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Abstract

We study classes of continuous functions onRn that can be approximated in various degree
by uniformly continuous ones (uniformly approachable functions). It was proved by Berarducci
et al. [Topology Appl. 121 (2002)] that no polynomial function can distinguish between them.
We construct examples that distinguish these classes (answering a question by Berarducci et al.
[Topology Appl. 121 (2002)]) and we offer appropriate forms of uniform approachability that enable
us to obtain a general theorem on coincidence in the class ofall continuous functions. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Our set theoretical and topological notations are standard and follow [7] and [13],
respectively. Given a metric spaceX we denote byC(X) (or simply C) the set
of continuous functionsf :X → R. We use the abbreviation “u.c.” for “uniformly
continuous”. The class of uniformly continuous functions (from currently considered
spaceX into R) will be denoted byUC. The main classes studied in this paper are the
following.

Definition 1.1 [1]. Let X be a metric (or, more generally, uniform) space,f :X → R,
K ⊆ X, andM ⊆ X.

✩ Work partially supported by the NATO Collaborative Research Grant CRG 950347.
E-mail addresses:K_Cies@math.wvu.edu (K. Ciesielski), dikranja@dimi.uniud.it (D. Dikranjan).
1 Web page: http://www.math.wvu.edu/∼kcies/

0166-8641/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(00)00114-0

http://www.math.wvu.edu/~kcies/


312 K. Ciesielski, D. Dikranjan / Topology and its Applications 114 (2001) 311–325

1. g :X → R is a 〈K,M〉-approximation of f if g is u.c., g[M] ⊆ f [M], and
g(x) = f (x) for eachx ∈ K.

2. f is uniformly approachable(briefly,UA) if f has a〈K,M〉-approximation for each
compactK ⊆ X and eachM ⊆ X.

3. f is weakly uniformly approachable(briefly,WUA) if f has an〈x,M〉-approximation
(that is, more formally,〈{x},M〉-approximation) for eachx ∈ X and for eachM ⊆ X.

Clearly every u.c. function isUA, andWUA is a special case ofUA when the compact
setK reduces to a pointx. It is also not difficult to check that everyWUA function is
continuous [1, Fact 2.2]. ThusUC → UA → WUA→ C. This justifies the title of the
paper.

Is should be also mentioned here that for the functions fromR to R three of the
above notions coincide, that is,UA ↔ WUA↔ C. (See [1, Proposition 3.5].) However
Maxim R. Burke noticed [1, Example 3.3] that onR2 there are continuous non-WUA
functions. (In fact,f :R2 → R, f (x, y) = xy, is such a function.) Let us recall thatWUA
functions were introduced in [11] under the name “uniformly approachable functions” (see
also [4]). They provided an easy and elegant solution of the problem of whether the uniform
continuity can be characterized (in appropriate sense) by means of closure operators in the
sense of [12] (sinceWUA functions are easily seen to be continuous with respect to every
closure operator).

It is easy to see that if the setM is empty then〈K,M〉-approximations always exist
and the notion is uninteresting. (ForK = ∅ any u.c. extensiong of f |K to a u.c. function,
which exists by Kaťetov extension theorem, is a〈K,∅〉-approximation off .) However,
if M is properly chosen, then the conditiong[M] ⊆ f [M] is much stronger than it could
be expected. In fact, it has been proved in [1, Theorem 8.5] that, under the continuum
hypothesis CH, for every separable metric spaceX there exists a setM ⊂ X, called
a magic set, such that any〈∅,M〉-approximationg of a nowhere constant functionf
must be atruncationof f , that is,g must be constant on each connected component of
{x ∈ X: f (x) = g(x)}. This motivates the introduction of the classTUA of truncation-UA
functions, that is, functionsf ∈ C(X) such that for every compact setK ⊆ X there is
a u.c. truncationg of f which coincides withf onK. ClearlyTUA→ C for every locally
compact spaceX. The result quoted above shows that, under CH,UA→ TUA for nowhere
constant functions on every separable metric spaceX. (Take a〈K,M〉-approximation of
the constant functionf with respect to a magic setM.) Since theTUA functions have
a simpler geometrical description, this stimulated the further study of the magic sets and
their properties and lead to a deep investigation of the question whether the existence of
magic sets can be proved without the assumption of CH ([1, Question 14.1]). After some
preliminary negative results (see [5,6]), Shelah and the first named author showed that this
cannot be done even for the realsR [9].

In the comparison ofTUA and UA in separable metric spaces (and in particular,
in Rn), Berarducci, Pelant and the second named author [2] noticed recently that uniform
approachability provides also a good connection to properties of the functions related to
fibers. A functionf :Rn → R hasdistant connected componentsof fibers (briefly,DCF)



K. Ciesielski, D. Dikranjan / Topology and its Applications 114 (2001) 311–325 313

if any two connected components of distinct fibersf −1(x) and f −1(y) are at positive
distance. They proved [2, Corollary 6.20] that for the functions onRn one has

UA→ WUA→ TUA↔ DCF.

They also proved thatUA↔ WUA↔ TUA for all polynomial functions fromRn to R and,
more generally, for all functions with fibers having finitely many connected components.
The following question was left open in [2, Question 8.2(1)]:

Question 1.2. Do the propertiesUA, WUA, andTUAcoincide forall continuous functions
Rn → R?

