﬁs(o)“) C
int(k:@*1) for everys € S andn, i < w. So, by (4),

Ufintco): cec.} = =B.nw, (5)

for eachn < w. If x € T and T is an open subset of, then letU be an open subset
of M for which T = U N X. Since theB;’s form a base forM, there exists am < w
such thatt € B, CU. Sox € B,NW,, C U N W,. Thus, by (5), thereis & €C, C C
for which x e int(C) c C ¢ B, "W, Cc U N W,. In particular,x € intx(C N X) and
CNXcUNX=T,ie.,CNX eC satisfies (br).

To see (r*), ifx € X \ C forsomeC =C; € C, there is some negative integesuch that
Bsi(x) C X\C, sox ¢ B, (C). By (ii) and (iii), D = C;ff satisfies (r*). O

To state properties (iv)—(vi), which are used to show (cp), we need a definition. Recall
that a closed sef is regular closed itC = cl(int(C)). We will say that the familyF of
subsets ofVf is meet-regular provided() G is regular closed for every finite subfamiy
of F. Moreover for eactlt < w we will chooseg,, > 0 and make sure that in addition to
(i)—(iii), the following conditions are satisfied.

(iv) F, is meet-regular.

(v) ForeveryG C F, if (G =0 then(\cg Be, (C) =0.

(Vi) If k <n,t e S,y1, ands is the largest element o, with s <7 thenB,, ., (C}) C
B, (C}).

Before we describe the details of the construction we show (cp):

Lemma 12. If C isdefined as above and the conditions (i)—(vi) hold, then C satisfies (cp).

Proof. Let D c C be such thaD = {C N X: C € D} has the finite intersection property.
We have to show thgf) D # (. Consider the sel”’ = {n < w: DNC, # @#}. We will
consider two cases:

Case 1: I' is infinite. Clearly( D # @, sinceM is compact. Since (5) hold§) D C B,
for everyn € I' and the diameters oB,’s tend to 0, so we conclude th&) D is a
singleton, sayﬂﬁ ={x}. If x € X then(\D = {x} # @. So, by way of contradiction
assume that € M \ X. Choose am € I such thatr € M \ W, and letC € DNC,. Then
NDcCcW,andso/\D=DNW,={x}NW, =, acontradiction.

Case 2: I' is finite. Letn < w be such that for every € I', k < n and there exists a
tesS, so thatC,i eD.Forker let sk € S, be a<-maximal element ofS,, such that
sk <t for eachr € S with C} e D (there is such an element since<On, S0 S, is a
nonempty, finite set ordered by and (0) € S, is the <-least element of). Thus, if5;
is the immediate<-successor of; in S, then there exists a € S such thats, < #, <5k
andC,i" e D. Moreover, ift € S,, then applying (vi) at most: — n many times we note
thatC}* C Be, (C¥). By (iii), if CL e D, thenk e I, C}* € C%, so:

N CEcDc) () Ba(Cl)

kel kel kel
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In particular("; . B, (C,fk) iS non-empty sinceﬂﬁ # (. Hence, applying (v) t@ =
{C;}: k e I'} C C, we conclude thaf), - C;* # ¥. So, by (iV), int(,c C;*) # 9 and,
by the density of( in M we conclude that # int((,. - C;/))NX C NDNX=ND. O
For the inductive construction we will need two facts. The first is a special case of [15,

Lemma 4.3] (this lemma is actually stated for finite families of open sets, arbitrary unions
of which are regular open; we use it on the set of complements of our closed sets):

Lemma 13. Let F be a meet-regular finite family of closed subsets of a metric space.
For every open set U and closed set D C U there is a closed regular set C such that
D cCint(C) c C c U and F U {C} is meet-regular.

We now show the second:

Lemma 14. For every finite family F of closed subsets of a compact metric space there
existsan ¢ > 0 such that for every G C F if (G = 0 then (g B:(C) = 0.

Proof. Given a compact metric spac¢e/, d), and a finite familyH of subsets of\f let
dy 1 M — R be defined byl (x) =Y .4, d(x, H). Certainly,

if di(x) > 0thenx ¢ H. (6)
Moreover, if H is a family of closed sets then
(H=¢ ifandonlyif O¢dy[M]. (7

Let F be as in the lemma and fig C F such that\G = @. Then, by (7) and the
compactness a¥/, there is areg > 0 such tha{0, eg) Ndg[M]=¥. Itis also easy to see
that if n is the cardinality ofF then for everyc € M ande > 0

diB,(G): Gegy(x) = dg(x) — ne.
In particular, if3g € (0, eg/(n + 1)) then

d{% (6): Gegy(x) = dg(x) —ndg = &g.

So, by (6),Ngeg Bsg(G) = ¥. Let e = min{sg: G C F, (G =¥} > 0. Then
ﬂceg B:(G) =@ for eachg C F such tha{ G = @, showing the lemma. O

We start our inductive construction withy = . Assume now that we havé, =
{Ci: s €8y, k<n}andey,...,s, satisfying (i)—(vi). We will first constructF,, 1 =
{C}: s € Sut1, k < n + 1} satisfying (i)—(iv), and then find a@,1 > 0 which will
guarantee (v) and (vi).

