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1 Introduction

Amaximal point model for a topological space X is consists of an !-continuous
dcpo P and an embedding i : X ! Max(P ) such that:

� i : X ! (Max(P ); �jMax(P )) is a homeomorphism, and

� the relative Scott topology and the relative Lawson topology agree on
Max(P ).

A bounded maximal point model is one for which the poset has a supremum
for each subset which is bounded above.

Here we give enough de�nitions to understand the above. A poset, (P;�),
is directed-complete if each of its directed subsets has a supremum, and bounded
complete if it is directed-complete and each subset which is bounded above has
a supremum. For x; y 2 P; (P;�) a directed-complete poset x is way-below y
(written x <� y) if whenever y �

W
D and D is directed, then there is some

z 2 D such that x � z. In a poset (P;�), for A � P , " A = fx j for some a �
x; a 2 Ag and A is an upper set A =" A. Also, for p 2 P; " p =" fpg. # A and
lower set are similarly de�ned, as are + A; * A, using the appropriate relation
in place of �. A directed-continuous poset (dcpo) is a directed-complete poset
so that for each x 2 P , + x is directed and x =

W
+ x.

The Scott topology on a poset is the topology whose open sets are those
upper sets which meet a directed set whenever they contain its supremum. A
function between two posets is continuous with respect to their Scott topolo-
gies if and only if it preserves directed suprema ([10], II, 2.1). On a dcpo, the
Scott topology has as a base all sets of the form * x. The lower topology of a
poset is that generated by all sets of the form Xn " x, and its Lawson topology
is the join of its Scott and lower topologies.

An element x, of a directed-complete poset, is compact if x <� x, and for
each y 2 P , K(y) = fx � y j x <� xg. An algebraic poset (algebraic dcpo)
is a directed-complete poset so that for each y 2 P , K(y) is directed and
y =

W
K(y). Algebraic posets are so named, because lattices of subobjects of

an algebra X (eg. subgroups, ideals) are usually algebraic. In particular, let
D be any set of subsets of a set Y which is closed under directed unions and so
that each set S � Y is contained in a smallest element J [S] 2 D (so if S 2 D,
then S = J [S]). Then the poset (D;�) is algebraic: its compact elements are
the J [F ] for F a �nite subset of Y , and each element is S =

S
fJ [F ] j F a

�nite subset of Sg, a supremum of elements of the directed set fJ [F ] j F a
�nite subset of Sg. We use below the special case that the set of �lters of any
lattice is algebraic.

A basis for a poset (P;�) is a B � P which meets each nonempty " x\ + y.
An !-continuous poset (!-dcpo) is a dcpo with a countable basis.

1 Work of the �rst author partially supported by the NATO Collaborative Research Grant
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In [4], [5], Edalat initiated the study of classical mathematical structures
via maximal point models. He noted that for a locally compact Hausdor�
locally compact space X, U(X) = (fK � X j K compactg;�) (de�ned in
[10]) was a maximal point model, and used such models in a wide variety
of applications. These results focused attention on the question of which
topological spaces have maximal point models. Lawson ([13]) settled this
question by showing that a topological space has a maximal point model i�
it is a Polish space. Edalat and Heckmann ([6]) provided a simple explicit
construction of a maximal point model for a Polish space. But their models
are not bounded complete.

But, given maximal point models i : X ! D and j : Y ! E of the spaces
X and Y , we model continuous maps X ! Y by Scott continuous functions
D ! E. Therefore, it is natural to demand (cf, Escardo [7]) that the contin-
uous maps D ! E capture the continuous maps X ! Y in the sense that
every continuous map X ! Y extends to a Scott continuous function D ! E.
Since continuous Scott domains are exactly the densely injective spaces (Ex-
ercise II.3.19, [10]) and the set of maximal points of a continuous domain is
dense in the Scott topology, bounded complete maximal point models satisfy
this requirement: For if D and E are bounded complete and f : X ! Y
is continuous, then i : X ! D is a dense embedding, D is densely injective
and j Æ f : X ! D is continuous, so there exists a (greatest) continuous map
f ] : D ! E such that f ] Æ i = j Æ f .

