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Abstract

We describe here an example of a Darboux function k from the unit
interval I = [0, 1] onto itself such that k is not the composition of any
finite collection of connectivity functions from I into I. This answers a
question of Ceder [2].

In [6] the second author proved that there exists a connectivity function
from I into I which cannot be written as the composition of finitely many
almost continuous functions. In the present paper we show that the tech-
niques developed in the earlier paper can be extended to answer a question
of Ceder [2]. We prove that there exits a Darboux function which cannot be
factored into a finite composition of connectivity functions. This stands in
contrast with the following fact.

Proposition 1. (Natkaniec [8]) Assume that I is not a union of less than
continuum many of its meager subsets. Then every function from I into I with
dense level sets can be expressed as the composition of two almost continuous
functions.

Since every almost continuous function f : I → I is connectivity, this theorem
shows that our example must be relatively nice. (Cannot have dense level
sets.)
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Our terminology is standard and follows [3]. In particular, functions will
be identified with their graphs. Recall also the following definitions. (See [5]
for more on these.) A function f : X → Y from a topological space X into a
topological space Y is Darboux if f [C] is connected in Y whenever C ⊂ X is
connected in X; f is a connectivity function if the restriction f � C of f to C
is a connected subset of X × Y for every connected subset C of X. We will
be interested in these functions only when X = Y = I. Then f : I → I is
Darboux if an f -image of any interval is an interval. Clearly every connectivity
function f : I → I is Darboux. For U ⊂ R we will write int(U) to denote the
interior of U .

Recall also that connectivity can be characterized in terms of continua,
where a continuum is a compact connected set. We say that a continuum
M ⊂ X × Y cuts the function f : X → Y if M ∩ f = ∅ and there exist points
〈x1, y1〉 and 〈x2, y2〉 in M such that f(x1) < y1 and f(x2) > y2. A function
f : I → I is a connectivity function if and only if no continuum in I2 cuts f .
(See e.g. [4].)

1 The Example

Let C denote the Cantor middle two-fifths set:

C =

{ ∞∑
n=1

in
5n

: in ∈ {0, 2, 4} for every n

}
.

Geometrically, C is obtained from I by first removing the pair of intervals
(1/5,2/5) and (3/5,4/5) from I, then by removing similar pairs of intervals
(the middle two fifths) from each of [0,1/5], [2/5,3/5], and [4/5,1], etc. Let
PL denote the set of closures of removed intervals which are the left members
of a removed pair and PR the set of closures of right members of removed
pairs. (For example [1/5, 2/5] ∈ PL and [3/5, 4/5] ∈ PR.) Thus P = PL ∪ PR

is the family of all closures of components of I \ C. Also, let ∆ denote the
diagonal {〈x, x〉 : x ∈ I} in I ×I and let C◦ denote the points of C which are
not endpoints of the removed intervals, that is, C◦ = I \

⋃
P. We define a

function k : I → I in the following way.
On C◦ we define k so that k[C◦] = C◦, k � C◦ is one-to-one, and x �= k(x)

for each x ∈ C◦. Thus, ∆ ∩ k � C◦ = ∅.
Next, suppose that P and Q are the closures of adjacent removed middle

fifths and suppose that P ∈ PL. We define k on P ∪Q such that k[P ∪Q] = I,
k � P and k � Q are each continuous and strictly increasing and so that k � P
lies above ∆ while k � Q lies below ∆. So, ∆ ∩ k = ∅.

Clearly, k is not a connectivity function since its graph is separated by ∆.
It is also easy to see that k is Darboux. Indeed, if an interval J ⊂ I is a subset



Compositions of Darboux and Connectivity Functions 601

1/50 3/52/5 4/5 1

Figure 1: The function k (the dotted line represents ∆).

of a closure P of some interval from P then k[J ] is also an interval since k � P
is continuous. But otherwise J contains a pair P and Q of closures of adjacent
removed middle fifths from the construction of C and so k[J ] = I is also an
interval.

Now we are ready for the main result of the paper.