Also, the strength of the conditiong[M] ⊆ f [M] suggested that the difference between
UA andWUA is very small. In fact, the following open problem was raised in [1]:

Question 1.3. Let X be a connected metric space and letf :X → R be aWUA function.
Is thenf alsoUA?

In this paper we will answer negatively these questions. More precisely, we give
contributions mainly in three directions:

(1) We answer negatively Question 1.2 by constructing a functionf ∈ C(R2) which
shows that, inRn with n � 2, TUA does not imply evenWUA.

This shows thatUA and WUA are too strong conditions to participate in a set of
equivalent conditions containingTUA and DCF. This motivated us to introduce here
the following weaker version ofUA: a functionf :X → R is UAd (densely uniformly
approachable) if it admits uniform〈K,M〉-approximations for everydensesetM and for
every compact setK. One can define analogouslyWUAd. Let us mention here, that all
known examples of non-UA (respectively, non-WUA) spaces (constructed in [1–3]) are
actually non-UAd (respectively, non-WUAd). As a corollary to Theorems 2.1 and 4.3 we
see thatUA does not coincide withUAd for f ∈ C(Rn). In the last part (Section 4) we
show that the example from Theorem 2.1 may serve also to distinguishingWUAd from
WUA. (This requires a much more careful choice of the setM witnessing non-WUA.)

(2) In a certain sense we improve the main result of [2] by showing thatTUA= DCF =
WUAd = UAd for functions onRn. (See Theorem 4.3.) This is also the first general theorem
on coincidence of (a form of)UA with (a form of)WUA. (See Question 1.3.)

(3) In Theorem 2.3 we answer negatively Question 1.3 by proving that the restriction
to a connected subspace of the functionf :R2 → R constructed in Theorem 2.1 is both
WUAandUAd. The proof of Theorem 2.1 shows that this restriction is notUA, hence our
example shows that even the implication(WUA & UAd) ⇒ UA may fail for continuous
functions on a connected subspace ofR2.

We leave open the last part of Question 1.2. (See also [2, Question 8.3].)

Problem 1.4. DoesWUA imply UA in C(Rn)? What aboutC(R2)?
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In the diagram below we summarize, for reader’s convenience, our results and the open
question (invertibility of (1)):

WUA
(2)

WUAd DCF

UA

(1)

(3)
UAd TUA

The equivalences in the right hand square are proved in Theorem 4.3. The implication (1)
is trivial. The properness of the implication (2) is proved by the example given
in Theorem 2.1. (For the proof see Section 5.) This proves also properness of the
implication (3) established directly in Theorem 2.1.

1.1. Preliminaries on truncations and approximations

The interior, closure, boundary, and diameter of a setA in a metric spaceX are
denoted by int(A), cl(A), bd(A), and diam(A), respectively. In what follows forx, y ∈ Rn,
n = 1,2,3, . . . , we will write ||x − y|| for the Euclidean distance betweenx andy.

For f ∈ C(X) anda, b ∈ R with a < b define the(a, b)-truncationg of f by putting
g(x) = f (x) whenf (x) ∈ [a, b], g(x) = b whenf (x) � b, andg(x) = a whenf (x) � a.
Forf,g ∈ C(X) we will write [f = g] and[f = g] for the sets{x ∈ X: f (x) = g(x)} and
{x ∈ X: f (x) = g(x)}, respectively.

We give here several easy properties of truncations that will be frequently used in the
sequel.

Lemma 1.5. LetX be a locally connected space andf,g,h ∈ C(X).
(a) If g is a truncation off and U is a connected component of[f = g], theng is

constant oncl(U) andg = f on bd(U).
(b) If g is a truncation off andY ⊆ X, then alsog|Y is a truncation off |Y .
(c) If f is constant andg is a truncation off , theng is locally constant.
(d) If g is locally constant on[f = g], theng is a truncation off .
(e) If h is a truncation ofg andg is a truncation off , thenh is a truncation off .

Proof. (a) is proved in [2, Lemma 5.3], while (b) and (d) are obvious.
(c) Letx ∈ X andW be the connected component ofx in X. ThenW is open sinceX is

locally connected. Thus it suffices to show thatg is constant onW . If f andg agree onW
then there is nothing to prove. So assume thatW ∩[f = g] = ∅. LetU ⊂ W be a connected
component ofW ∩[f = g]. By (b)g|W is a truncation off |W , henceg is already constant
onW whenU = W . Let us see now that the caseU = W cannot occur. Indeed, by (a),g is
constant on cl(U) andg = f on bd(U). SinceW is connected andU = W , the set bd(U)

is non-empty, so that these two constants coincide. Henceg|U = f |U , a contradiction.
(e) Let x ∈ [h = f ] ⊆ [h = g] ∪ [g = f ]. If x ∈ [h = g] thenh is constant on some

neighbourhood ofx sinceh is a truncation ofg. Supposex ∈ [g = f ]. Then there exists
a connected neighbourhoodU of x such thatg is constant onU . By (b)h|U is a truncation
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of g|U so (c) yields thath|U is constant. This proves thath is locally constant on[h = f ].
Therefore, by (d),h is a truncation off . ✷
Lemma 1.6. Let g ∈ C(Rn) be a truncation off ∈ C(Rn). If δ > 0 and ε > 0 are such
that

for everyx, y ∈ Rn if ||x − y|| < δ, then
∣∣f (x) − f (y)

∣∣ < ε (1)

then

for everyx, y ∈ Rn condition||x − y|| < δ, implies
∣∣g(x) − g(y)

∣∣ < ε. (2)

In particular, if f :Rn → R is u.c. then so is every its truncation.