We have found several characterizations of those topologies which have
bounded complete maximal point models. Among them: They are the Polish
(separable completely metrizable) spaces. The proof of this is given in [2],
using the results shown below. This characterization answers positively a
question asked of us by Lawson, and implicit in Kamimura and Tang [11].

Our other characterizations all involve the existence of a second topology
which is compact and T1, and well related to the �rst. The Polish space
characterization is proved from one of these. Also, in the case of a locally
compact space X, the traditional bounded complete maximal point model,
U(X) = (fK � X j K compactg;�) is essentially the de Groot dual (cocom-
pact topology) arising from the original, and is the smallest topology of the
sort we �nd. In general, the de Groot dual is not compact, and there is no
smallest such topology.

2 The characterizations

We take our notation on bitopological spaces from [12]; also, an excellent
survey of these spaces, with another viewpoint and di�erent notation is found
in [14]. A bitopological space is a triple, (X; �; � �) (often simply denoted X),
where �; � � are topologies on X, its dual is X� = (X; � �; �); given two such, a
map f : X ! Y is pairwise continuous if it is continuous from �X to �Y and
from � �X to � �Y . If Q is any property of bitopological spaces, X is dually Q if
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X� is Q, pairwise Q if X and X� are both Q.

Let I denote: [0; 1], considered as a set,

� ([0; 1]; �), as a topological space, where � = f(a; 1] j a 2 [0; 1]g [ f[0; 1]g,

� ([0; 1]; �; !) as a bitopological space, where ! = f[0; a) j a 2 [0; 1]g[f[0; 1]g,

� ([0; 1]; d�) as a quasimetric space, with d�(x; y) = maxfx� y; 0g.

For any bitopological space X = (X; �; ��), the symmetrization topology,
�S, is the join of � and � � (that is, the smallest topology containing both �
and � �).

We now cover the separation axioms for bitopological spaces. These are
analogous to those for a topological space, except that the T1 axiom (that
points are closed) is broken into two parts: T0 and weak symmetry. The
reason is that the T1 axiom does both these jobs, but they must be kept
apart in our reasoning about bitopological spaces. Thus, a bitopological space
(X; �; ��) is:

normal if whenever C� � T; C� � �-closed, T � -open, then there are an
� -open U and a � �-closed D� such that C� � U � D� � T , 2

completely regular if whenever x 2 T; T � -open, then there is a pairwise
continuous f : X ! I such that f(x) = 1 and f(y) = 0 whenever y 62 T ,

regular if whenever x 2 T; T � -open, then there are an � -open U and a
� �-closed D� such that x 2 U � D� � T ,

pseudoHausdor� (pH) if whenever x 62 cl(y) then there are disjoint � -
open T and � �-open T � such that x 2 T and y 2 T �,

weakly symmetric (ws) if x 62 cl(y)) y 62 cl�(x),

T0 if: �S is a T0 topology.

Essentially the usual argument shows that if (X; �; � �) is normal and ws, then
it is pairwise completely regular ([12], 2.4 and 2.8). As in the one topology
case, the following implications also hold ([12], 2.4): complete regularity )
regularity ) pH ) ws.

Further, let Q denote any of the bitopological separation properties except
for normality. Then, if a bitopological space (X; �; � �) is Q, then so is each
subspace, (Y; � jY; � �jY ). Also, if (X; �; � �) is pairwise Q then the topological
space (X; �S) satis�es the topological separation axiom Q.

