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Abstract

Answering a question of J. Lawson (formulated also earlier, in 1984, by Kamimura and
Tang [Theoret. Comput. Sci. 34 (1984) 275–288]) we show that every Polish space admits a bounded
complete computational model, as defined below. This results from our construction, in each Polish
space〈X,τ 〉, of a countable familyC of non-empty closed subsets ofX such that:

(cp) each subset ofC with the finite intersection property has non-empty intersection;
(br) if x ∈ T andT ∈ τ then there existsC ∈ C such thatx ∈ int(C) andC ⊂ T ; and
(r*) for everyC ∈ C andx ∈X \C there is aD ∈ C such thatC ⊂ int(D) andx /∈D.

These conditions assure us that there is another compact topologyτ∗ ⊂ τ on X such that the
bitopological space〈X,τ, τ∗〉, is pairwise regular. The existence of such a topology is also shown
equivalent to admitting a bounded complete computational model. 2002 Elsevier Science B.V. All
rights reserved.

AMS classification: 06B35; 06F30; 54C25; 54D30; 54D80; 54E50; 54E55; 54H12

Keywords: Directed complete poset (dcpo); Bounded dcpo;ω-continuous dcpo; Maximal-point
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1. Background: what is a bounded complete computational model?

In this section we will introduce the notions coming from theoretical computer science
and necessary for understanding the main problem. These notions are standard in domain
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theory, but are unknown to many topologists. Thus, we take extra time and space to explain
the motivation behind these notions.

In the past few decades theoretical computer science has considered the basic problem:
What is the best way to approximate mathematical objects? One of the most fundamental
of such questions is about the representation of a real number. A common theoretical
approach to this problem is to identify each real numberr with a collection of intervals
whose intersection is{r}. In such a representation a smaller interval gives more information
about a number than a bigger interval. So an intervalI carries more information than an
intervalJ , which we represent by writingJ � I , provided thatJ ⊃ I .

An approximation of a number (some knowledge accumulated about it) is stored in the
partially ordered set〈PR,� 〉 whose elements areR, and all its closed bounded intervals
including singletons, and whose partial order,�, is reverse set inclusion,⊃. The numbers
themselves are represented by singletons, denoted here by Max(PR), since they are the
maximal elements ofPR. Each element ofPR is below a maximal element.

More generally, certain partially ordered sets〈P,� 〉 each of whose elements is below a
maximal element, can be considered as models for approximating their maximal elements.
This idea has been explored by many authors (see, e.g., Scott [19], Edalat [6], Edalat and
Heckmann [7], or Lawson [18]) and led to a field known as domain theory. An authoritative
reference in this area is [2], which has set much of the standard notation in the subject.

To make approximation in a model computationally feasible a posetP must have
several nice properties. The most fundamental is that after we go through all the work
of approximation, we have actually approximated an object. We see that this is embodied
by the following:

Definition 1. A poset〈P,� 〉 is directed complete (abbreviated asdcpo) provided each
directed subsetD of P has a supremum

∨
D. It is bounded complete (abbreviated as

bcpo) if it is a dcpo and each subset which is bounded above has a supremum.

The importance of the notion of dcpo is that when increasingly fine approximations are
obtained, they indeed approximate some object; for example, this would be false if we
usedPQ to try to compute rational numbers.

For a dcpo〈P,� 〉, eachx ∈ P is below the join (i.e., supremum) of a maximal chain of
elements� x, which is certainly an element of Max(P ).

The definition of dcpo also requires the existence of a bottom element,
∨∅, which in

the case ofPR is equal toR. CertainlyPR is bounded complete with
∨

D =⋂
D for any

directed or bounded subset ofPR.
As we shall see, bounded completeness has important consequences, although its

theoretical value is less clear. Note that a dcpo in which pairs that are bounded above
have suprema, is bounded complete (since for any bounded set, the set of suprema of its
finite subsets then is directed, thus must have a supremum and that is the supremum of the
original set).

The next issue is that of “observability”; the idea that we should be able to see whetherr

is in one of its supposed approximations. For example, ifr is an endpoint of the intervalI ,
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no magnification of the real line would make it possible to see whetherr is actually inI
or not. Similarly, for another intervalJ ∈ PR, if either the left endpoints ofI andJ are
identical, or their right endpoints are, it will not be possible under any magnification of the
real line to see whether one of the intervals contains the other. This problem has an obvious
answer involving topology: given two intervalsI, J in the poset〈PR,⊃ 〉, J is observably
belowI if I is a subset of the interior int(J ) of J . But this can be expressed just in terms
of posets:

Definition 2. For a dcpo andx, y ∈ P we say thatx is way-below y (written x � y) if
whenevery �

∨
D andD is directed, then there is somez ∈D such thatx � z.

The compactness of the elements ofPR immediately implies thatK ∈ PR is way-below
M ∈ PR if and only if M ⊂ int(K). The reader should check that ifP is the collection of
all compact subsets of a locally compact topological spaceX, then〈P ∪{X},⊃ 〉 is a dcpo,
andM ⊂ int(K) if and only ifK�M.

In any dcpo, the bottom element,
∨∅, is way-below itself. This is the only element ofPR

that is way-below itself, and in what follows we will be mainly concerned with posets for
whichx� x only for the bottom element. However, there is much interest, both in domain
theory and in algebra, in continuous posets in which each elementx is the supremum of
the set{y � x: y � y}, and this set is directed. These are calledalgebraic posets, and
include the algebraic lattices (such as the collection of all ideals of a ring, ordered by⊂,
and many other examples). See [13] or [2] for further discussion, and [11] for discussion
of a topological example of interest in domain theory (ultrametric separable spaces).

The interpretation of the definition of continuous dcpo which follows, is that sufficient
information needed to compute any object is available in the objects way-below it.

