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Abstract

The main goal of this paper is to show that the inductive dimension of aσ -compact metric space
X can be characterized in terms of algebraical sums of connectivity (or Darboux) functionsX→ R.
As an intermediate step we show, using a result of Hayashi [Topology Appl. 37 (1990) 83], that for
any denseGδ-setG ∈ R2k+1 the union ofG and somek homeomorphic images ofG is universal for
k-dimensional separable metric spaces. We will also discuss how our definition works with respect
to other classes of Darboux-like functions. In particular, we show that for the class of peripherally
continuous functions on an arbitrary separable metric spaceX our parameter is equal to either indX
or indX− 1. Whether the latter is at all possible, is an open problem. 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Our terminology and notation is standard and follows [1]. LetX be a non-empty set and
F be a family of functions fromX into R. If m is a nonnegative integer, then let

mF = {f1 + · · · + fm: f1, . . . , fm ∈ F},
and letRX be the family consisting of all functions fromX into R. Let DIMF X be defined
by

DIMF X = min
({
m ∈ Z: m� 0 and(m+ 1)F = RX

} ∪ {∞}).
✩ This work was partially supported by NSF Cooperative Research Grant INT-9600548 with its Polish part being
financed by Polish Academy of Science PAN.
* Corresponding author.
E-mail addresses: K_Cies@math.wvu.edu (K. Ciesielski), jerzy@math.wvu.edu (J. Wojciechowski).

0166-8641/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(99)00231-X



182 K. Ciesielski, J. Wojciechowski / Topology and its Applications 112 (2001) 181–191

Given a metric spaceX, a functionf :X → R is a connectivity function (Darboux
function) if for every connected subsetC of X the graph of the restrictionf � C is a
connected subset ofX × R (the imagef [C] is connected inR). The following theorem
holds.

Theorem 1. If n is a positive integer and F is the family of connectivity functions or the
family of Darboux functions on Rn, then

DIMF Rn = n.

The proof of Theorem 1 is given by Ciesielski and Wojciechowski [4], except for the
casen= 1 that has been proved by Ciesielski and Recław [2], and the inequality� in the
case of Darboux functions that has been demonstrated by Jordan [11,12].

Theorem 1 motivates the notation DIMF X and shows that (with suitably chosen family
F ) DIMF X can be considered as a sort of dimension ofX (dimension relative to F ). In
this paper we are going to show that the dimension relative to the family of connectivity
(Darboux) functions coincides with the inductive dimension ind on everyσ -compact
metric space.

LetX be a separable metric space. GivenA,B ⊆X, theboundary of A∩B in A will be
denoted by bdA B. Theinductive dimension indA of a subsetA⊆X is defined inductively
as follows. (See, for example, Engelking [5].)

(i) indA= −1 if and only ifA= ∅.
(ii) indA�m if for anyp ∈A and any open neighborhoodW of p there exists an open

neighborhoodU ⊆W of p such that indbdA U �m− 1.
(iii) ind A=m if indA�m and it is not true that indA�m− 1.

Let C be the family of connectivity functions onX andD be the family of Darboux
functions onX. Our main result is the following theorem.

Theorem 2. If X is a σ -compact metric space, then

DIMC X = DIMDX = indX.

Clearly

DIMF X � DIMG X for anyF ⊆ G ⊆ RX. (1)

SinceC ⊆ D for any spaceX, we have DIMC X � DIMDX, and so Theorem 2 follows
immediately from the following two results.

Theorem 3. If X is a separable metric space, then

DIMC X � indX.

Theorem 4. If X is a σ -compact metric space, then

DIMDX � indX.



K. Ciesielski, J. Wojciechowski / Topology and its Applications 112 (2001) 181–191 183

A natural question is whether Theorem 4 can be extended to all separable metric spaces
or perhaps all that are complete. The answer is ‘no’ in both cases since Mazurkiewicz [13]
has shown that for each positive integern there exists a complete separable metric space
X of inductive dimensionn which is totally disconnected, that is, single points are its only
connected subspaces. (See also [10, Example II 16].) Since for every totally disconnected
spaceX we have

DIMC X = DIMDX = 0

(any functionf :X→ R is a connectivity and Darboux), we get

DIMC X = DIMDX = 0< n= indX, (2)

for every space of Mazurkiewicz of inductive dimensionn > 0. It might be interesting to
answer the question whether the equation

DIMC X = DIMDX (3)

holds for all separable metric spacesX or at least all that are complete.
To prove Theorem 3 we will prove the following result which seems to be of independent

interest. We say that a separable metric spaceX is m-dimensional if indX = m. If Y
is a metric space such that for everym-dimensional separable metric spaceX there is a
subspace ofY homeomorphic toX, then we say thatY is universal for m-dimensional
separable metric spaces.