In [9], it is shown that for any continuous poset, (P; �; !) is pairwise com-
pletely regular

The next proposition gives some useful bitopological equivalences. Recall
that for a topology � , its weight, w(�), is the smallest cardinality of a base for

2 Certainly, by taking C to be the complement of T , U� to be that of D�, this is equivalent

to the statement: whenever C� \ C = ;; C� ��-closed, C � -closed, then there are disjoint

U;U� such that U is � -open, U� is ��-open, C� � U and C � U�.
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it (where a base is a collection of open sets so that each open set is a union
of some of its members). We also need the following concept: a collection
of subsets of X has the �nite intersection property (�p) if �nite subsets of
it always have nonempty intersection. By the Alexander subbase theorem,
for the smallest topology � in which a given collection of sets is closed, � is
compact if and only if each subset of the collection with the �p has nonempty
intersection.

Proposition 2.1 The following are equivalent for any topology � of in�nite
weight, w(�):

(i) There is a topology � �, so that (X; �; � �) is completely regular and � � is
compact.

(ii) There is a topology �+ for which (X; �; �+) is pairwise completely regular,
w(�+) � w(�), and �+ is compact.

(iii) There is a set G of cardinality w(�), of maps from (X; �) to ([0; 1]; �),
such that:
� (W) � is the weakest topology for which each element of F is continuous,
and

� (C) if each �nite subset of a set of inequalities of the form ff(x) � a j
f 2 G; a 2 [0; 1]g, can be solved then the set can be solved.

Proof. (i) ) (ii): Let B be a base for � of minimal cardinality. For each
(A;B) 2 B � B so that there is a pairwise continuous f : X ! I such that
A � f�1[(:5; 1]] and f�1[(0; 1]] � B, choose one such map f(A;B). The set,
F of functions so chosen then has the same cardinality as B. Now let �+ be
the weakest topology such that each f 2 F is continuous from (X; �+) !
([0; 1]; !). Then �+ � � � and is thus compact; and ff�1[[0; q)] j q 2 (0; 1]\Qg
is a set of cardinality at most w(�) � @0 = w(�) generating �+, so w(�+) �
w(� �). The proof is completed by checking that (X; �; �+) and (X; �+; �) are
both completely regular. The converse, (ii) ) (i) is clear.

The proof that (i) ) (iii), proceeds by noticing that � is the weakest
topology for which each f 2 F (F from the previous paragraph), is continuous
to I. Also, each inequality of the form f(x) � a where a 2 [0; 1]; f 2 F , has
f�1[[a; 1]] as its solution set, a closed set in the compact � �, so (C) results.

Finally, to see (iii) ) (i), suppose G is a set of functions satisfying (W)
and (C). Then the weakest topology, �+ so that f : (X; �+) ! ([0; 1]; !) is
continuous for each f 2 G, is that generated by ff�1[[0; r)] j r 2 [0; 1]; f 2 Fg,
which is compact by the Alexander subbase theorem applied to (C). Also
(W) requires (X; �; �+) to be completely regular since if x 2 T 2 � , then
there are f1; : : : ; fn 2 F , r1; : : : ; rn 2 (0; 1), so that x 2

Tn

1 f
�1
i [(ri; 1]] � T .

Thus h = minf f1
f1(x)�r1

; : : : ; fn
fn(x)�rn

g : (X; �; �+) ! I is pairwise continuous,

h(x) = 1, and h�1[(0; 1]] � T . 2

Structures considered in the preceding proof are closely related to the idea
of quasiproximity: a relation / on the subsets of X such that:
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(qi) whenever A / B, then A � B,

(qii) if A / B then for some C, A / C and C / B,

(qiii) if A / B and E � A;B � F , then E / F .

(qiv) ; / ; and X / X,

(qv) if A / B and A / C then A / B \ C, and

(qvi) A / B and C / B then A [ C / B.

For any normal bitopological space (X; �; � �), a quasi-proximity, /X , is de�ned
by A /X B () cl��(A) � int� (B) (ii above is immediate from normality,
while the others are clear for any bitopological space).

Each quasiproximity gives rise to a topology, � [/], in which a set is open
if and only if for each x 2 T , fxg / T , and has a dual, de�ned by A /� B ,
X nB /X n A. Clearly, for a normal bitopological space (X; �; � �), � = � [/X ]
and � � = � [/�X ].