Definition 3. ForA⊂ P we define⇑A= {x ∈ P : a� x for somea ∈A} and⇓A= {x ∈
P : x� a for somea ∈ A}. For a ∈ P the symbols⇑a and⇓a stand for⇑{a} and⇓{a},
respectively.

A continuous dcpo is a dcpoP such that for everyx ∈ P ,⇓x is directed andx =∨
(⇓x).

Clearly for[p,q] ∈ PR we have
∨
(⇓[p,q])=⋂{[r, s]: r < p � q < s} = [p,q], soPR

is a continuous dcpo.
Let us note that� satisfies a transitivity condition and it is stronger than�:

(str) if x� y thenx � y;
(trans) ifw � x� y � z thenw� z.

(To see the (str) condition takeD = {y} in the definition of�.)
The properties (str) and (trans) immediately imply that⇓(⇓x) ⊂ ⇓x. The reverse

inclusion is not automatic, however it holds for continuous dcpo’s.

Fact 4. If P is a continuous dcpo then ⇓(⇓x)=⇓x for every x ∈ P .
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Proof. We need only show that⇓x ⊂⇓(⇓x). So, first note that

⇓(⇓x) is directed.

Indeed, ify� y ′ � x andz� z′ � x then, since⇓x is directed, we can find aw ∈ ⇓x
such thaty ′, z′ �w. Thus, by (trans),y, z�w. Since⇓w is directed, we can find av�w

for whichy, z� v. But v ∈ ⇓(⇓x). So⇓(⇓x) is directed.
Next note that ify ∈ ⇓x then ⇓y ⊂ ⇓(⇓x), so y = ∨⇓y �

∨⇓(⇓x). Thus x =∨⇓x �
∨⇓(⇓x), so by definition of�, if y ∈ ⇓x (i.e., y � x), theny � w for some

w ∈ ⇓(⇓x), and soy ∈ ⇓(⇓x). ✷
We restate the conclusion of Fact 4 in a form in which we will use it:

(interpolation) ifx� y then there exists az ∈ P such thatx� z� y.

In the case ofPR the interpolation property is obvious. Later we will consider similarly-
defined posets for more general topological spaces, and the interpolation property for these
will follow from the normality of the topology.

Finally, computation requires the existence inP of a nice countable subsetB (called a
basis) whose elements may be used to recursively approximate maximal elements ofP .
The full information on a maximal elementx of P can be represented as the filterFx of
all elements inB which are abovex. However, we should imagine that at any particular
moment of approximatingx we have access only to the elements ofFx but not to the entire
Fx . (The situation is quite similar to that in forcing—a generic number is represented by
a generic filterF , but in the ground model we have access only to elements ofF , but not
the entireF .)

Definition 5. Following [13, p. 168] we say that a subsetD of a dcpoP is abasis for P
provided for everyx� y from P there exists ad in D such thatx � d� y. A posetP is
ω-continuous provided it is a continuous dcpo and has a countable basis.

Notice that ifD is a basis for a dcpoP then

x =
∨

(D ∩⇓x) for everyx ∈ P.
It is also easy to see that ifP has the interpolation property thenD is a basis forP if and
only if D is�-dense inP in the sense that

if x� y then there exists ad ∈D such thatx� d� y.

Clearly the family of all intervals with rational endpoints form a countable�-dense subset
of PR.

Note, that the propertyx = ∨
(D ∩ ⇓x) means thatx is uniquely determined by

F(x)= D ∩ ⇓x which is a filter inD. This means that the “learning process” about the
objectx ∈ Max(P ) can be done by coding the incoming information using the elements
from the countable setD. In fact, we do not need to know the entire structure ofP to
recover the elements of Max(P ); we just need to know the full order structure of the
setD. Moreover, notice that our knowledge aboutx is “continuously approaching” full
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information, sincex is a limit ofD∩⇓x. Thus, the boundedω-continuous dcpo’s (or, more
precisely, their�-dense subsets) are a tool to recover the information on the structure of
Max(P ). That is, the knowledge gathered in anω-continuous poset allows us to reconstruct
the set Max(P ).

Confronted with the situation described above to compute real numbers, it is natural to
ask when we can find a similar model for a topological spaceX: anω-continuous poset
〈P,� 〉 which approximates the elements ofX. Can the structure onP also encode the
topological structure onX?

The topological spaces for which such a boundedω-continuous dcpo can be found were
studied by Lawson in [18], where he calls such spaces maximal point spaces. To define
the notion of a maximal point space precisely we need to recall that each posetP can
be equipped with the information-motivatedScott topology σ ; certainly, it is natural to
think of a set,C, as “knowledge-closed” (= Scott-closed) if, wheneverx � y ∈ C, then
x ∈ C, and wheneverD ⊂ C is directed, then its supremum

∨
D ∈ C. Of course, then a

setT is Scott-open if, as the complement of a Scott-closed set, whenevery � x ∈ T , then
y ∈ T , and wheneverD is directed and

∨
D ∈ T , thenD meetsT . For a poset with the

interpolation property, it is easy to check that the collection of sets⇑x with x ∈ P , is a
base for the topologyσ .

Definition 6. A topological space〈X,τ 〉 is amaximal point space provided there exists an
ω-continuous dcpoP and a bijectioni :X→Max(P ) such that:

(i) i is a homeomorphism between〈X,τ 〉 and Max(P ) considered with a subspace
topology of〈P,σ 〉;

(ii) for everyx ∈ P the seti−1({y ∈Max(P ): x � y}) is τ -closed.
Such a posetP is acomputational model for X, and if the posetP is bounded complete,
thenP is abounded complete computational model for X.

It is easy to see that for each locally compact spaceX the posetP formed withX and
all compact subsets ofX, and ordered by the reverse inclusion, is a bcpo. If further,X is a
separable locally compact metrizable space, thenP is a bounded complete computational
model forX.