Proof. Let δ > 0 andε > 0 be such that (1) holds and by way of contradiction assume
that (2) fails. Then there arex, y ∈ Rn such that||x − y|| < δ while |g(x) − g(y)| � ε.
Thus x and y cannot belong to the same component of[f = g]. Let I be a straight
interval connectingx and y. Then there arex ′, y ′ ∈ I such thatf (x ′) = g(x ′) = g(x)

andf (y ′) = g(y ′) = g(y). But this implies that|f (x ′)−f (y ′)| = |g(x)− g(y)| � ε while
||x ′ − y ′|| � ||x − y|| < δ, contradicting (1). ✷
Lemma 1.7. If f :Rn → R is TUA andg :Rn → R is a truncation off theng is also
TUA.

Proof. Recall [2, Corollary 6.20] thath ∈ C(Rn) is TUA if and only if h hasDCF. So,
assume thatf is TUA. Thenf hasDCF. It is enough to show thatg hasDCF. So, take
differenty, z ∈ g[Rn] and letU andV be connected components ofg−1(y) andg−1(z),
respectively. Since the boundary bd(U) separatesV from the interior int(U) of U there
is a connected componentS of bd(U) which separatesV from int(U). (This follows
from the unicoherence ofRn, cf. [2, Lemma 4.11].) Similarly, there is a componentT

of bd(V ) which separatesU from the interior int(V ). Now, for everyx ∈ U andy ∈ V

there arex ′ ∈ S andy ′ ∈ T such that||x − y|| � ||x ′ − y ′||. So, dist(U,V ) = dist(S,T ).
But f |S ∪ T = g|S ∪ T , andS andT are subsets of different connected components of
fibersf −1(y) andf −1(z) of f . Thus dist(U,V ) = dist(S,T ) > 0, sincef hasDCF. ✷
Remark 1.8. Note that Rn cannot be replaced byR \ {0} in either Lemma 1.6 or
Lemma 1.7. Indeed, here the identity function fromR \ {0} to R \ {0} has truncations
that are notTUA.

Lemma 1.9. Let h :X → R be a truncation off :X → R and let V be a family of
some components of[f = h]. For everyV ∈ V let gV : cl(V ) → R be some truncation
of f |cl(V ), and defineg :X → R by puttingg(x) = gV (x) if x ∈ cl(V ) for someV ∈ V ,
andg(x) = h(x) for all otherx ∈ X. Theng is a truncation off .

Proof. First note that[h = f ] ⊆ [g = f ], so that[g = f ] ⊆ [h = f ]. LetC be a connected
component of[g = f ]. Then there exists a connected componentW of [h = f ] such that
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C ⊂ W . If W /∈ V theng|W = h|W andh|W is constant, sog|C is constant. If, on the
other hand,W ∈ V theng|C = gV |C is again constant. ✷

〈K,M〉-approximations are easy to build via Katětov’s extension theorem whenK is far
from M:

Lemma 1.10 [1]. Let X be a metric space,M ⊆ X, andK a compact subset ofX such
thatcl(M) ∩ K = ∅. Then everyf ∈ C(X) admits a〈K,M〉-approximation.

This gives the following easy criterion for building〈x,M〉-approximations.

Corollary 1.11. LetX be a metric space,f ∈ C(X), andM ⊆ X such thatf [M] is closed
(in particular, finite) inR. Then there exists an〈x,M〉-approximation off for every point
x ∈ X.

Proof. Indeed, iff (x) ∈ f [M] then it suffices to take the constant function with value
f (x) as an〈x,M〉-approximation. Iff (x) /∈ f [M] = cl(f [M]), then x ∈ cl(M). Now
Lemma 1.10 applies to give an〈x,M〉-approximation off . ✷

2. A function that is TUA but not UA

Theorem 2.1. There exists a TUA functionf :R2 → R that is not UA.

Proof. Let h : [0,1] → [0,1] be the classical Cantor increasing function locally constant
on an open and dense subsetU of (0,1). We assume also thath[U ] ⊂ (0,1).

Let g :R2 → R be such thatg(x, y) = h(x) for x ∈ [0,1] andg(x, y) = x, otherwise.
Functionf is a modification ofg obtained in the following way.

For everyn < ω choose a finite setSn ⊂ U × {n} such that[0,1] × {n} contains no
interval of length 2−n disjoint withSn. For eachs = 〈t, n〉 ∈ Sn choose a closed diskD(s)

centered ats on which the functiong is constant. We will also assume that the disks are
pairwise disjoint. It will be helpful to note also that all these disks are far from the boarder
of the rectangleKn := [−n,n] × [−1

2(2n + 1), 1
2(2n + 1)].

The functionf is obtained by modifyingg on each diskD(s), with s from S =⋃
n<ω Sn, by puttingf (s) = 1, f (x) = g(x) for every boundary pointx of D(s), and

extending it to the rest ofD(s) to get a cone. (In fact, any continuous extension would do.)
The functionf is as desired.

