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Abstract

In this note we will construct, under the assumption that union of less than continuum many
meager subsets ofR is meager inR, an additive connectivity functionf :R→ R with Cantor
intermediate value property which is not almost continuous. This gives a partial answer to a question
of Banaszewski (1997). (See also Question 5.5 of Gibson and Natkaniec (1996–97).) We will also
show that every extendable functiong :R→ R with a dense graph satisfies the following stronger
version of the SCIVP property: for everya < b and every perfect setK betweeng(a) and g(b)
there is a perfect setC ⊂ (a, b) such thatg[C] ⊂K andg � C is continuousstrictly increasing. This
property is used to construct a ZFC example of an additive almost continuous functionf :R→ R
which has the strong Cantor intermediate value property but is not extendable. This answers a
question of Rosen (1997–98). This also generalizes Rosen’s result (1997–98) that a similar (but
not additive) function exists under the assumption of the Continuum Hypothesis, and gives a full
answer to Question 3.11 of Gibson and Natkaniec (1996–1997). 2000 Elsevier Science B.V. All
rights reserved.
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1. Preliminaries

Our terminology is standard and follows [7]. We consider only real-valued functions of
one or two real variables. No distinction is made between a function and its graph. ByR
andQ we denote the set of all real and rational numbers, respectively. We will consider
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R andR2 as linear spaces overQ. In particular, for a subsetX of eitherR or R2 we will
use the symbol LINQ(X) to denote the smallest linear subspace (ofR or R2) overQ that
containsX. Recall also that ifD ⊂ R is linearly independent overQ andf :D→ R then
F = LINQ(f )⊂ R2 is an additive function (see definition below) from LINQ(D) into R.
Any linear basis ofR overQ will be referred as aHamel basis. By a Cantor set we mean
any nonempty perfect nowhere dense subset ofR.

The ordinal numbers will be identified with the sets of all their predecessors and
cardinals with the initial ordinals. In particular 2= {0,1}, and the first infinite ordinal
ω number is equal to the set of all natural numbers{0,1,2, . . .}. The family of all functions
from a setX intoY is denoted byYX . The symbol|X| stands for the cardinality of a setX.
The cardinality ofR is denoted byc and referred ascontinuum. A setS ⊂ R is said to be
c-denseif |S ∩ (a, b)| = c for everya < b. The closure of a setA⊆R is denoted by cl(A),
its boundary by bd(A), and its diameter by diam(A). For a setA⊆X×Y and pointsx ∈X
andy ∈ Y we let(A)x = {y ∈ Y : 〈x, y〉 ∈A} and(A)y = {x ∈X: 〈x, y〉 ∈A}. In a similar
manner we define(A)〈x,y〉 and(A)z for a setA⊆X× Y ×Z.

We will use also the following terminology [12]. A functionf :R→R
• is additiveif f (x + y)= f (x)+ f (y) for everyx, y ∈R;
• is almost continuous(in sense of Stallings) if each open subset ofR×R containing

the graph off contains also a continuous function fromR toR [26];
• has theCantor intermediate value propertyif for everyx, y ∈ R and for each Cantor

setK betweenf (x) andf (y) there is a Cantor setC betweenx andy such that
f [C] ⊂K;
• has thestrong Cantor intermediate value propertyif for every x, y ∈ R and for each

Cantor setK betweenf (x) andf (y) there is a Cantor setC betweenx andy such
thatf [C] ⊂K and the restrictionf � C of f toC is continuous;
• is anextendabilityfunction if there is a connectivity functionF :R×[0,1]→R such

thatf (x)= F(x,0) for everyx ∈R, where
• for a topological spaceX a functionf :X→R is aconnectivityfunction if the graph

of the restrictionf � Z of f to Z is connected inZ ×R for any connected subsetZ
of X.

The above classes of functions (fromR toR) will be denoted by Add, AC, CIVP, SCIVP,
Ext, and Conn, respectively.

Recall that if the graph off :R→ R intersects every closed subsetB of R2 which
projection proj(B) onto thex-axis has nonempty interior thenf is almost continuous.
(See, e.g., [21].) Similarly, if the graph off :R→ R intersects every compact connected
subsetK of R2 with |proj(K)|> 1 thenf is connectivity.