Lawson [18] shows that a topological space is a maximal point space if and only if it
is a Polish space. Also, using “formal balls”, Edalat and Heckmann [7] provide a simple
explicit construction of a maximal point spacePX for every Polish spaceX. Lawson’s
characterization and the Edalat–Heckmann construction are remarkable achievements, but
they lack some desirable properties. In particular, posetsPX constructed by them are
not bounded complete. Thus, at the North Bay Summer Conference, Jimmie Lawson
asked whether every Polish space is the maximal point space of abounded complete ω-
continuous poset. (The same question was also posed earlier, in 1984, by Kamimura and
Tang [16].) The goal of this paper is to give an affirmative answer for this question.

It should be pointed out that the property of bounded completeness of the representation
PX of X gives advantages that are not present ifPX is just directed complete. For example,
given a Scott continuous function from a maximal point spacePX into another,PY , its
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restriction to Max(X) (identified withX) is a continuous function fromX into Y . It is
desirable (cf., Escardó [9]) that every continuous mapX→ Y also extends to a Scott
continuous function fromPX intoPY . This is the case ifPX andPY are bounded complete
computational models forX andY , respectively.2

2. Topological reduction of the problem

The motivation for the definitions stated above came from a situation, which we now
describe in the language of general Hausdorff topological spaces〈X,τ 〉. We considered
a family PX of non-empty closed subsets ofX whose interiors formed a base forX. We
orderedPX by reverse inclusion, introduced inPX a way-below relation�, and noted that
in our particular caseK �M was equivalent toM ⊂ int(K). Then we found a�-dense
subfamilyD of PX and identified eachx ∈ X with the filterF(x)=D ∩ ⇓x. In the case
we considered, the interiors of sets fromD also formed a base for sets fromD, so for each
K ∈D we could also define the following filter in〈D,⊃〉

j (M)=D ∩⇓M = {K ∈D: K�M}
and note thatj (M) still uniquely determinesM, sinceM =⋂

j (M). Now, letP ∗X(D) (we
will write only P ∗X whereD is clear from the context) be the family of all filtersF in
〈D,⊃ 〉 with the property that

for everyF ∈F there exists aK ∈F such thatK ⊂ int(F ). 4 (1)

P ∗X is ordered by the inclusion⊂.
It is not difficult to see that ifX is locally compact andPX is the family of all compact

sets, thenP ∗X is a bounded complete computational model forX with j (restricted to
singletons) being a homeomorphism witnessing it. The main reason for this is that in
this particular situation the mappingk :P ∗X → PX , given by k(F ) = ⋂

F , is an order
isomorphism betweenP ∗X andPX . If X is a Polish space which is not locally compact
the mappingk will need not even be one-to-one. The next theorem gives (implicitly) the
properties of the familiesPX andD (denoted there byΓ ) which imply thatP ∗X is a bounded
complete computational model forX.

Of course, each familyD generates a smallest topologyτ ∗ onX such that all sets inD
are closed. Since sets inD are closed inτ , we haveτ ∗ ⊂ τ . Note that even in the case
of PR, τ

∗ was strictly smaller thanτ . So our notion of bounded complete computational
model carries the bitopological structure〈X,τ, τ ∗〉. In our next theorem we will show that
such a structure is not just a convenience—a bitopological structure is always associated
with a computational model.

2 To see this it is enough to notice that Max(PX) is dense in the Scott topology and every continuous function
defined on a dense subset of a bounded completeω-continuous posetP (considered with the Scott topologyσ )
can be extended continuously toP [13, Exercise II, 3.19].
4 ForD =P(X) filters satisfying (1) are sometimes calledround filters (in a topological spaceX).
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In what follows we will need the following definition (see [17]):

Definition 7. Given a propertyQ, a bitopological space〈X,τ, τ ∗〉 is pairwise Q if both it
and itsbitopological dual, 〈X,τ ∗, τ 〉 areQ.

Let 〈X,τ, τ ∗〉 be a bitopological space. We say it isregular provided that for each
x ∈ U ∈ τ there is aV ∈ τ such thatx ∈ V and clτ∗(V )⊂U .

It is normal provided for every pair of disjoint sets:τ -closedE andτ ∗-closedF ∗, there
exist disjoint setsU∗ ∈ τ ∗ andV ∈ τ such thatE ⊂U∗ andF ∗ ⊂ V .

In fact, if 〈X,τ, τ ∗〉 is normal, then notice that it is pairwise normal. Below, we use the
terminology “pairwise normal” for this situation, and “normal” only for topological spaces.

In what follows we will need the following fact.

Fact 8. If a bitopological space 〈X,τ, τ ∗〉 is pairwise regular and X considered with the
join topology τ ∨ τ ∗ is Lindelöf then 〈X,τ, τ ∗〉 is pairwise normal.

Proof. This can be shown by a small adjustment of the usual proof that a regular Lindelöf
space is normal:

Take disjoint setsE andF ∗ such thatE is τ -closed andF ∗ is τ ∗-closed. By pairwise
regularity, and sinceE andF ∗ areτ ∨ τ ∗-closed, we can find a familyCF ∗ = {Ci : i < ω}
of τ ∗-closed sets such that

E ⊂
⋃
i<ω

(X \Ci) and F ∗ ⊂
⋂
i<ω

intτ (Ci)

and a familyBE = {Bi : i < ω} of τ -closed sets such that

F ∗ ⊂
⋃
i<ω

(X \Bi) and E ⊂
⋂
i<ω

intτ∗(Bi).

Now, define the setsU∗ ∈ τ ∗ andV ∈ τ as in the standard proof that every Lindelöf space
is normal:

U∗ =
⋃
n<ω

(
intτ∗(Bn) \

⋂
i�n

Ci

)
∈ τ ∗ and V =

⋃
n<ω

(
intτ (Cn) \

⋂
i�n

Bi

)
∈ τ.