Indeed, first note thatf is TUA. Every compactK ⊂ R2 is contained in someKn, so it
suffices to argue withK = Kn. Note that the set[f = g] (union of disksD(s)) is far from
the boarder ofKn. Now leavingf unchanged onKn, and giving valuek(x) = g(x) for
pointsx outside ofKn gives a u.c. truncationk of f that agrees withf on K. Indeed,
k differs from g, which is UC, only on a compact set: the finite union of disksD(s)

contained inKn.
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To see thatf is not UA let M be a union of linesL0 = {0} × R, L1 = {1} × R, and
the setS of all centerss of disksD(s). Thusf [M] = {0,1}. Let K = {0,1} × {0} and
by way of contradiction assume that there is aUC functionk agreeing withf on K and
such thatk[M] ⊂ f [M] = {0,1}. Note thatk[{〈0,0〉}] = k[L0] = {0}, sinceL0 ⊂ M and
k(0,0) = f (0,0) = 0. Similarlyk[{〈1,0〉}] = k[L1] = {1}. Now, sincek is UC there exists
an n < ω such that for everyx, y ∈ R2 if ||x − y|| < 2−n then |k(x) − k(y)| < 1. Let
{s0, . . . , sp} be an increasing enumeration ofSn ∪ {〈0, n〉, 〈1, n〉}. Then||si − si+1|| < 2−n

for every i < p. Thus |k(si) − k(si+1)| < 1 for everyi < p. But k(si) ∈ f [M] = {0,1}
for everyi � p. Thus,k(si) = k(si+1) for everyi < p. However this is impossible, since
k(s0) = k(0, n) = 0 andk(sp) = k(1, n) = 1. This finishes the proof.✷
Remark 2.2. We will show in Section 5 that the above example is actually even non-WUA.
But we prefer to give Theorem 2.1 in this form since the verification thatf is notUA is
much easier due to the relatively simple form of the setM, or more precisely, the fact that
f [M] is just a doubleton. According to Corollary 1.11 such a set cannot witnessWUA for
any singletonK = {x}. So, in Section 5 we will have the change the setM.

2.1. WUA& TUA& UAd does not imply UA on connected subspaces of the plane

The proof of Theorem 2.1 shows that actually the restrictionf |A of the functionf to
the “ladder space”A = L0∪L1 ∪ ([0,1]×Z) is notUA, since bothM andK are contained
in A. Now we show that this restriction is also bothWUA andUAd. Obviously it is also
TUA since,f is TUA.

Theorem 2.3. The restrictionf |A is both WUA and UAd.

Proof. In the sequel we work only on the spaceA and accordingly we write simply
f instead off |A. We start by proving a property stronger than justUAd. Namely,
we prove that for everyM ⊆ A such thatf [M] is dense in[0,1] one can build
a 〈K,M〉-approximation for every compactK ⊆ A. It will suffice to find a〈Kn ∩ A,M〉-
approximation forKn as defined in the proof Theorem 2.1. LetU = ⋃∞

t=1Ut , where each
Ut is an open subinterval of[0,1] andU is the open set as in the proof of Theorem 2.1
on which the Cantor functionh : [0,1] → [0,1] is locally constant. For everyk ∈ N with
k > n truncatef on every setV (k)

t = Ut × {k}, t ∈ N, at a levelf (m), wherem ∈ M is
such thath[Ut ] � f (m) < h[Ut ] + 1

k
. For eachx = 〈x1, x2〉 ∈ A with eitherx1 /∈ U or

|x2| � 1
2(2n + 1) we leavef (x) unchanged. The function obtained that way (which, by

Lemma 1.9, is a truncation off ) will be denoted byf1. Note thatf1 coincides withf
on Kn ∩ A. Moreover, forBk = [0,1] × {k} with |k| > n the oscillation oscBk (f1 − g) of
f1 − g on the setBk is at most1

n
, whereg is the function from the proof of Theorem 2.1.

Thus, we have also oscA\Kn(f1 − g) � 1
n
.

Let us see thatf1 is u.c. Take anε > 0 and choose ak ∈ N with 4
k

< ε. By the
compactness ofKk+1 there exists aδ ∈ (0,1) such that|f1(x) − f1(y)| < 1

2ε for every
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x, y ∈ Kk+1 with ||x − y|| < δ. Sinceg is u.c. we can assume, decreasingδ if necessary,
that

∣∣g(x) − g(y)
∣∣ < 1

2ε for all x, y ∈ A with ||x − y|| < δ.

Now we show that thisδ works forf1 as well. Indeed, forx, y ∈ A with ||x − y|| < δ one
has eitherx, y ∈ Kk+1 (and then|f1(x)−f1(y)| < 1

2ε), or one of the pointsx andy, sayx,
does not belong toKk+1. Thenδ < 1 implies thatx, y /∈ Kk . This yields|f1(x)−g(x)| � 1

k

and|f1(y) − g(y)| � 1
k
. Hence|f1(x) − f1(y)| � |g(x) − g(y)| + 2

k
� 1

2ε + 1
2ε = ε. This

proves thatf |A is UAd.
To see thatf |A is WUAfix x ∈ A andM ⊆ A. We will find a u.c.〈x,M〉-approximation

of f |A. Since for eachk ∈ Z one hasf [Bk] = [0,1], it follows from the above argument
thatf |A has an〈x,M〉-approximation for everyx ∈ A and everyM ⊆ A that is dense in
someBk . Thus we will assume that for everyk ∈ Z the setM avoids the closure of some
open non-empty subinterval∆k = (ak, bk) × {k} of Bk .