Theorem 5. IfG is a denseGδ-set in R2k+1, then there are homeomorphismshj :R2k+1 →
R2k+1, for j = 1, . . . , k, such thatG∪⋃k

j=1hj [G] is universal for k-dimensional separa-
ble metric spaces.

Theorem 5 will be used to prove the following fact, that easily implies Theorem 3.

Proposition 6. For every positive integer k there exists a dense Gδ-set H in R2k+1 such
that

(i) H is universal for k-dimensional separable metric spaces, and
(ii) for every ϕ :R2k+1 → R there are connectivity functions g0, . . . , gk :R2k+1 → R

such that (g0 + · · · + gk)(x)= ϕ(x) for every x ∈H .

The proof of Theorem 5 will be based on Lemma 9 and Theorem 11, that are proved
in [4], and on Theorem 7, which is proved by Hayashi [9]. Theorem 5 is proved in
Section 2, the proof of Theorem 3 is presented in Section 3, while Theorem 4 is proved in
Section 4. The authors would like to thank Roman Pol for directing their attention to the
results of Hayashi [9] and Mazurkiewicz [13].

2. A k-dimensional universal set

In this section we are going to present a proof of Theorem 5.
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Let a countable dense grid in Rn be a productB1 × · · · × Bn ⊆ Rn whereB1, . . . ,Bn

are countable dense subsets ofR. If B = B1 ×· · ·×Bn is a countable dense grid inRn and
i � n, then letB(i) consist of those points inRn that differ from a point inB at at mosti
coordinates, that is,

B(i) = {〈x1, . . . , xn〉 ∈ Rn: |{j : xj /∈Bj }| � i
}
.

Note that in particularB(0) = B. Let Q be the set of rational numbers andI be the closed
interval[0,1].

Our proof of Theorem 5 uses the following result of Hayashi [9]. (See also [7] for similar
results.)

Theorem 7. If G is a Gδ-set in I2k+1 containing (Q2k+1)(k) ∩ I2k+1, then G is universal
for k-dimensional separable metric spaces.

First notice that Theorem 7 implies immediately the following corollary.

Corollary 8. If B is a countable dense grid in R2k+1 and G is a Gδ-set in R2k+1

containing B(k), then G is universal for k-dimensional separable metric spaces.

Proof. Let B = B1 × · · · × B2k+1. Let g1, . . . , g2k+1 :R → R be increasing homeomor-
phisms such thatBi = gi[Q] and

g = g1 × · · · × g2k+1 :R2k+1 → R2k+1.

Then(
Q2k+1)(k) ∩ I2k+1 ⊆ g−1[G] ∩ I2k+1.

LetX be ak-dimensional separable metric space. It follows from Theorem 7 that there is
a subspaceY of g−1[G] ∩ I2k+1 that is homeomorphic toX. Theng[Y ] is a subspace of
G that is homeomorphic toX. ✷

To prove Theorem 5 we will also need a result proved implicitly in [4]. We will first
introduce the notation used there. If〈Bi : i ∈ n〉 is a family of subsets ofR andf is a
function from{1, . . . , n} into {0,1}, then let

n∏
i=1

(Bi ∨f R)= B ′
1 × · · · ×B ′

n,

where

B ′
i =


Bi if f (i)= 0,

R if f (i)= 1.

The following lemma is stated implicitly and proved in [4] (the inductive condition (8) in
the proof of Proposition 2.4, p. 419).
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Lemma 9. If G is a dense Gδ-set in Rn, then there are countable dense sets Bi ⊆ R and
homeomorphisms hi :Rn→ Rn, for i = 1, . . . , n, such that

n∏
i=1

(Bi ∨f R)⊆G∪
k⋃
i=1

hi[G]

for every k ∈ {0,1, . . . , n} and every function f : {1, . . . , n} → {0,1} such that |f−1(1)| = k.

Lemma 9 implies immediately the following result.

Theorem 10. IfG is a denseGδ-set in Rn and k � n, then there is a countable dense grid
B in Rn and homeomorphisms h1, . . . , hk :Rn→ Rn such that

B(k) ⊆G ∪
k⋃
j=1

hj [G].

Proof. Let G be a denseGδ-set inRn. For i = 1, . . . , n, let Bi ⊆ R be countable dense
sets andhi :Rn → Rn be homeomorphisms as in Lemma 9. Then

B = B1 × · · · ×Bn
is a countable dense grid inRn and

B(k) =
⋃{

n∏
i=1

(Bi ∨f R):
∣∣f−1(1)

∣∣ = k
}
.