We find it useful to let{(mo, vo), ..., (mp—1,vp—-1)} be the enumeration of the set
{0,...,n} x 841\ {0,...,n—1} x §, such thatif O<i < j < p then:

eitherm ; <m; orm; =m; andv; < v;. (8)

Then for eachi =0,...,p, let R; = ({0,...,n — 1} x ;) U {v;: j <i}. ThusRg =
{0,....,n =1} x S, andR, = {0, ..., n} x S,41. We will next show inductively that for
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eachi < p there is a family€ = £(R;) = {C;}: (k,s) € R;} containingF, and satisfying
(D)—(iv).

First we notice that for each suéh, the following fact holds: wheneven, v), (m, s j)
€{0,...,n} x Sy41, ands £ @,

if v<sj,(m, v)e R and(m,sj) ¢ R; thenv <. (9)

To see (9) we use the traditional identificatioe: {0, ..., n — 1}, and notice that < s
if and only if there exists & < dom(s™j) such that

vik=sjk and eitherdorv) =k orv(k) <sj(k). (10)

If either k < dom(s) or k = dom(s) = dom(v) thenv < s. The remaining case is when
k =dom(s) < dom(v) in which case

vik=s and wv(k) <. (12)

Now, by way of contradiction, suppose that< s°j, (m,v) € R;, and (m,s"j) ¢ R;,
while v £ s. First note thatm, v) € Rg is impossible, since then, by (11) we would have
(m,s) € Rg, and sov(k) < s j(k) = j = —n. Thus,(m,v), (m,s j) ¢ Ro and, by (8),

s j < v, another contradiction. This shows (9).

We now show that the assignmefiton R;_1 can be extended to one dty, that is,
settings = v;_1, that there exists &7, such that€ U {C!,} is meet-regular and satisfies
(@i)—(iii).

To do this, we first choose finite familiés), andU}, of closed sets and of open sets,
respectively, such thab = | D!, c U = (U, and then apply Lemma 13 ®, D, and
U letting C!, = C. This will guarantee meet-regularity. To ensure (i)—(iii) we will choose
D!, andU!, as follows. (We write (iu)—(iiiu) for the upper estimates and (id)—(iiid) for the
lower estimates; (iid) is taken care of by (iiid).)

(id) If t = (j) e St thenk;, e D',

(iu) If t = (j) e St thenin(ki™h e Ut .

(ilu) If C, € £ andr =57 thenB,; (C;) € UL,.

(iiid) If C? e & andv <t thenC}, e Df,..

(iiiu) If C* € & andt <u thenin(C%) e U!,.

We now show thaD C U, so this construction is possible, and the fandily {C! } is
meet-regular. We prove that C U by showing that each elementbf, is a subset of each
element ofU!, . There are six cases, three involving (id) and three involving (iiid):

(id)—(iu): This holds since we already know thf, C int(K,{,”).

(id)—(iiu): This holds trivially, since it never can occur thg = s k.

(id)—(iiiu): If (j) =t < u, thenj < u(0) or j = u(0) andu # {j); we then have
inductively in the first case thaK,{, C int(K,L,‘,(O)) c int(Cy) and in the
second thaK,{, C int(C,Si‘(O”) cint(Cy).

(iiid)—(iu): If v <t = (j) thenv(0) < j so by (), c KxO™ cint(k;™).

(lid)—(iiu): If v <¢=s"j then, by (9)» < s, so by inductive assumptiog;}, C C5, C
B, (C;)-
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(liid)—(iiiu): If v <t andr < u, thenv < u so inductivelyCy, C int(C)).

Next, notice that by inductive hypothesis én (id) and (iu),& U {C!,} satisfies (i).
Similarly, using (iiu),€ U {C!,} satisfies (ii); using (iiid) and (iiiu), we concludgU {C! }
satisfies (iii). This contradicts the maximality 6f showing that?, can be extended to
Fn+1 satisfying (i)—(iv).

We now choose, 1 SO as to ensure (v) and (vi). First apply Lemma 14 to the family
Fn+1to obtain are > 0 so that forevery C F,411f (1G=0 thenﬂCEQ B.(C)=40. For
such ane any e, 1 < € guarantees (v). Now there are only finitely many trip{ess, ¢)
relevant for (vi) and for each of them we ha@ C B, (C}), so there is amy 5, > 0 for
which By, (C,’() C B, (C}). Then choose an,+1 > 0 less thare and all relevanty s ;.
Now (i)—(vi) hold for F,,+1 andeo, .. ., £,41 satisfy (i)—(vi), completing the proof. O

4. Final remarks

Note that by Lawson’s [18] result that for a topological spAce
X has a computational model if and onlyXfis Polish,

each space with a bounded complete computational model is Polish. Thus by Theorem 9
we have that

X has a bounded complete computational model if and ontyig Polish,

and we immediately obtain the following corollary:

Corollary 15. Atopological space (X, t) isPolishifandonlyif (X, t) issecond countable
and T1, and there is a compact topology t* C T on X such that (X, 7, t*) is pairwise
regular.

There is a second, somewhat older road to this converse. In [1] (1970), it was shown
(in somewhat different terminology) that any metrizable spé&Xer) is topologically
complete if and only if there is a second, comp&ctopology onX, t* C t, such that
(X, 7, ™) is regular. But by Theorem 9 each space with a bounded complete computational
model is second countable and has such a topology (with the additional property that
(X, t*, 1), is regular). Thus the space is Polish.

This leads to a question: if a metrizable sp&ket) is complete must there be a second,
compactry topologyt* on X such that(X, , t*) is pairwise regular (as we have shown
in the separable case)?
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