But thenU∗ ⊃E andV ⊃ F ∗ are disjoint. So,〈X,τ, τ ∗〉 is pairwise normal. ✷
Theorem 9. The following are equivalent for a topological space 〈X,τ 〉.

(1) X has a bounded complete computational model.
(2) There is a countable family C of nonempty τ -closed subsets of X such that:

(cp) each subset of C with the finite intersection property has nonempty intersection,
(br) if x ∈ T and T ∈ τ then there exists C ∈ C such that x ∈ int(C) and C ⊂ T ,

and
(r*) if x ∈ X \ C for some C ∈ C then there exists a D ∈ C such that x /∈ D and

C ⊂ int(D).



248 K. Ciesielski et al. / Topology and its Applications 119 (2002) 241–256

(3) 〈X,τ 〉 is second countable and T1, and there is a compact topology τ ∗ ⊂ τ on X

such that 〈X,τ, τ ∗〉 is pairwise regular.

Proof. (3)⇒(2): By the regularity of〈X,τ ∗, τ 〉, for everyτ ∗-closed setF andx ∈X\F
there exists aτ ∗-open setTx such thatx ∈ Tx and clτ Tx ⊂X\F . Sinceτ = τ ∨τ ∗ is second
countable, so is its restriction to the subspaceX\F ; thus this restriction is Lindelöf. In
particular, there exists a countable subfamily of{Tx : x ∈X\F }which coversX\F . LetCF
be the set of complements of elements of this countable family. ThenCF is countable and

F ⊂ int(C) for everyC ∈ CF andF =
⋂

CF . (2)

Let B be a countable base for〈X,τ 〉 andC0 = {clτ∗(B): B ∈ B}. Define a sequence
〈Cn: n < ω〉 by putting

Cn+1= Cn ∪
⋃
F∈Cn

CF

for everyn < ω. Then eachCn is a countable family ofτ ∗-closed sets. ThusC =⋃
n<ω Cn

is also a countable family ofτ ∗-closed sets and it is easy to see thatC is as required.
To show(2)⇒ (1) first note that, by (br),τ -interiors of the sets fromC form a base

for τ . Thus 〈X,τ 〉 is second countable. Next, letτ ∗ be the topology generated by the
complements of sets fromC. Then condition (cp) implies that〈X,τ ∗〉 is compact.

Note also that (br) implies also that〈X,τ, τ ∗〉 is regular, while the regularity of
〈X,τ ∗, τ 〉 follows from (r*). Thus〈X,τ, τ ∗〉 is pairwise regular. Moreover,τ ∨ τ ∗ = τ

is Lindelöf (as second countable) so, by Fact 8,〈X,τ, τ ∗〉 is pairwise normal. Thus, for
every pair〈A,B〉 of subsets ofX whereA is τ ∗-closed andA ⊂ intτ (B) there exists a
τ ∗-closed setc(A,B) such thatA⊂ int(c(A,B)) andc(A,B)⊂ int(B).

Let Γ be the closure ofC under the binary operations of union∪, intersection∩, andc
defined above. More directly, we putΓ0= C ∪ {X}, for eachk ∈ ω let

Γk+1=
⋃{{

c(A,B),B ∪C,B ∩C
}
: A,B,C ∈ Γk, B ∩C �= ∅, A⊂ int(B)

}
and defineΓ as

⋃
k∈ω Γk . ThenΓ is a countable family ofτ ∗-closed sets which satisfies

conditions (br), (r*), and (cp), while it is closed under finite intersections, finite unions,
and the operationc.

Let P ∗X = P ∗X(Γ ) be defined as in (1) near the beginning of this section. We will show
thatP ∗X is a bounded complete computational model forX. 5

First note that for everyA ∈ Γ the filterj (A)= {B ∈ Γ : A⊂ intτ (B)} belongs toP ∗X ,
sinceΓ is closed under the operationc.

It should also be clear that ifS ⊂ P ∗X is directed then
⋃

S is a filter, in which case⋃
S =∨

S ∈ P ∗X . In particular,P ∗X is a dcpo. It is also bounded complete: ifS ⊂ P ∗X is
bounded by anF ∈ P ∗X , thenu(S)= {⋃F : F a finite subset of

⋃
S} is a directed subset

of F , so
∨

S =⋃
u(S) ∈ P ∗X .

Next note that for everyE,F ∈ P ∗X
E�F ⇐⇒ (∃F ∈F) E ⊂ j (F ). (3)

5 This construction is closely related to that of rounded ideal completion, which is discussed in some detail in [2].
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To see this first assume that there exists anF ∈ F such thatE ⊂ j (F ) and letS ⊂ P ∗X
be a directed set withF ⊂∨

S =⋃
S. Then there exists anF0 ∈ S with F ∈ F0. So,

E ⊂ j (F )⊂F0.
To see the other implication assume thatE�F and consider the familyS = {j (F ): F ∈

F}. ClearlyS is directed and, by (1),F =⋃
S =∨

S.
With (3) in hand it is clear thatP ∗X is a continuous dcpo: ifF ∈ P ∗X then⇓F = {E ∈

P ∗X: (∃F ∈F ) E ⊂ j (F )} and so, by (1),F =⋃⇓F .
The above shows also immediately that the familyD= {j (A): A ∈ Γ } forms a basis for

P ∗X . Thus,P ∗X is a bounded completeω-continuous dcpo. To finish the proof it is enough
to show thatP ∗X is a complete computational model forX.

We do this by showing that a homeomorphismi :X→ Max(P ∗X) can be defined by
i(x)= j ({x}).