It follows from Lemma 9 that

B(k) ⊆G ∪
k⋃
j=1

hj [G]. ✷

Proof of Theorem 5. Let G be a denseGδ-set in R2k+1. By Theorem 10, there is
a countable dense gridB in R2k+1 and homeomorphismsh1, . . . , hk :R2k+1 → R2k+1

such thatB(k) ⊆ G ∪ ⋃k
j=1hj [G]. By Corollary 8,G ∪ ⋃k

j=1hj [G] is universal fork-
dimensional separable metric spaces.✷

3. Inductive dimension as the upper bound

Now we shall prove Theorem 3. Beside Theorem 5 we will need the following result.
(See [4, Proposition 2.3].)

Theorem 11. For every n > 1, there exists a function f :Rn → R and a dense Gδ-subset
G of Rn such that any function g :Rn → R with g(x)= f (x) for x /∈G is a connectivity
function.
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Let us now introduce some notation. Iff,g :Rn → R andA ⊆ Rn, then we will write
g ≡A f if and only if g(x)= f (x) for everyx ∈ Rn \A. Notice that ifg ≡A f andA⊆A′,
theng ≡A′ f . Also g ≡∅ f if and only if g = f , andg ≡Rn f for anyf,g :Rn → R. The
following two lemmas are easy observations.

Lemma 12. Let f,g :Rn → R and A ⊆ Rn. If h :Rn → Rn is a bijection, then g ≡h[A]
(f ◦ h−1) if and only if (g ◦ h)≡A f .

Proof. Assumeg ≡h[A] (f ◦ h−1). Theng(x) = f (h−1(x)) for everyx ∈ Rn \ h[A]. If
y ∈ Rn \A, thenh(y) ∈ Rn \ h[A] so

(g ◦ h)(y)= g(h(y)) = f (
h−1(h(y))) = f (y),

implying that(g ◦ h)≡A f .
The opposite implication is proved similarly.✷

Lemma 13. Let g′
0, . . . , g

′
k :Rn → R. If A ⊆ Rn, and {A0, . . . ,Ak} is a partition of A,

then for any ϕ :A→ R there are g0, . . . , gk :Rn → R such that

gi ≡Ai g′
i , i = 0, . . . , k,

and the restriction of g0 + · · · + gk to A is equal to ϕ.

Proof. Definegi :Rn → R by

gi(x)=
{
ϕ(x)− ∑

j �=i g′
j (x) if x ∈Ai ,

g′
i (x) if x /∈Ai .

Thenϕ(x)= g0(x)+ · · · + gk(x) for everyx ∈A. ✷
Proof of Proposition 6. Letn= 2k+1. By Theorem 11 there exists a functionf :Rn → R

and a denseGδ-subsetG of Rn such that any functiong :Rn → R with g ≡G f is
a connectivity function. By Theorem 5, there are homeomorphismshi :Rn → Rn, for
i = 1, . . . , k, such that theGδ-setH = G ∪ ⋃k

j=1hj [G] is universal fork-dimensional
separable metric spaces. Let{A0, . . . ,Ak} be the partition ofH defined inductively by

A0 =G, Aj = hj [G] \ (A0 ∪ · · · ∪Aj−1), j = 1, . . . , k.

Let ϕ :Rn → R be an arbitrary function, andh0 :Rn → Rn be the identity function. It
follows from Lemma 13, that there are functionsg0, . . . , gk :Rn→ R such that

gi ≡Ai (f ◦ h−1
i ), i = 0, . . . , k,

and the restriction ofg0 + · · · + gk toH is equal toϕ �H . It remains to prove thatgi ’s are
connectivity functions.

Let i ∈ {0, . . . , k}. SinceAi ⊆ hi[G], we have

gi ≡hi [G] (f ◦ h−1
i ),
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and so Lemma 12 implies that

gi ◦ hi ≡G f.
Thusgi ◦ hi (and hencegi ) is a connectivity function onRn. ✷
Proof of Theorem 3. Let X be ak-dimensional separable metric space. Ifk = 0, then
any functionX→ R is a connectivity function, so we can assume thatk � 1. LetH be
aGδ-set from Proposition 6. Then there is a subspaceA of H homeomorphic toX. Take
an arbitraryϕ0 :A→ R. We have to show thatϕ0 is a sum ofk + 1 connectivity functions
onA.