Spaces in which computation is considered are second countable: they have
a countable base. They are also T1. Thus for the main result, it is useful to
notice a few facts about these properties:

In the countable case of proposition 1, index the set F of (iii) by N , and
for each n 2 N , de�ne dn, by dn(x; y) = maxf(fn(x) � fn(y)); 0g. Then
d = �1n=1

dn
2n
, is a quasimetric such that � = �d (the topology generated by

the open balls Br(x) = fy j d(x; y) < rg for x 2 X; r > 0). Also, �d� is the
weakest topology from which all the fn are continuous into ([0; 1]; !). This
latter topology is compact by the Alexander subbase theorem, as in the proof
of (iii) ) (i) above. So in the countable case, if (iii) of proposition 1 holds,
then there is a quasimetric d such that � = �d and �d� is compact; we call
such a space cocompactly quasimetrizable. Conversely, for any quasimetric d,
the bitopological space (X; �d; �d�) is pairwise completely regular by the usual
proof (consider functions of the form fx, where fx(y) = maxf1� d(x; y); 0g).
The resulting equivalent statement is (3) of the theorem below.

Finally, by the usual proof, if (X; �; � �) is pairwise regular and (X; �S)
is second countable, then (X; �; � �) is normal, so it is pairwise completely
regular. For convenience, we include this proof:

First notice that by the classical Lindel�of theorem, if (X; �S) is second
countable, then each open cover of it has a countable subcover (�rst consider
the countable set of basic open sets contained in an element of the cover, and
then for each of these select one element of the original cover that contains
it); this also holds for each closed subset, C, of such a space, since if C is a
cover of C, then fX nCg [ C is one of X, so it contains a countable subcover
D, and then D n fX n Cg is a countable subcover of C.

Now, suppose C and C� are disjoint, C � -closed and C� � �-closed. For
each x 2 C there is a � �-open T �x such that x 2 T �x and cl(T �x ) \ C

� = ;,
and we can take a countable subcover T �n = T �xn of C. Similarly, there is a
countable � -open cover Tn of C such that each cl�(Tn)\C = ;. Now, for each
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n 2 N let U�n = T �n n
S

m�n cl
�(Tm) 2 � �; Un = Tn n

S
m�n cl(T

�
m) 2 � . Then if

m � n, we have U�n \ Um � (X n Tm) \ Tm = ;, and similarly if n � m then
U�n \ Um = ;; as a result, V � =

S
n2N U

�
n 2 � �; V =

S
n2N Un 2 � are disjoint

and if x 2 C then for some n 2 N , x 2 T �n \ C � U�n � V �, so C � V � and
similarly C� � V .

For any topological space (X; �), its de Groot dual (also called its cocompact
topology) is the weakest topology, �G, in which each compact saturated set is
closed. If (X; �; � �) is pH, then it is easy to see that �G � � � (by a slight
variant of the proof that each compact set in a Hausdor� space is closed {
cf. (3.1, [12]). Thus if (X; � �; �) is pH, then (� �)G � � . If (X; � �) is also
T1 and compact then � �-closed subsets of X are compact and saturated, thus
(� �)G-closed, so � -closed. That is:

if (X; � �; �) is pH and (X; � �) is T1 and compact then � � � � .

To �nish, notice that the Scott and Lawson topologies are equal on the
of maximal point space for each bounded continuous dcpo, E. By the last
paragraph of the proof that (1) ) (3), !jMax(E) is compact and since
the specialization of !jMax(E) is � jMax(E), that is, equality, !jMax(E)
is also T1. (E; �; !) is pairwise completely regular, thus so is its subspace
(Max(E); �jMax(E); !jMax(E)), and thus !jMax(E) � �jMax(E), so their
join, �jMax(E) = �jMax(E). Thus, the relative Scott topology and the rel-
ative Lawson topology automatically agree on Max(P ), if P is a bounded
continuous dcpo, so the requirement that these topologies agree is redundant
for bounded continuous maximal point models.