We will finish this section with the following well-known fact. (See [5, Theo-
rem 4.A.12], [19, & 47III], or [20, Ch. V, Section 2].)

Proposition 1.1 (Boundary bumping theorem).If U is a nonempty open proper subset
of a compact connected Hausdorff spaceK andC is a connected component ofU then
clK(C) ∩ bdK(U) 6= ∅. In particular every connected component ofU has more than one
point.
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2. Additive connectivity function onR which is not almost continuous

We start this section with recalling the following construction of Roberts [22] of zero-
dimensional closed subsetZ0 of [0,1]2 which is intersected by a graph of every continuous
function f : [0,1] → [0,1]. Let C ⊂ [0,1] be a Cantor set of Lebesgue measure 1/2.
(Roberts defines it asC = ⋂n<ω Cn, whereC0 = [0,1], eachCn is the union of 2n

disjoint intervals, andCn+1 is obtained fromCn by taking out of each of these 2n

intervals a concentric open interval of length 1/22n+2.) Definex, y : [0,1] → [0,1] by
x(t)= 2m(C ∩ [0, t]), wherem is a Lebesgue measure, andy(t)= 4m(C ∩ [0, t])− t =
2x(t)− t . ThenF0 : [0,1] → [0,1]2, F0(t) = 〈x(t), y(t)〉, is a continuous embedding, so
M0 = F0[[0,1]] is an arc joining〈0,0〉 with 〈1,1〉. Note that each component intervalI
of [0,1] \C is mapped byF0 onto an open vertical segmentF0[I ]. The setZ0 defined as
F0[C]. It is equal to the arcM0 from which all vertical segmentsF0(I) are removed. Note
also that an arcF0[I ] has been removed from the section(M0)x if and only if x ∈ D0,
whereD0 is the set of all dyadic numbers (x = k/2n) from (0,1). Moreover,|(Z0)x | = 2
for x ∈D0 and(Z0)x = (M0)x is a singleton for all otherx from [0,1].

For what follows we will need the following version of this construction, whereC =
Z+C.

Lemma 2.1. LetX be a countable dense subset of(−1,1). Then there exists an embedding
F = 〈F0,F1〉 :R→ (−1,1)×R such thatF0 is non-decreasing,

(a) an open arcM = F [R] is closed inR2,
(b) if Z = F [C] ⊂M theng ∩Z 6= ∅ for every continuousg : [−1,1]→R,
(c) Zx =Mx is a singleton for allx ∈ (−1,1) \X, and
(d) for eachx ∈X the sectionMx is a non-trivial closed interval andZx consists of the

two endpoints of that interval.

Proof. Let F0 be Roberts’ function defined above. DefineF1 :R → R2 by putting
F1(n + x) = 〈n,n〉 + F0(x) for every n ∈ Z and x ∈ [0,1). ThenF1 is a continuous
embedding extendingF0. Also choose an order isomorphismh :R→ (−1,1) such that
h[Z + D0] = X and define a homeomorphismH :R2→ (−1,1) × R by H(x,y) =
〈h(x), y〉. It easily follows from the properties ofF0 thatF =H ◦F1 satisfies (a)–(d). 2

Note that by (b) of Lemma 2.1 if the graph off :R→R is disjoint withZ thenf is not
almost continuous, since then the setU = R2 \Z is an open set containingf which does
not contain any continuous functiong :R→R. Thus the main idea of the next theorem is
to construct an additive connectivity function with the graph disjoint withZ.

In our argument it will be also convenient to use the following easy lemma.

Lemma 2.2. Let {Iα : α < c} be an enumeration, with possible repetitions, of all
nonempty open intervals inR. Then there exists a family of pairwise disjoint perfect
sets{Pα ⊂ Iα : α < c} such thatP =⋃α<cPα is meager inR and linearly independent
overQ. Moreover, we can assume that there is a meagerFσ -setS containingP such that
S = LINQ(S) andS is of co-dimension continuum.
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Proof. Take a linearly independent perfect subsetK of R. (Such a set has been first
constructed by von Neumann [27]. See also [17, Thm. 2, Ch. XI, Section 7].) Partition
K into perfect sets{F,H,L} and further partitionF into pairwise disjoint perfect sets
{F ′α: α < c}. Choose a countable subsetH0= {xn: n < ω} ofH and for everyα < c choose
a sequence of non-zero rational numbers〈qαn : n < ω〉 such thatFα =⋃n<ω q