An 〈x,M〉-approximation is easy to build via Lemma 1.10 whenx /∈ cl(M). When
f (x) ∈ f [M] it is easy again: use the constant function with valuef (x). The last case
shows that whenx ∈ L0 it makes sense to assume 0= f (x) /∈ f [M] and, consequently, that
M ∩ L0 = ∅. Analogously, forx ∈ L1 we will concentrate on the case whenM ∩ L1 = ∅.

Here is the main trick that will allow us to build〈x,M〉-approximation for all essential
pairs〈x,M〉. Suppose thatx has an open bounded neighbourhoodVx such that the closure
of M ′ = M \ Vx is disjoint with cl(Vx). Since cl(Vx) is compact, the distance between
M ′ andVx is positive. Therefore, Katětov’s extension theorem applies to the u.c. function
ρ from Y = cl(Vx) ∪ cl(M ′) to [0,1], whereρ|cl(Vx) = f |cl(Vx) andρ|cl(M ′) is any
constant with value inf [M]. The uniform continuity ofρ is granted by the uniform
continuity of both restrictions and the positive distance betweenM ′ andVx . SinceM ⊆ Y

andρ[M] ⊆ f [M], any u.c. extensionρ of ρ will be an〈x,M〉-approximation off . In the
sequel we aim to find such an open neighbourhoodVx of x. The argument splits into the
following cases.

(a) If x ∈ L0 then x ∈ cl(M) and M ∩ L0 = ∅ imply x = 〈0, n〉 for somen ∈ Z.
Now disjointness ofM with ∆n permits to take asVx the openT -shaped set
({0} × (n − 1

2, n + 1
2)) ∪ [0, an) × {n}. Analogous argument works forx ∈ L1.

(b) So assume thatx = 〈x1, n〉 ∈ Bn \ (L0 ∪ L1) for somen. SinceM ∩ ∆n = ∅ and
x ∈ cl(M) we havex /∈ ∆n andx1 ∈ (0,1) \ (an, bn). We assume thatbn � x1 < 1,
the case 0< x1 � an being analogous. We have two cases.
(b1) M is not dense in[x1,1] × {n}. Then there is an open subinterval(cn, dn) of

[x1,1] such that((cn, dn) × {n}) ∩ M = ∅. Now takeVx = (bn, cn) × {n} and
use the trick described above.

(b2) M is dense in[x1,1] × {n}. Here we have again two cases.
(i) 1 /∈ f [M]. This means of course thatM does not meetL1. Now take

Vx = (bn,1) × {n} and repeat the trick.
(ii) 1 ∈ f [M]. Consider the functionρ :A → R that coincides withf on

[bn,1] × {n}, takes value 1 on the complement of[an,1] × {n} in A andρ
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is linear on∆n. Clearlyρ is u.c. and is the desired〈x,M〉-approximation
of f . ✷

Remark 2.4. The above functionf ∈ C(A) is TUA, WUA, UAd but notUA. This should
be compared with the functiong ∈ C(A) constructed in [1] that is non-WUA. Actually, that
function has countable fibers and has no uniformly continuous non-constant truncations, so
that its non-WUA-ness was established in [1] by the existence of a magic setMg of g that
forces all〈x,Mg〉-approximations ofg to be truncations ofg. Obviously such a functiong
is DCF. 2 SinceMg must be dense, this proves actually thatg is not evenWUAd. This
should be compared with Theorem 4.3 where we prove thatDCF = WUAd for C(Rn).

3. TUA implies UAd

Theorem 3.1. TUA implies UAd in C(Rk).

Sketch of the proof. Let f :Rk → R be TUA, K ⊂ Rk be compact, andM be a dense
subset ofRk. We will construct a u.c. functionh :Rk → R such thath|K = f |K and

h[M] ⊆ f [M]. (3)

It seems natural to take a u.c. truncationh0 of f that agrees withf on K. But then (3)
need not be satisfied. The main difficulty to overcome is to ensure the inclusion (3). Our
plan is to define a sequence〈hn: n < ω〉 of u.c. functions fromRk into R that modify
h0 and approximatef by means of a sequence〈gn: n < ω〉 of truncations off (hence,
by Lemma 1.7, ofTUA functions) starting withg0 = f and such that eachgn satisfies
gn[M] ⊆ f [M], and agrees withhn−1 onKn−1, whereKn−1 is the closed ball with radiusn
and center 0. With this assumption the common limith of the sequencesgn andhn is u.c.,
agrees withf onK, and satisfies (3).

Detailed description of the construction. We construct the sequences〈gn: n < ω〉 and
〈hn: n < ω〉 by induction onn < ω. It makes no harm to think that our original compact
setK is contained inK0. (Otherwise the induction should start from somen0 < ω.)

To carry out the (much easier)h-part of the constructionnote that ifgn is a TUA
function, imitating the first step withh0, we can more generally define at each stepn < ω

a functionhn such that:

hn is a u.c. truncation ofgn andhn|Kn = gn|Kn. (4)

The existence of such a truncationhn is an immediate consequence of the definition of
TUA. The following fact will be used in the sequel.

Lemma 3.2. If V is a component of[gn = f ] intersectingKn then it is also a component
of [hn = f ] andgn|V = hn|V .