As a result, each pairwise continuous g : (X; �; � �)! I is continuous from
(X; �) to IS { the unit interval with the usual topology.

Since Lawson [13] has shown that each space with a (bounded complete)
maximal point model is complete metric, thus regular and T1, we shall as-
sume this much separation below. With these concepts in place, we state the
following result:

Theorem 2.2 The following are equivalent for a topological space (X; �):

(1) It has a bounded complete maximal point model.

(2) It has a countable set of closed sets, � = fCn j n 2 Ng (which may be
assumed closed under �nite unions and intersections), such that:
(br) if x 2 T 2 � there is an n such that x 2 intCn and Cn � T ,
(r*) if x =2 Cn then for some m 2 N ; x 62 Cm and Cn � intCm, and
(cp) each subset of � with the �p has nonempty intersection.

(3) it is second countable and T1, and there is a quasi-metric, d, on X such
that � = �d and �d� is compact.

Before proceeding to prove these equivalences, note that we have already
shown that (3) is equivalent to each of the conditions (i) { (iii) of proposition
1. Further, in these results we may require that � �; �+ � � , and are second
countable, and that F is countable. In these circumstances, the following
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equivalent to (ii) has also been shown:

(iv) There is a compact and second countable topology �+ � � such that

(X; �; �+) is pairwise regular.

Proof. To see that (2) ) (3), it will do to show that (2) ) (iv). But by
(cp), the set fX nCn j n 2 Ng generates a compact topology which we call � �,
and by (rb), fintCn j n 2 Ng is a countable base for � . (X; �; � �) is regular by
(rb) as well, and by (r*), (X; � �; �) is also regular.

To see that (3) ) (2), we similarly show (iii) ) (2). Let (Cn)n2N be
an indexing of the countable set of �nite unions of �nite intersections of sets
of the form f�1[[q; 1]], where q 2 (0; 1) \ Q ; f 2 F . Their complements
form a base for a subtopology of the compact � � (which is thus necessarily
compact), showing (cp). To see (br) let x 2 T 2 � ; then by (W) of (iii), there
are f1; : : : ; fn 2 F , r1; : : : ; rn 2 (0; 1), such that x 2

Tn

1 f
�1
i [(ri; 1]] � T . In

particular, for each i � n, ri < fi(x), so we can �nd qi 2 (ri; fi(x)) \ Q . Let
C =

Tn

1 f
�1
i [[qi; 1]]; then x 2

Tn

1 f
�1
i [(qi; 1]] � intC and C � T . For (r*)

�rst notice that each Cn can be written in the form
Tj

h=1(
Sk

i=1 f
�1
hi [[rhi; 1]]);

if x 62
Tj

h=1(
Sk

i=1 f
�1
hi [[rhi; 1]]) then for some h, fhi(x) < rhi for each i � k,

so let qk 2 (fhi(x); rhi). But then for Cm =
Sk

i=1 f
�1
hi [[qhi; 1]], x 62 Cm and

Cn �
Sk

i=1 f
�1
hi [(qhi; 1]] � intCm.

To see (1)) (3), we show (1)) (i): Suppose E is an !-bounded complete
continuous cpo and let X = Max(E); � = �jX and � � = !jX. For any
continuous cpo, by [[9], 1.1, 1.4 and 1.6], (E; �; !) is pairwise completely
regular with specialization �, thus its subspace (X; �jX;!jX) is also pairwise
completely regular, with specialization � jX � X, which is equality, so in
particular, (X; �) is T1, so �

� � � . Since E has a countable basis, � and ! are
second countable and so � and � � are second countable.

Suppose for all �nite subsets F of I; X 6=
S

i2F Xn " ei. Then for all
such F , the set feiji 2 Fg is bounded and so

W
i2F ei exists. The collection

f
W

i2F eijF a �nite subset of Ig is then directed, thus has a supremum. Let x
be a maximal element above this supremum. Then x 2 X n (

S
i2I Xn " ei), so

fXn " ei j i 2 Ig is not a cover. Thus (X; � �) is compact, showing (i).