To see the maximality of eachi(x), let i(x) ⊂ F ∈ P ∗X and, by way of contradiction,
assume that there is anA ∈F \ i(x). Then there is aD ∈F ∩ Γ such thatD ⊂ int(A); if
D ∈ i(x) thenA ∈ i(x), contradicting our assumption. Thusx /∈D, and so by (br), there is
aC ∈ Γ so thatx ∈ int(C)⊂ C ⊂X \D, soX \D ∈ i(x)⊂ F , a contradiction toD ∈F .
Thusi(x) is maximal.

Since〈X,τ 〉 is T1, {x} =⋂
i(x), so i is one-to-one. To see that soi is onto Max(P ∗X)

take anF ∈Max(P ∗X). The compactness ofτ ∗ guarantees that
⋂

F �= ∅. If x ∈⋂
F and

F �= i(x), thenF is a proper subset ofi(x), contradicting the maximality ofF . Thus
F = i(x), soi is onto.

To see thati is a homeomorphism we need to show that the sets

U(F )= {
x ∈X: j

({x})∈ ⇑F}= {
x ∈X: F � j

({x})}
with F ∈ P ∗X form a base forτ . But, by (3),

U(F )= {
x ∈X: ∃Dx ∈ j

({x}), F ⊂ j (Dx)
}
.

Thus theU(F ) are open: for note that ifx ∈ U(F ) thenx ∈ intτ (Dx) ⊂ U(F ). On the
other hand, by (br), for everyW ∈ τ andx ∈W there exists aD ∈ Γ with x ∈ intτ (D)⊂W

and it is easy to see thatx ∈U(j (D))⊂ intτ (D)⊂W . Thus,i is a homeomorphism.
Finally we need to show that for everyF ∈ P ∗X the set

K(F )= i−1({E ∈Max
(
P ∗X

)
: F ⊂ E

})= {
x ∈X: F ⊂ j

({x})}
is τ -closed. For this it is enough to prove that

K(F )=
⋂

F .

But if x ∈ K(F ) and F ∈ F then F ∈ j ({x}) implying that x ∈ intτ (F ) ⊂ F . So,
K(F )⊂⋂

F .
Conversely, assume thatx ∈⋂

F and letF ∈ F . Then, by (1), there exists anE ∈ F
with E ⊂ intτ (F ). Sincex ∈⋂

F ⊂E we conclude thatF ∈ j ({x}).
(1)⇒(3): Assume〈P,� 〉 is a bounded complete computational model for〈X,τ 〉 as in

Definition 6. We will identify〈Max(P ), σ 〉, with 〈X,τ 〉, since they are homeomorphic. Let
D be a countable�-dense subset ofP . Then, for everyp ∈ P , by interpolation:

(⇑p) ∩Max(P )=
⋃{

(⇑q)∩Max(P ): p� q, q ∈D}
.
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The sets(⇑q) ∩Max(P ), q ∈ D, form a countable base for〈Max(P ), σ 〉. So, 〈X,τ 〉 is
second countable.

To see that〈X,τ 〉 is T1 take anx ∈Max(P ) and recall that by the continuity ofP we
havex =∨

(⇓x), so that

{x} =
⋂
z<≺x

{
y ∈Max(P ): z� y

}
.

Since the sets{y ∈Max(P ): z � y} areτ -closed,〈X,τ 〉 is T1.
Now, let C be the family of all setsCd = {y ∈ Max(P ): d � y} with d ∈ D and let

τ ∗ be the smallest topology for which all sets fromC are closed. Thus,〈X,τ ∗〉 is second
countable, since it is generated by the countable subbaseB = {X \C: C ∈ C}. SinceB ⊂ τ ,
we also haveτ ∗ ⊂ τ .

Next we will show that〈X,τ ∗〉 is compact. For this first note that

the familyC satisfies the condition (cp).

Indeed, ifD0⊂D is such thatC0= {Cd : d ∈D0} has the finite intersection property then
the setD0 is directed: for ifD1 is a finite subset ofD0 andx ∈⋂

d∈D1
Cd then {x} is

an upper bound ofD1. SinceP is a dcpo, the supremum
∨

D0 is well defined. Now, let
{x} ∈ Max(P ) be such that

∨
D0 � {x}. Thenx ∈⋂

C0. Now, the Alexander subbasis
theorem implies that〈X,τ ∗〉 is compact.

To see that〈X,τ, τ ∗〉 is regular, takex ∈ U ∈ τ . Clearly, we can assume thatU∗ is a
basic open set, sayU = (⇑p) ∩Max(P ). Thereforep� x and we can find ad ∈D with
p� d� x. ThenV = (⇑d)∩Max(P ) is as desired, sincex ∈ V and clτ∗(V )⊂ Cd ⊂U .

For the regularity of〈X,τ ∗, τ 〉, takex ∈ U∗ ∈ τ ∗. We need to find aV ∗ ∈ τ ∗ for which
x ∈ V ∗ and clτ (V ∗)⊂U∗. Clearly it will do to prove this for everyU∗ from the subbaseB.
So, assume thatU∗ = X \ Cd for somed ∈D. Thusx /∈ Cd . Sinced =∨

(⇓d) we have
that

Cd =
⋂
z<≺d

{
y ∈Max(P ): z� y

}
.

Thus, there isz � d such thatx /∈ {y ∈ Max(P ): z � y}. Take d0, d1 ∈ D such that
z� d0 � d1� d . Then we haveCd ⊂ (⇑d1) ∩Max(P ) ∈ τ andx ∈ X \ Cd0 ∈ τ ∗. So,
V ∗ =X \Cd0 is as desired. ✷

3. Construction of the other topology

By Theorem 9, in order to learn whether each Polish space has a bounded complete
computational model we must determine whether or not it has a countable familyC of
τ -closed subsets satisfying (cp), (br) and (r*). Indeed, it does:

Theorem 10. Every Polish space 〈X,τ 〉 has a bounded complete computational model.