2 Every light function (i.e., with totally disconnected fibers) isDCF.
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Proof. Let x ∈ V ∩ Kn. Thenf (x) = gn(x) = hn(x), thusx ∈ [hn = f ]. Clearlygn[V ] =
{gn(x)}. Thushn|V is a truncation of the constant functiongn|V (Lemma 1.5(b)), so
it is constant (Lemma 1.5(c)), sinceV is connected and locally connected. Therefore
gn[V ] = {gn(x)} = {hn(x)} = hn[V ] and so the functionshn, gn, andf agree on the
boundary ofV . Thus,V is a component of[hn = f ]. ✷

Next we describe the more complicatedg-part of our construction. We shall build
a functiongn+1 with propertiesGn(i)–Gn(iv) given below under the assumption that for
somen < ω the functionshn andgn are already constructed with the propertiesGn−1(i)–
Gn−1(iv).

Gn(i): gn+1|Kn = gn|Kn. (Hencegn+1|Kn = gn|Kn = hn|Kn.)
Gn(ii): gn+1 is a truncation off (so aTUA function) such that|gn+1(x)−hn(x)| < 2−n

for everyx ∈ Rk .
Gn(iii): If V is a component of[gn = f ] intersectingKn then it is also a component of

[gn+1 = f ] andgn|V = gn+1|V .
Gn(iv): gn+1[M] ⊆ f [M].

Definition of the truncation gn+1 of f . Definegn+1(x) = hn(x) on [hn = f ]. To extend
gn+1 on [hn = f ] note that sincehn is a truncation ofgn andgn is a truncation off we
can conclude by Lemma 1.5(e) thathn is a truncation off . For every componentU of
[hn = f ] we define the restrictiongU of gn+1 on cl(U) as follows.

We do not changehn on cl(U), i.e., we leavegU = hn|cl(U) if U intersectsKn.
Otherwise, setting{z} = hn[U ], we choosea ∈ (z− 2−n, z] ∩f [M] andb ∈ [z, z+ 2−n)∩
f [M]. Sucha andb exist by the density off [M] in f [Rk], which follows from the density
of M in Rk . In this case letgU : cl(U) → [a, b] be the(a, b)-truncation off |cl(U).

Lemma 3.3. gn+1 satisfiesGn(i)−Gn(iv).

Proof. Gn(i): Take an x ∈ Kn and note thathn(x) = gn(x). If hn(x) = f (x) then
gn+1(x) = hn(x) = gn(x). On the other hand ifhn(x) = f (x) then take the connected
componentU of [hn = f ] containingx and notice thatx ∈ Kn ∩U . Sogn+1(x) = gU(x) =
hn(x) = gn(x). This proves Gn(i).

Gn(ii): gn+1 is a truncation off by Lemma 1.9 and consequentlygn+1 is TUA by
Lemma 1.7, sincef is TUA. The rest of the condition Gn(ii) is clear from the definition.

Gn(iii): Let V be a connected component of[gn = f ] intersectingKn. Then, by
Lemma 3.2, it is also a connected component of[hn = f ]. So V ∩ Kn = ∅ implies
gn+1|cl(V ) = gV = hn|cl(V ). In particulargn+1|bd(V ) = hn|bd(V ) and we can also
conclude thatgn+1|bd(V ) = f |bd(V ). This proves thatV is also a component of
[gn+1 = f ] andgn|V = gn+1|V .

Gn(iv): Let m ∈ M. If m ∈ [gn+1 = f ] then obviouslygn+1(m) ∈ f [M]. Therefore
assume thatm ∈ [gn+1 = f ] and letV be the component of[gn+1 = f ] containingm.
Since by the definition ofgn+1 we have[gn+1 = f ] ⊆ [hn = f ], it is clear that such
a connected componentV must be contained in a connected componentU of [hn = f ].
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If U intersectsKn thengn+1 coincides withhn on U . ThereforeU = V . Choose an
x ∈ Kn ∩ U . Thengn(x) = hn(x) = f (x), sox belongs to a connected componentW of
[gn = f ]. By Lemma 3.2W is also a connected component of[hn = f ], henceW = V .
As V = W = U turned out to be a connected component of[gn = f ] that intersectsKn,
condition Gn(iii) and the inductive hypothesis Gn−1(iv) imply that gn+1(m) = gn(m) ∈
f [M]. HenceGn(iv) is satisfied in this case.

Now assume thatU does not intersectKn. Then leta andb be as described above in
the definition ofgn+1. We have now necessarilygn+1(m) ∈ f [M] asgn+1 is an (a, b)-
truncation off andgn+1(m), being distinct fromf (m), must coincide witha or b. ✷

This finishes the inductive construction.
Now, by conditions Gn(i), for everyx ∈ Rk the sequence〈gn(x): n < ω〉 is eventually

constant. Letg(x) = limn→∞ gn(x). Note that

g
∣∣Kn = gn

∣∣Kn. (5)

Lemma 3.4. g is u.c. andg[M] ⊆ f [M].

Proof. Inclusiong[M] ⊆ f [M] follows directly from condition Gn(iv) and the definition
of g. We will next show thatg is u.c.

So, fix anε > 0. We will find aδ > 0 such that

if ||x − y|| < δ then
∣∣g(x) − g(y)

∣∣ < ε.

For this first find ann < ω such that
∑∞

m=n 2−m < 1
3ε. Sincehn is u.c. we can findδ > 0

such that

if ||x − y|| < δ then
∣∣hn(x) − hn(y)

∣∣ < ε

3
.