Theorem 1. If k = g ◦ f , where f and g are functions from I onto itself, f
is connectivity, and g is Darboux, then f is a homeomorphism.

Proof. First note that

if U ∈ P then f � U and g � f [U ] are homeomorphisms. (1)

Indeed, since k � U is one-to-one then so is f � U . Thus f � U is a Darboux
function with closed level sets and so (see e.g. [1, thm 5.2]) it is continuous.
So, f � U is a homeomorphism. By the same reasoning g � f [U ] also is a
homeomorphism.

Next note that

f [C] does not contain any non-trivial interval. (2)

Indeed, suppose for a moment that f [C] contains a non-trivial interval, say V .
Since g[V ] is connected, this would imply that an uncountable subset of C is
mapped by k onto a connected set, a contradiction.
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Notice also that

if U ∈ PL and V ∈ PR then f [int(U)] ∩ f [int(V )] = ∅. (3)

To see it assume, by way of contradiction, that there are U = [u1, u2] ∈ PL

and V = [v1, v2] ∈ PR such that f [int(U)] and f [int(V )] do overlap. Then, by
(1), g � (f [U ] ∪ f [V ]) is a homeomorphism, say increasing. Thus f � U and
f � V are increasing as well. Moreover, from the choice of U and V , g maps
f [U ] ∪ f [V ] onto I, g ◦ f(u2) = k(u2) = 1, and g ◦ f(v1) = k(v1) = 0. So
h = (g � f [U ]∪ f [V ])−1 is an increasing homeomorphism on I. Note also that
f(x) �= h(x) for every x ∈ I, since otherwise k(x) = g(f(x)) = g(h(x)) = x
contradicting the fact that k ∩ ∆ = ∅. Therefore h ∩ f = ∅. Moreover,
f(v1) = h(0) < h(v1) and f(u2) = h(1) > h(u2) since h is increasing. Thus,
the graph of h, which is a continuum, cuts f , contradicting the connectivity
of f . Condition (3) has been proved.

For P ∈ P let cP ∈ P be the end-point of P for which k(cP ) ∈ {0, 1} and
let eP = f(cP ). So, by (1), (3), and the construction of k we see that for every
P ∈ P and P ⊆ {U ∈ P : f [int(U)] ∩ f [int(P )] �= ∅}

eP ∈ f [U ] for every U ∈ P, (4)

f [
⋃
P] is an interval with one end point equal to eP , (5)

and

g is a homeomorphism on f [
⋃
P]. (6)

In what follows, we say that a family P ⊂ P is dense in an open interval
(a, b) ⊂ I if

⋃
P ⊂ (a, b), a = inf

⋃
P, b = sup

⋃
P, and between any two

members of P there is another. The main technical fact in the proof is the
following.

(�) Assume that f [int(P )]∩ f [int(Q)] �= ∅ for some different P,Q ∈ P and let
P be the set of all U ∈ P between P and Q with f [int(U)]∩f [int(P )] �= ∅.
Then the family P is non-empty and dense in (a, b), where a = inf

⋃
P

and b = sup
⋃
P. Moreover, there exists a homeomorphism h into K =

f [
⋃
P] such that either

(i) eP ∈ K ⊂ [eP , 1] and the graph of f � (a, b) is below h, or

(ii) eP ∈ K ⊂ [0, eP ] and the graph of f � (a, b) is above h.

and either
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(iii) the domain of h is [0, b) or

(iv) the domain of h is (a, 1]

Indeed, to see that P is non-empty and dense in (a, b) assume, to the
contrary, that there are U and V in P ∪{P,Q} with no member of P between
them. Suppose U is to the left of V and let [c, d] = f [U ∩ V ]. By (2) we can
choose y ∈ (c, d) \ f [C◦]. Also, by (1), we can also choose p ∈ U and q ∈ V
such that the continuum [p, q] × {y} is disjoint with f � U and f � V . Thus
[p, q] × {y} cuts the function f since, by (6), either both f � U and f � V are
increasing or both are decreasing. But this contradicts the connectivity of f .