Proof. It is enough to show that for every Polish spaceX there exists a countable
collectionC of closed sets satisfying conditions (cp), (br), and (r*) from Theorem 9(2).
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The set theoretic and topological terminology and notation used are standard and
follow [3,8], respectively. For a subsetK of a metric space〈M,d〉 and a numberr > 0,
the symbolBr(K) will denote the open ball centered inK with radiusr, that is,Br(K)=
{x ∈M: d(x,K) < r}. Forx ∈M we will write Br(x) for Br({x}).

SinceX is Polish, there exists a compact metrizable space〈M,τd〉 with metricd such
thatX is a denseGδ-subspace ofM. Thus there are dense open subsetsW0⊃W1⊃W2⊃
· · · of M such thatX =⋂

n<ω Wn. For everyi < ω let Bi be a finite cover ofM by open
balls of diameter� 2−i and let{Bn: n < ω} be an enumeration ofB =⋃

i<ω Bi . Note that
B is a base forM and that the sequence〈diam(Bn): n < ω〉 of diameters ofBn ’s converges
to 0. In addition for everyn, i < ω define the sets

Ki
n =

{
x ∈M: B2−i (x)⊂ Bn ∩Wn

}
= {

x ∈M: d
(
x,M \ (Bn ∩Wn)

)
� 2−i

}
.

Then

eachKi
n is closed,Ki

n ⊂ int
(
Ki+1
n

)
and

⋃
i<ω

Ki
n = Bn ∩Wn. (4)

To begin constructing our familyC we need the following notions. Let

S =
{
s ∈

∞⋃
n=1

Z
n: s(0)� 0> s(i) for everyi > 0

}
.

Thus,S is the set of finite nonempty sequences of integers, whose first entry is nonnegative
and others are negative. ThenS is totally ordered by the lexicographic order�. For future
use note that for anys, t ∈ S if s ⊂ t (i.e., t is an extension ofs) thens � t ; also let≺
denote the strict order defined by:s ≺ t whens � t ands �= t . We sometimes denote such
sequences as〈i0, . . . , in−1〉 (simply 〈i〉 if in ω1); if s = 〈i0, . . . , in−1〉 ∈ S and 0> i ∈ Z

thenŝ i denotes〈i0, . . . , in−1, i〉.
Of course, if for 0< n< ω we set

Sn =
n−1⋃
k=0

({0, . . . , n− 1} × {−(n− 1), . . . ,−1}k)= S ∩ (−n,n)�n,

then S = ⋃∞
n=1Sn. Below, we inductively define finite collectionsFn, indexed by

{0, . . . , n−1}×Sn: Fn = {Cs
k : s ∈ Sn, k < n}, and consisting of closed sets. The sequence

〈Fn: n < ω〉 is to satisfy six properties. Here are the first three, which are used to show
(br) and (r*).

(i) Ki
n ⊂ C

〈i〉
n ⊂ int(Ki+1

n ) for s = 〈i〉 ∈ S.
(ii) If s ∈ S and 0> i ∈ Z, thenCŝ i

n ⊂ B2i (C
s
n).

(iii) For s, t ∈ S if s ≺ t thenCs
n ⊂ int(Ct

n).
With all theFn’s (so

⋃
n<ωFn = {Cs

n: s ∈ S, n < ω}) constructed, we defineCn = {Cs
n: s ∈

S}, Ĉ =⋃
n<ω Cn, andC = {C ∩X: C ∈ Ĉ }. Then we have the following:

Lemma 11. If C is defined as above and the conditions (i)–(iii) hold then C satisfies (br)
and (r*) .
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Proof. For (br) first notice that, by (i) and (iii),Ki
n ⊂ C

〈i〉
n and Cs

n ⊂ C
〈s(0)+1〉
n ⊂

int(Ks(0)+1
n ) for everys ∈ S andn, i < ω. So, by (4),⋃{

int(C): C ∈ Cn
}=⋃

Cn = Bn ∩Wn (5)

for eachn < ω. If x ∈ T andT is an open subset ofX, then letU be an open subset
of M for which T = U ∩ X. Since theBi ’s form a base forM, there exists ann < ω

such thatx ∈ Bn ⊂ U . Sox ∈ Bn ∩Wn ⊂ U ∩Wn. Thus, by (5), there is aC ∈ Cn ⊂ Ĉ
for which x ∈ int(C) ⊂ C ⊂ Bn ∩ Wn ⊂ U ∩ Wn. In particular,x ∈ intX(C ∩ X) and
C ∩X⊂ U ∩X = T , i.e.,C ∩X ∈ C satisfies (br).

To see (r*), ifx ∈X \C for someC = Cs
n ∈ Ĉ, there is some negative integeri such that

B2i (x)⊂X\C, sox /∈B2i (C). By (ii) and (iii), D = Cŝ i
n satisfies (r*). ✷

To state properties (iv)–(vi), which are used to show (cp), we need a definition. Recall
that a closed setC is regular closed ifC = cl(int(C)). We will say that the familyF of
subsets ofM is meet-regular provided

⋂
G is regular closed for every finite subfamilyG

of F . Moreover for eachn < ω we will chooseεn > 0 and make sure that in addition to
(i)–(iii), the following conditions are satisfied.

(iv) Fn is meet-regular.
(v) For everyG ⊂Fn if

⋂
G = ∅ then

⋂
C∈G Bεn(C)= ∅.

(vi) If k < n, t ∈ Sn+1, ands is the largest element ofSn with s ≺ t thenBεn+1(C
t
k)⊂

Bεn(C
s
k).

Before we describe the details of the construction we show (cp):

Lemma 12. If C is defined as above and the conditions (i)–(vi) hold, then C satisfies (cp).