So, by Gn(ii), if ||x − y|| < δ then
∣∣gn+1(x) − gn+1(y)

∣∣ �
∣∣hn(x) − hn(y)

∣∣ + 2 · 2−n <
ε

3
+ 2 · 2−n

and, by Lemma 1.6, sincehn+1 is a truncation ofgn+1,

if ||x − y|| < δ then
∣∣hn+1(x) − hn+1(y)

∣∣ < ε

3
+ 2 · 2−n.

Continuing by induction we show that for every 0< k < ω if ||x − y|| < δ then

∣∣hn+k(x) − hn+k(y)
∣∣ < ε

3
+ 2 ·

k−1∑

i=0

2−(n+i) <
ε

3
+ 2

ε

3
= ε.

Since for everyx, y ∈ Rk there is anm > n such thatg(x) = hm(x) andg(y) = hm(y), the
above condition implies that for this fixedδ

if ||x − y|| < δ then
∣∣g(x) − g(y)

∣∣ < ε.

Thusg is u.c. ✷



322 K. Ciesielski, D. Dikranjan / Topology and its Applications 114 (2001) 311–325

This finishes the proof of Theorem 3.1 sinceg is a 〈K,M〉-approximation off (asg

coincides withf onK by (5)).

Remark 3.5.
(a) g is a truncation off . For this letU be a connected open subset of[f = g]. We will

see thatg is locally constant ofU . Indeed, the connectedness ofU yields thatg is
constant onU . Also, by (5) we have[f = g] ⊆ ⋃

n(Kn ∩[f = gn]). So everyx ∈ U

has an open neighbourhoodV with compact closure such thatV ⊆ Kn for somen.
ThenV ⊆ Kn ∩ [f = gn]. As gn is a truncation off it follows thatgn is constant
onV . By (5) again this means thatg is constant onV too.

(b) The above proof uses the density off [M] in f [Rk] rather than the density ofM
in Rk .

(c) The implicationTUA ⇒ UAd is not always true, so that the choice ofRn plays
an important role. An example of a metric spaceX and a continuousTUA function
f :X → R that is not evenWUAd is given in [3]. (Actually,X is the Hedgehog space
with b many spikes; the functionf admits a magic setMf with f (0) /∈ f [Mf ]
and has no uniformly continuous truncationsg with g(0) = f (0); thereforef has
no 〈x,Mf 〉-approximation and sof is non-WUA. One can easily check that such
a magic set must be necessarily dense, hence we get automaticallyf /∈ WUAd.)

(d) The proof of Theorem 2.3 shows that it is possible to replaceRn by other nice
spaces – for example the ladder spaceA from Section 2.1. For a proof in a more
general setting one needs more general forms of Lemmas 1.6–1.9. While Lemma 1.9
works in a general situation, we are not aware if this is possible with Lemmas 1.6
and 1.7. (See Remark 1.8.)

4. UAd ↔ WUAd ↔ TUA ↔ DCF in Rn

We already know thatDCF ↔ TUA → UAd → WUAd in Rn: the equivalence
DCF ↔ TUA was proved in [2, Corollary 6.20], the implicationTUA → UAd is
a restatement of Theorem 3.1, andUAd → WUAd follows immediately from the definition.
Thus it is enough to prove thatWUAd → DCF in Rn. The argument is essentially the
same as for [2, Corollary 6.10] thatWUA→ DCF in Rn. In particular the proof of the
next theorem is similar to that of [2, Theorem 6.8] – we only need to show that by taking
additional care the setM witnessing non-WUA can be chosen to be dense, in order to
witness also non-WUAd.

Theorem 4.1. LetX be a separable metric space and suppose that there is an uncountable
setY ⊆ R and for eachy ∈ Y a connected componentCy of f −1(y) such that for some
z ∈ Y

the distance betweenCy andCz is equal to0 for everyy ∈ Y .

Thenf is not WUAd.
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Proof. LetN = ⋃
y∈Y Cy . SinceN ⊆ X andX is a separable metric space,N is separable.

Let Y0 be the set of ally ∈ Y for which eitherCy has a non-empty interior inN or f −1(y)

has a non-empty interior inX. SinceY0 is at most countable, we can picku ∈ Y \ Y0,
u = z. Then the setN \ Cu is not closed inN and therefore there is a countable subset
{yn: n < ω} of Y \ {u} and for eachn < ω a pointxn ∈ Cyn such that the sequence〈xn〉
converges to anx ∈ Cu. Note thatf (x) /∈ f [M0], whereM0 = ⋃

n Cyn ⊆ N \ Cu. Since,
by the choice ofu, the complement of the setf −1(u) is dense inX we can choose a dense
countable subsetM1 of X that does not meetf −1(u). Hencef (x) /∈ f [M1]. Therefore
the setM = M0 ∪ M1 ∪ Cz is dense inX andf (x) /∈ f [M]. We show now thatf is not
WUAd. Suppose for a contradiction that there is an〈x,M〉-approximationg ∈ C(X) of f .
Theng[M] ⊆ f [M] is countable, hence totally disconnected. Sog restricted to each of the
connected setCyn must be constant. In particularg is constant onCz. Sinceg is u.c. and
the distance between eachCyn andCz is equal 0,g must be constant on the entireM0, and
so also on its closure cl(M0). Sincex ∈ cl(M0), g has the constant valueg(x) = f (x) on
cl(M0). This however contradicts the inclusiong[M] ⊆ f [M] sincef (x) does not belong
to the latter set. ✷
Corollary 4.2. If a functionf ∈ C(Rn) is WUAd, then it is DCF.