Let ϕ :Rn → R be an arbitrary extension ofϕ0 and let g0, . . . , gk :Rn → R be
connectivity functions such that(g0+· · ·+gk)(x)= ϕ(x) for all x ∈H . Then the functions
gi �A are connectivity and(g0 �A)+ · · · + (gk �A)= ϕ0. ✷

4. Inductive dimension as the lower bound

In this section we are going to prove Theorem 4. In the proof that follows we will need
some additional definitions and results from dimension theory. (See, for example, [10].)

Lemma 14. If X is a separable metric space and

X =
∞⋃
i=1

Xi,

where Xi is closed in X and indXi �m, for i = 1,2, . . . , then indX �m.

Given X ⊆ Rn and an integerm � 1, we say thatX is anm-dimensional Cantor-
manifold if X is compact, indX = m, and for everyY ⊆ X with indY � m − 2, the set
X \ Y is connected.

The following lemma is proved in [10].

Lemma 15. For any compact Y ⊆ Rn with indY � m there exists an m-dimensional
Cantor manifold X ⊆ Y .

We will also need the following result of Francis Jordan. (See [11, Lemma 3.3.8] or [12,
Lemma 3.8].) Aperfect set is a non-empty closed set without isolated points.

Lemma 16. Let n > 1 and M be an n-dimensional Cantor manifold. If n � k � 1 and
f ∈ kD, where D is the family of Darboux functions M → R, then there is a connected
perfect set P ⊆M such that the restriction of f to P is Darboux.

A Bernstein set, is a setB ⊆ Rn such thatB ∩ P �= ∅ andB \ P �= ∅ for every perfect
setP ⊆ Rn. Note that the characteristic function of a Bernstein set is not Darboux on any
perfect set.

Now we are ready to prove Theorem 4.
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Proof of Theorem 4. Suppose, by way of contradiction, that there exists ak-dimensional
σ -compact metric spaceX such that

DIMDX < indX = k,
whereD is the family of Darboux functions onX. We can assume thatX ⊆ Rm for some
positive integerm. Then

X =
∞⋃
i=1

Xi,

with Xi compact,i = 1,2 . . . and it follows from Lemma 14 that there is a positive integer
j with indXj � k. By Lemma 15 there is ak-dimensional Cantor manifoldM ⊆Xj .

Let B ∈ Rm be a Bernstein set andf :X→ R be the characteristic function ofB ∩X.
Since DIMDX < k, we havef ∈ kD. Hence the restriction off toM is in kD′ whereD′
is the family of Darboux functions onM. It follows from Lemma 16 that the restriction of
f to some perfect set inRm is Darboux. Since no restriction of the characteristic function
of a Bernstein set to a connected perfect set can be Darboux, we got a contradiction proving
that DIMDX � indX. ✷

5. Dimension relative to other classes of Darboux-like functions

In this section we will consider how our definition of dimension works with some other
classes of Darboux-like functions. (See [6] or [3].) Given a topological spaceX, a function
f :X→ R is:

• almost continuous (in sense of Stallings) if each open subset ofX× R containing the
graph off contains also the graph of a continuous function fromX to R;

• extendable provided there exists a connectivity functionF :X× [0,1] → R such that
f (x)= F(x,0) for everyx ∈X;

• peripherally continuous if for every x ∈ X and for all pairs of open setsU andV
containingx andf (x), respectively, there exists an open subsetW of U such that
x ∈W andf [bd(W)] ⊂ V .

The classes that are defined above are denoted by AC(X), Ext(X), and PC(X),
respectively. The following inclusion relations hold whenX= Rn. (See [6] or [3].)

Ext(R) � AC(R) � C(R) � D(R) � PC(R)

and, forn > 1,

Ext(Rn)= C(Rn)= PC(Rn) � AC(Rn)∩D(Rn)
��� AC(Rn)

D(Rn)
���

where � denotes a strict inclusion.
Natkaniec [14, Proposition 1.7.1] proved that every functionf :Rn → R is a sum of two

almost continuous functions. This implies that

DIMAC Rn = 1 for everyn= 1,2,3, . . . (4)
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making the class AC useless in our definition of dimension. The situation is different for
the remaining two classes.

LetX be a separable metric space. Since

Ext
(
R2k+1) = C

(
R2k+1) = PC

(
R2k+1)

for k � 1, and since any functionX→ R is both peripherally continuous and extendable
when indX = 0, the inequalities

DIMExtX� indX and DIMPCX � indX (5)

follow from Proposition 6 in precisely the same way as Theorem 3 does. Moreover, it is
immediate to see that the analog of Theorem 2 for the class Ext is also true.

Theorem 17. If X is a σ -compact metric space, then

DIMExtX= indX.