To show (2)) (1), assume that � is closed under �nite intersections and
unions; it is also partially ordered by reverse inclusion. Let � be the poset
of �lters on X with a base of (nonempty) elements of �, partially ordered
by inclusion. By the proof in the third paragraph of the introduction, � is
an algebraic dcpo whose compact elements are the �nitely generated (that is,
principal) �lters. fXg is clearly the bottom element of �. If F and G are
in � and bounded by H 2 �, then F _G = fA \ BjA 2 F ; B 2 Gg 2 �.
Thus � is a bounded complete algebraic cpo and which is a Scott domain
since � is countable. The rest of the proof consists of checking the following
four assertions; details may be found in [3].

We de�ne � on X, by �(x) = fC 2 �jx 2 Cg: In fact, � : X ! Max(�)
is a bijection with inverse,  : Max(�) ! X, given by  (F) =

T
F ; F 2
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Max(�):

Next, for F 2 �, de�ne rd(F) = fB 2 � j 9A 2 F ; A /X Bg: Then
rd : �! � is a Scott-continuous projection.

Let � = rd(�). In [1], Proposition 4.1.3, it is shown that the image of
an algebraic dcpo under a Scott-continuous projection is a continuous dcpo.
So from the previous paragraph, it follows that � is a bounded complete !-
continuous cpo.

Now for x 2 X, de�ne �rd(x) = rd(�(x)): The proof is completed by noting
that �rd : (X; �) ! (Max(�); � j Max(�)) is a homeomorphism (with inverse
 rd : Max(�)! X, given by  rd(F) =

T
F ;F 2 Max(�):) 2

We use these equivalents in the proof in [2] that each Polish space has a
bounded complete maximal point model. The converse, indeed that any space
with a maximal point model is Polish, is shown in [13].

3 Locally compact and ultrametric spaces

Of course, each Hausdor� locally compact second countable space has its
traditional bounded complete computational model, U(X) = (fK � X j K
compactg;�). But it is a special case of the theorem, given (a) and (b) below:

(a) A subset of a locally compact Hausdor� space (X; �) is closed in �G if
and only it is compact or equals X; thus the only di�erence between UX and
the poset of nonempty closed sets of �G ordered by � is the bottom element
of the latter.

(b) For each Hausdor� locally compact space (X; �), the bitopological
space (X; �; �G) is pairwise regular and �G is compact. This bitopological
space is ws (since both topologies are T1) and normal, since if C � T; C is
�G-closed, and T is open, cover C by compact neighborhoods of its elements
fDx j x 2 Cg; this has a �nite subcover fDx j x 2 Fg, and U =

S
fint(Dx) j

x 2 Fg is open, D =
S
fDx j x 2 Fg is compact (and like every set in a

T1-space, saturated) so D is �G-closed, and C � U � D � T . Thus it is pair-
wise regular, and so a bounded complete computational model for the original
space by (iv) above (or completely regular, so apply (i) of the proposition).
That this is the smallest such computational model follows from the minimal-
ity property of �G which was mentioned immediately after its de�nition, and
this accounts for the particularly straightforward manner in which continuous
maps are extended to this computational model.

A similar analysis applies to the bounded complete computational model
of a complete separable ultrametric space discussed in [8]: let � be the set
of closed balls of radius 2�m for some positive integer m, and with centers
in a �xed countable dense set D. Since these sets are clopen, (X; �; � �) is
pairwise regular. To see that � is compact-generating, �rst note that in an
ultrametric space, if Nr(x) and Ns(y) meet and r � s then Nr(x) � Ns(y) and

9
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if this inclusion is proper in an ultrametric space, then r < s. Thus a subset
of � with the �nite intersection property must be a chain under inclusion,
thus must contain sets of arbitrarily small diameters, and so has nonempty
intersection by completeness.
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