α
n · xn + F ′α

is dense inR. Then the setsFα are pairwise disjoint and
⋃
α<cFα is linearly independent

overQ. For everyα < c choose perfectPα ⊂ Fα ∩ Iα . ThenPα ’s are pairwise disjoint and
P =⋃α<cPα ⊂Q ·H0+F is meager. Also ifS = LINQ(H ∪F) thenS = LINQ(S), and
it is anFσ -set. It is of co-dimension continuum (so meager) sinceS is disjoint withL. 2
Theorem 2.3. If union of less thanc many meager subsets ofR is meager inR then there
exists anf ∈ Add ∩ CIVP ∩ Conn\AC.

Proof. Let 〈〈Iα,Cα〉: α < c〉 be a list of all pairs〈I,C〉 such thatI is a nonempty open
interval inR andC is a perfect subset ofR and take{Pα ⊂ Iα : α < c} as in Lemma 2.2.

Let {C,D} be a partition ofc\ω onto sets of cardinality continuum. Take an enumeration
{Kξ : ξ ∈D} of the family of all compact connected subsetsK of R2 with |proj[K]| = c.
Also, let H be a Hamel basis containingP =⋃α<cPα such that there is a countable
setX ⊂ (H \ P) ∩ (−1,1) dense in(−1,1). Let Z be as in Lemma 2.1 for thisX and
{hξ : ξ ∈ C} be an enumeration ofH . By induction onξ < c we will choose functions
fξ from finite subsetsHξ of H into R such that for everyξ < c the following conditions
hold.

(i) Hξ ∩⋃ζ<ξ Hζ = ∅.
(ii) If ξ ∈ C thenhξ ∈⋃ζ6ξ Hζ .
(iii) If ξ ∈D thenKξ ∩ LINQ(

⋃
ζ6ξ fζ ) 6= ∅.

(iv) Z ∩ LINQ(
⋃
ζ6ξ fζ )= ∅.

(v) If x ∈Hξ ∩ Pα for someα < c thenfξ (x) ∈Cα .
Before we describe the inductive construction note first how it can be used to construct a

function as desired. First notice that, by (i) and (ii),
⋃
ξ<c fξ is a function fromH intoR.

Thus

f = LINQ

(⋃
ξ<c

fξ

)
is an additive function fromR to R. It is connectivity by (iii). It is not almost continuous
by (iv) and remark after Lemma 2.1. It has Cantor intermediate value property by (v) and
the choice of〈Iα,Cα〉.

The main difficulty in our inductive construction will be the preservation of condition
(iv). To handle this easier note that ifg is an additive function fromE ⊂ R \ {x} into R
such thatZ ∩ g = ∅ thenZ ∩ LINQ(g ∪ {〈x, y〉})= ∅ if and only if

〈x, y〉 /∈
⋃{

qZ+ 〈p,g(p)〉: p ∈E andq ∈Q}. (1)

In particular, ifx is fixed, thanZ ∩ LINQ(g ∪ {〈x, y〉})= ∅ if and only if

y /∈
⋃{(

qZ+ 〈p,g(p)〉)
x
: p ∈E andq ∈Q}. (2)
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We will make the construction in two main steps. First we will construct the functions
fn for n < ω. For this choose an enumeration{xn: n < ω} of X. We putHn = {xn} and
definefn(xn) inductively such that〈

xn,fn(xn)
〉 ∈M \Z, (3)

whereM is the set from Lemma 2.1.
To see that such a choice can be made, note first that (i) is satisfied, and (ii), (iii), and

(v) are satisfied in void. Thus, we have to take care only of the condition (iv). However, for
eachn < ω we have an entire interval of possible choices forfn(xn) (see Lemma 2.1(d))
while, by (2), there is only a countable many exceptional points we have to avoid. (Since
|Zxn| = 2 andE = LINQ({xi : i < n}) in this case.)