Proof. The inequality DIMExtX � indX is a restatement of (5). The other inequality holds
since for everyσ -compact metric spaceX we have DIMC X = indX and the inequality
DIMExtX � DIMC X is implied by Ext(X)⊆ C(X) and (1). ✷

In the case of the class PC the situation is quite different. Unlike for the classesC, D,
and Ext (see (2) which holds also for DIMExtX) the dimension relative to the class PC is
very close to the inductive dimension for every separable metric space. However, it is not
clear whether we have equality even for all compact metric spaces.

Theorem 18. If X is a separable metric space, then

indX− 1 � DIMPCX � indX. (6)

Proof. Let k = indX. The inequality DIMPCX � k is a restatement of (5). To prove the
other inequality we will show that

(∗) for everyg1, . . . , gk−1 ∈ PC(X) andε > 0 there exist a closed subsetY of X of
cardinality continuum such that∣∣gi(x)− gi(y)∣∣< ε
for everyx, y ∈ Y andi = 1,2, . . . , k − 1.

We prove (∗) by induction onk � 1. If k = 1, takeY =X. The cardinality ofX cannot
be smaller than continuum since for somex ∈X andr > 0 the boundaries of the open balls
in X with centerx and radius smaller thanr are non-empty and pairwise disjoint.

Assume thatk � 2. Let g1, . . . , gk−1 ∈ PC(X) andε > 0. There isp ∈ X and an open
neighborhoodW of p such that indbd(U)= k− 1 for any openU with p ∈U ⊆W . Since
g1 is peripherally continuous, there is an open neighborhoodU of p such thatU ⊆W and
the imageg1[bd(U)] is contained in the open interval(g1(p)− ε/2, g1(p)+ ε/2). Since
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indbd(U)= k − 1, it follows from the inductive hypothesis that there is a closed subsetY

of bd(U) of cardinality continuum such that∣∣gi(x)− gi(y)∣∣< ε (7)

for everyx, y ∈ Y andi = 2,3, . . . , k − 1. ThenY is closed inX and it follows from the
choice ofU , that (7) holds also fori = 1 completing the proof of (∗).

Now we show that (∗) implies that

DIMPCX � k − 1.

Let Z be a subset ofX such thatA ∩ Z �= ∅ andA \ Z �= ∅ for every closedA ⊆ X of
cardinality continuum. The existence of suchZ can be proved by listing all closed subsets
of X of cardinality continuum in a sequence〈Aα〉α<c of length continuum, defining two
sequences〈aα〉α<c and〈bα〉α<c of points inX by transfinite induction so that

aα ∈Aα \ ({aβ : β < α} ∪ {bβ : β < α}),
and

bα ∈Aα \ ({aβ : β � α} ∪ {bβ : β < α}
)
,

for everyα < c, and putting

Z = {aα: α < c}.
Let f :X→ R be the characteristic function of the setZ. The proof will be complete

when we show that

f /∈ (k − 1)PC(X).

Suppose, by way of contradiction, that

f = g1 + · · · + gk−1

for someg1, . . . , gk−1 ∈ PC(X). By (∗) there is a closed subsetY of X of cardinality
continuum such that∣∣gi(x)− gi(y)∣∣< 1

k − 1

for everyx, y ∈ Y andi = 1,2, . . . , k − 1. Therefore∣∣f (x)− f (y)∣∣< 1

for everyx, y ∈ Y . SinceY ∩ Z andY \ Z are both non-empty, there arex, y ∈ Y with
f (x)= 0 andf (y)= 1 and we get a contradiction. Thus the proof is complete.✷
Corollary 19. If X is a space of Mazurkiewicz of dimension k � 2, then the class PC(X)
is not equal to either C(X), D(X), or Ext(X).

Proof. If X is a space of Mazurkiewicz of dimensionk � 2, then

DIMC X = DIMDX = DIMExtX = 0< k − 1 � DIMPCX. ✷
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Problem 1. Does there exist a separable (complete separable,σ -compact, compact) metric
spaceX such that

DIMPCX = indX− 1? (8)

It is clear that ifX satisfies (8), thenX cannot be a finite-dimensional manifold since
DIMPCRn = indRn. Moreover, such a space must be at least two-dimensional. Indeed,
if indX = 0, thenX �= ∅ so DIMF X � 0 for everyF ⊆ RX . If indX = 1, then there is
an x ∈ X and an open neighborhoodW of x such that bdU �= ∅ for every openU with
x ∈ U ⊆W . If f :X→ R is the characteristic function of the singleton{x}, thenf is not
peripherally continuous implying that DIMPCX � 1.
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