Proof. It was proved in [2, Theorem 6.9] that iff ∈ C(Rn) has two connected components
A,B of distinct fibers at distance zero, then it has a family, of cardinality of the continuum,
of connected components of distinct fibers such that each member of the family has
distance zero from bothA andB. Combined with Theorem 4.1, this shows that a function
with two connected components of distinct fibers at distance zero is notWUAd. ✷

Corollary 4.2 and the above discussion imply immediately the following theorem.

Theorem 4.3. UAd ↔ WUAd ↔ TUA↔ DCF in Rn.

The next corollary is valid also for the larger class of semialgebraic functions, but
we give it here for polynomial ones. It follows immediately from Theorem 4.3 and
[2, Lemma 6.21].

Corollary 4.4. UA ↔ WUA↔ UAd ↔ WUAd ↔ TUA ↔ DCF ↔ DF 3 for polynomial
functionsf :Rn → R.

This corollary shows in particular that for polynomial functionsf :Rn → R UA
coincides withUAd andWUAcoincides withWUAd. The example from Theorem 2.1 along
with Theorem 3.1 shows thatUA does not coincide withUAd in C(Rn). Therefore the next
objective will be to clarify whetherWUA coincides withWUAd. According to the above
corollary, it suffices to check the implicationTUA→ WUA.

3 f is DF (has distant fibers) if any distinct fibersf −1(x) andf −1(y) are of positive distance.
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5. TUA does not imply WUA

We will show that the functionf from Theorem 2.1 is not evenWUA. This will be shown
with K being the singleton pointx = 〈0,0〉 and a setM constructed below. We will use
here the same notation as in the theorem.

Consider the intervalsIn = (−2−n,−2−n−1), let J = ⋃
n<ω I2n+1, and putP = (J \Q)

× R. In what follows we will find anM0 ⊂ P such that for every continuous functionh
with h(0,0) = 0

if h
[
M0] ⊂ f

[
M0] ∪ {1} thenh is constant onL0. (3)

Let us see first how the proof will proceed once such anM0 is found. For this we define
M = M0 ∪ S ∪ L1 and by way of contradiction assume that there exists a u.c. function
k :R2 → R such thatk(0,0) = 0 andk[M] ⊂ f [M]. Note thatf [M] ⊂ (J \ Q) ∪ {1},
so f [M] is totally disconnected. Thusk[L1] = {c} ⊂ f [M] for somec = 0 and, by
(3), k[L0] = {0}. By the definition ofP , between 0 andc there exists a nonempty open
intervalI (one of of the intervalsI2n, if c < 0, and(0,1) if c = 1) which is disjoint with
f [M]. Let ε > 0 be the length ofI . By the uniform continuity ofk there exists aδ > 0
such that for everyx, y ∈ R2 if ||x − y|| < δ then |k(x) − k(y)| < ε. Choose ann < ω

such that 2−n < δ and let{s0, . . . , sp} be an increasing enumeration ofSn ∪{〈0, n〉, 〈1, n〉}.
Then||si − si+1|| < 2−n < δ for everyi < p. Thus|k(si) − k(si+1)| < ε for everyi < p.
In particulark(si) andk(si+1) stay on the same side ofI for everyi < p. But this implies
that all k(si), with i � p, stay of the on the same side ofI . However this contradicts the
fact thatk(s0) = 0 andk(sp) = c are on the opposite sides ofI . This contradiction shows
thatf is notWUA.

In order to constructM0 satisfying (3) let 〈hξ : ξ < c〉 be an enumeration of all
continuous functionsh :R2 → R such thath(0,0) = 0 andh[L0] = {0}. We will construct
by induction onξ < c a sequence〈mξ : ξ < c〉 of elements ofP aiming for M0 =
{mξ : ξ < c}. At stageξ we assume that allmγ with γ < ξ are chosen and letMξ =
{mγ : γ < ξ}. We will add toM0 a pointmξ ∈ P aiming for

hξ (mξ ) ⊂ f
[
M0] ∪ {1}. (7)

Clearly (7) will imply (3). To have (7) it is enough to choose anmξ ∈ P such that
(a) hξ (mξ ) = f (mξ),
(b) hξ (mξ ) /∈ f [Mξ ], and
(c) f (mξ ) = hγ (mγ ) for all γ < ξ .

For this note that sincehξ is not identically 0 onL0, there exists a pointp = 〈0, y〉 ∈ L0

such thathξ (p) = 0 = hξ (0,0). So, there is ana < 0 such that

hξ

[
(a,0) × {0}] ∩ hξ

[
(a,0) × {y}] = ∅. (8)

Sincef restricted to(a,0) × {0} is one-to-one we can find anx ∈ (a,0) ∩ (J \ Q) for
whichf (x,0) = hγ (mγ ) for all γ < ξ . Since we will choosemξ as〈x, z〉 for somez, this
guarantees satisfaction of (c). Now, letI0 be an interval (inR) with endpoints 0 andy and
let I1 = {x} × I0. Note that, by (8),hξ has different values on the endpoints ofI1. Thus
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hξ [I1] has cardinality continuum. Therefore it is easy to choosemξ ∈ I1 for which (b)
holds andhξ (mξ ) = f (x,0) = f (mξ). This finishes the construction and the proof of the
theorem.
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