Proof. Let D̂ ⊂ Ĉ be such thatD = {C ∩X: C ∈ D̂} has the finite intersection property.
We have to show that

⋂
D �= ∅. Consider the setΓ = {n < ω: D ∩ Cn �= ∅}. We will

consider two cases:
Case 1:Γ is infinite. Clearly

⋂
D̂ �= ∅, sinceM is compact. Since (5) holds,

⋂
D̂⊂ Bn

for every n ∈ Γ and the diameters ofBn ’s tend to 0, so we conclude that
⋂

D̂ is a
singleton, say

⋂
D̂ = {x}. If x ∈ X then

⋂
D = {x} �= ∅. So, by way of contradiction

assume thatx ∈M \X. Choose ann ∈ Γ such thatx ∈M \Wn and letC ∈D ∩ Cn. Then⋂
D̂ ⊂ C ⊂Wn and so,

⋂
D̂ =⋂

D̂ ∩Wn = {x} ∩Wn = ∅, a contradiction.
Case 2: Γ is finite. Letn < ω be such that for everyk ∈ Γ , k < n and there exists a

t ∈ Sn so thatCt
k ∈ D̂. For k ∈ Γ let sk ∈ Sn be a≺-maximal element ofSn such that

sk � t for eacht ∈ S with Ct
k ∈ D̂ (there is such an element since 0< n, so Sn is a

nonempty, finite set ordered by� and〈0〉 ∈ Sn is the≺-least element ofS). Thus, if s̃k
is the immediate≺-successor ofsk in Sn then there exists atk ∈ S such thatsk � tk ≺ s̃k

andCtk
k ∈ D̂. Moreover, iftk ∈ Sm then applying (vi) at mostm− n many times we note

thatCtk
k ⊂ Bεn(C

sk
k ). By (iii), if Ct

k ∈ D̂, thenk ∈ Γ , Csk
k ⊂ Ct

k , so:⋂
k∈Γ

C
sk
k ⊂

⋂
D̂⊂

⋂
k∈Γ

C
tk
k ⊂

⋂
k∈Γ

Bεn

(
C
sk
k

)
.
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In particular
⋂

k∈Γ Bεn(C
sk
k ) is non-empty since,

⋂
D̂ �= ∅. Hence, applying (v) toG =

{Csk
k : k ∈ Γ } ⊂ Cn we conclude that

⋂
k∈Γ C

sk
k �= ∅. So, by (iv), int(

⋂
k∈Γ C

sk
k ) �= ∅ and,

by the density ofX in M we conclude that∅ �= int(
⋂

k∈Γ C
sk
k )∩X ⊂⋂

D̂∩X =⋂
D. ✷

For the inductive construction we will need two facts. The first is a special case of [15,
Lemma 4.3] (this lemma is actually stated for finite families of open sets, arbitrary unions
of which are regular open; we use it on the set of complements of our closed sets):

Lemma 13. Let F be a meet-regular finite family of closed subsets of a metric space.
For every open set U and closed set D ⊂ U there is a closed regular set C such that
D ⊂ int(C)⊂ C ⊂ U and F ∪ {C} is meet-regular.

We now show the second:

Lemma 14. For every finite family F of closed subsets of a compact metric space there
exists an ε > 0 such that for every G ⊂F if

⋂
G = ∅ then

⋂
C∈G Bε(C)= ∅.

Proof. Given a compact metric space〈M,d〉, and a finite familyH of subsets ofM let
dH :M→R be defined bydH(x)=

∑
H∈H d(x,H). Certainly,

if dH(x) > 0 thenx /∈⋂
H. (6)

Moreover, ifH is a family of closed sets then⋂
H= ∅ if and only if 0 /∈ dH[M]. (7)

Let F be as in the lemma and fixG ⊂ F such that
⋂

G = ∅. Then, by (7) and the
compactness ofM, there is anεG > 0 such that[0, εG) ∩ dG[M] = ∅. It is also easy to see
that if n is the cardinality ofF then for everyx ∈M andε > 0

d{Bε(G): G∈G}(x)� dG(x)− nε.

In particular, ifδG ∈ (0, εG/(n+ 1)) then

d{BδG (G): G∈G}(x)� dG(x)− nδG � δG .

So, by (6),
⋂

G∈G BδG (G) = ∅. Let ε = min{δG : G ⊂ F ,
⋂

G = ∅} > 0. Then⋂
G∈G Bε(G)= ∅ for eachG ⊂F such that

⋂
G = ∅, showing the lemma. ✷

We start our inductive construction withF0 = ∅. Assume now that we haveFn =
{Cs

k : s ∈ Sn, k < n} and ε0, . . . , εn satisfying (i)–(vi). We will first constructFn+1 =
{Cs

k : s ∈ Sn+1, k < n + 1} satisfying (i)–(iv), and then find anεn+1 > 0 which will
guarantee (v) and (vi).

We find it useful to let{〈m0, v0〉, . . . , 〈mp−1, vp−1〉} be the enumeration of the set
{0, . . . , n} × Sn+1 \ {0, . . . , n− 1} × Sn such that if 0� i < j < p then:

eithermj <mi ormj =mi andvj ≺ vi . (8)

Then for eachi = 0, . . . , p, let Ri = ({0, . . . , n − 1} × Sn) ∪ {vj : j < i}. ThusR0 =
{0, . . . , n− 1} × Sn andRp = {0, . . . , n} × Sn+1. We will next show inductively that for
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eachi � p there is a familyE = E(Ri)= {Cs
k : 〈k, s〉 ∈Ri} containingFn and satisfying

(i)–(iv).
First we notice that for each suchRi , the following fact holds: whenever〈m,v〉, 〈m, ŝ j 〉

∈ {0, . . . , n} × Sn+1, ands �= ∅,

if v ≺ ŝ j , 〈m,v〉 ∈ Ri and〈m, ŝ j 〉 /∈Ri thenv � s. (9)

To see (9) we use the traditional identificationn= {0, . . . , n−1}, and notice thatv ≺ ŝ j

if and only if there exists ak < dom(ŝ j ) such that

v � k = ŝ j � k and either dom(v)= k or v(k) < ŝ j (k). (10)

If either k < dom(s) or k = dom(s) = dom(v) thenv � s. The remaining case is when
k = dom(s) < dom(v) in which case

v � k = s and v(k) < j. (11)

Now, by way of contradiction, suppose thatv ≺ ŝ j , 〈m,v〉 ∈ Ri , and 〈m, ŝ j 〉 /∈ Ri ,
while v �� s. First note that〈m,v〉 ∈ R0 is impossible, since then, by (11) we would have
〈m,s〉 ∈ R0, and sov(k) < ŝ j (k) = j = −n. Thus,〈m,v〉, 〈m, ŝ j 〉 /∈ R0 and, by (8),
ŝ j ≺ v, another contradiction. This shows (9).