To see the existence of h as in (�) assume that P ∈ PR and that f � P is
increasing, the other three cases being similar. We will show that this implies
(i) and (iii). Under this assumption we have k [

⋃
P] = [0, b), since there are

elements of P arbitrarily close to b. Also K = [eP , d) for some d > eP and,
by (6), g � K is an increasing homeomorphism between K and [0, b). Let
h = (g � K)−1 and notice that f(x) �= h(x) for every x ∈ [a, b], since otherwise
k(x) = g(f(x)) = g(h(x)) = x contradicting the fact that k ∩ ∆ = ∅. Thus
h ∩ (f � (a, b)) = ∅ and, by the connectivity of f � (a, b), its graph lies either
below or above h. It is below, since eP ∈ f [

⋃
P] is the minimal value of h.

This proves (�).
Now, if f [int(P )] ∩ f [int(Q)] = ∅ for any different P,Q ∈ P, then f is

one-to-one on
⋃
{int(P ) : P ∈ P}. It is also one-to-one on C◦, since so is k.

Therefore f−1(z) has at most two points for every z and so it is closed. Thus,
f is a continuous (see e.g. [1, thm 5.2]) and so, it must be a homeomorphism.
So, by way of contradiction, assume that there are different P,Q ∈ P for which
f [int(P )] ∩ f [int(Q)] �= ∅.

It follows from (3) that either P,Q ∈ PL or P,Q ∈ PR. We will assume
that P,Q ∈ PL and that f is increasing on P , the other cases being similar.
Let a < b, P, K, and h be as in (�). Then case (i) holds. Also, by (3), there
exists P ′ ∈ PR, P ′ ⊂ (a, b), such that f [P ′] ∩ K = ∅. Notice that f [P ′] is
below K, as f � (a, b) is below h, and that

there is Q′ ∈ P \ {P ′}, Q′ ⊂ (a, b), such that f [int(P ′)] ∩ f [int(Q′)] �= ∅. (7)

To see (7) assume, to the contrary, that such a Q′ does not exist. By (2)
we can choose y ∈ f [P ′] \ f [C]. Pick c ∈ P ′ with 〈c, y〉 above f � P ′ and note
that if f � P ′ is increasing then [a, c]× {y} cuts f , and if f � P ′ is decreasing,
then [c, b]×{y} cuts f . (Recall that P is dense in (a, b) and K is above f [P ′].)
This contradiction proves (7).

Next, assume that P ′ is below Q′ let a′ < b′, P ′, K ′, and h′ satisfy (�).
Notice that (a′, b′) ⊂ (a, b) and that f � (a′, b′) must be above h′. Only two
possibilities remain.
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Case 1. There is P ′′ ∈ P such that P ′′ ⊂ (a′, b′) and f [P ′′] ∩ (K ∪K ′) = ∅.
Then, as in (7), we can find another Q′′ ∈ P \ {P ′′} such that Q′′ ⊂ (a′, b′)

and f [P ′′]∩ f [Q′′] �= ∅. Using (�) again, we can find appropriate a′′ < b′′, P ′′,
K ′′, and h′′. The range of h′′ is strictly between K and K ′, and, since the
domain of h′′ contains either 0 or 1, h′′ cuts f , a contradiction.

Case 2. f [P ′′] ⊂ K ∪K ′ for every P ′′ ∈ P with P ′′ ⊂ (a′, b′).
Note that K ∩K ′ = ∅. So J = (eP ′ , eP ) is non-empty. Take y ∈ J \ f [C],

which exists by (2). Then [a′, b′] × {y} cuts f , a contradiction.
This last contradiction completes the proof. �

Corollary 1. The function k cannot be written as a finite composition of
connectivity functions from I onto itself.

Proof. Assume k is such a composition and let n be the smallest integer such
that k = fn ◦ · · · ◦ f1, where each of f1 . . . fn is a connectivity function from
I onto I. Since fn ◦ · · · ◦ f2 is Darboux, by Theorem 1, f1 is continuous. By
Theorem 4 of [7], f2 ◦ f1 is connectivity, contradicting the definition of n. �
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