We now show that the assignmentE on Ri−1 can be extended to one onRi , that is,
settingt = vi−1, that there exists aCt

m such thatE ∪ {Ct
m} is meet-regular and satisfies

(i)–(iii).
To do this, we first choose finite familiesDt

m andU
t
m of closed sets and of open sets,

respectively, such thatD =⋃
D
t
m ⊂ U =⋂

U
t
m and then apply Lemma 13 toE , D, and

U lettingCt
m = C. This will guarantee meet-regularity. To ensure (i)–(iii) we will choose

D
t
m andU

t
m as follows. (We write (iu)–(iiiu) for the upper estimates and (id)–(iiid) for the

lower estimates; (iid) is taken care of by (iiid).)
(id) If t = 〈j 〉 ∈ S1 thenKj

m ∈D
t
m.

(iu) If t = 〈j 〉 ∈ S1 then int(Kj+1
m ) ∈U

t
m.

(iiu) If Cs
m ∈ E andt = ŝ j thenB2j (C

s
m) ∈U

t
m.

(iiid) If Cv
m ∈ E andv ≺ t thenCv

m ∈D
t
m.

(iiiu) If Cu
m ∈ E andt ≺ u then int(Cu

m) ∈U
t
m.

We now show thatD ⊂ U , so this construction is possible, and the familyE ∪ {Ct
m} is

meet-regular. We prove thatD ⊂U by showing that each element ofD
t
m is a subset of each

element ofUt
m. There are six cases, three involving (id) and three involving (iiid):

(id)–(iu): This holds since we already know thatK
j
m ⊂ int(Kj+1

m ).
(id)–(iiu): This holds trivially, since it never can occur that〈j 〉 = ŝ k.
(id)–(iiiu): If 〈j 〉 = t ≺ u, then j < u(0) or j = u(0) and u �= 〈j 〉; we then have

inductively in the first case thatKj
m ⊂ int(Ku(0)

m ) ⊂ int(Cu
m) and in the

second thatKj
m ⊂ int(C〈u(0)〉m )⊂ int(Cu

m).

(iiid)–(iu): If v ≺ t = 〈j 〉 thenv(0) < j so by (i),Cv
m ⊂K

v(0)+1
m ⊂ int(Kj+1

m ).
(iiid)–(iiu): If v ≺ t = ŝ j then, by (9),v � s, so by inductive assumption,Cv

m ⊂ Cs
m ⊂

B2j (C
s
m).
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(iiid)–(iiiu): If v ≺ t andt ≺ u, thenv ≺ u so inductivelyCv
m ⊂ int(Cu

m).
Next, notice that by inductive hypothesis onE , (id) and (iu),E ∪ {Ct

m} satisfies (i).
Similarly, using (iiu),E ∪ {Ct

m} satisfies (ii); using (iiid) and (iiiu), we concludeE ∪ {Ct
m}

satisfies (iii). This contradicts the maximality ofE , showing thatFn can be extended to
Fn+1 satisfying (i)–(iv).

We now chooseεn+1 so as to ensure (v) and (vi). First apply Lemma 14 to the family
Fn+1 to obtain anε > 0 so that for everyG ⊂Fn+1 if

⋂
G = ∅ then

⋂
C∈G Bε(C)= ∅. For

such anε any εn+1 � ε guarantees (v). Now there are only finitely many triples〈k, s, t〉
relevant for (vi) and for each of them we haveCt

k ⊂ Bεn(C
s
k), so there is anεk,s,t > 0 for

whichBεk,s,t (C
t
k)⊂ Bεn(C

s
k). Then choose anεn+1 > 0 less thanε and all relevantεk,s,t .

Now (i)–(vi) hold forFn+1 andε0, . . . , εn+1 satisfy (i)–(vi), completing the proof.✷

4. Final remarks

Note that by Lawson’s [18] result that for a topological spaceX

X has a computational model if and only ifX is Polish,

each space with a bounded complete computational model is Polish. Thus by Theorem 9
we have that

X has a bounded complete computational model if and only ifX is Polish,

and we immediately obtain the following corollary:

Corollary 15. A topological space 〈X,τ 〉 is Polish if and only if 〈X,τ 〉 is second countable
and T1, and there is a compact topology τ ∗ ⊂ τ on X such that 〈X,τ, τ ∗〉 is pairwise
regular.

There is a second, somewhat older road to this converse. In [1] (1970), it was shown
(in somewhat different terminology) that any metrizable space〈X,τ 〉 is topologically
complete if and only if there is a second, compactT1 topology onX, τ ∗ ⊂ τ , such that
〈X,τ, τ ∗〉 is regular. But by Theorem 9 each space with a bounded complete computational
model is second countable and has such a topology (with the additional property that
〈X,τ ∗, τ 〉, is regular). Thus the space is Polish.

This leads to a question: if a metrizable space〈X,τ 〉 is complete must there be a second,
compactT1 topologyτ ∗ onX such that〈X,τ, τ ∗〉 is pairwise regular (as we have shown
in the separable case)?
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