Now, assume that for some infiniteξ < c the sequence〈fζ : ζ < ξ〉 has been already
constructed. Putg = LINQ(

⋃
ζ<ξ fζ ) and letE be its domain.

First consider case whenξ ∈C. If hξ ∈⋃ζ<ξ Hζ we putfξ =Hξ = ∅. So, assume that
hξ /∈⋃ζ<ξ Hζ and putHξ = {hξ }. If hξ ∈ Pα for someα < c putP = Cα . Otherwise put
P = R. Then (i) and (ii) are satisfied and (v) will hold if we choosefξ (hξ ) ∈ P . To have
(iv) by (2) it is enough to choosefξ (hξ ) from outside of a set

⋃{(qZ + 〈p,g(p)〉)xξ :
p ∈E andq ∈Q}, which has cardinality less than continuum.

So, assume thatξ ∈D. Let S be as in Lemma 2.2 and putT0 = LINQ(S ∪⋃ζ<ξ Hζ ).
ThenT0 6=R since LINQ(S) is of co-dimension continuum. MoreoverT0 is a union of less
than continuum many meager sets LINQ(S ∪ A), whereA is a finite subset of

⋃
ζ<ξ Hζ .

Thus, by our assumption,T0 is meager. LetT be a meagerFσ -set containingT0. Our next
main objective will be to show that either we already haveKξ ∩ g 6= ∅ or we can find

〈x, y〉 ∈Kξ \
(
(T ×R) ∪

⋃{
qZ+ 〈p,g(p)〉: p ∈E andq ∈Q}). (4)

Before we argue for it, first note how this will finish the construction. IfKξ ∩ g 6= ∅
we can putfξ = Hξ = ∅. So, assume that we can find〈x, y〉 as in (4). Take a minimal
subset{k0, . . . , km} of H \⋃ζ<ξ Hζ such thatx ∈ LINQ({k0, . . . , km} ∪⋃ζ<ξ Hζ ). We
will definefξ onHξ = {k0, . . . , km} such that〈x, y〉 ∈ LINQ(g ∪ fξ ), implying (iii), while
preserving (iv) and (v). First, fori 6 m let P i be equal toCα if ki ∈ Pα for someα < c

and equal toR otherwise. To preserve (v) we have to choosefξ (ki) ∈ P i . Next note that
Hξ 6⊂ P sincex /∈ T ⊃ LINQ(P ∪⋃ζ<ξ Hζ ). Assume thatkm /∈ P . ThusPm = R. Note
that, by (1),ḡ = LINQ(g ∪ {〈x, y〉}) is disjoint withZ. Proceeding as in case whenξ ∈ C
and using (2) we can inductively choose for everyi < m a valuefξ (ki) ∈ P i such that
h= LINQ(ḡ ∪ {〈ki, fξ (ki)〉: i < m}) is disjoint withZ. Then functionh is already defined
onkm and we can putfξ (km)= h(km) ∈R= Pm. Clearly suchfξ satisfies (iv) and (v).

To argue for (4) we will consider three cases.
Case1: ∅ 6= (I ×R) ∩ (qM + v)⊂Kξ for somev = 〈v0, v1〉 ∈ g, q ∈Q \ {0}, and an

open intervalI . ThenKξ ∩ g 6= ∅.
Indeed1

q
(I − v0) is an open interval intersecting(−1,1) and we findn < ω such that

xn ∈Hn ∩ 1
q
(I − v0). By (3) we have〈xn, g(xn)〉 ∈M \Z. Therefore〈

qxn+ v0, g(qxn + v0)
〉= q〈xn, g(xn)〉+ v ∈ (qM + v) ∩ (I ×R)⊂Kξ .
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Case2: There exists anx ∈ {z ∈R: |(Kξ )z| = c} \ T . Choose

y ∈ (Kξ )x \
⋃{

(qZ+ 〈p,g(p)〉)x : p ∈E andq ∈Q}.
Then〈x, y〉 satisfies (4).

Case3: Neither Case1 nor Case2 hold.
DefineY asKξ \ (T ×R). ThenY is aGδ subset ofKξ so it is a Polish space. Notice

also that, since we are not in Case 2, every vertical section ofY is at most countable. We
will prove that

qZ+ v is meager inY for everyv ∈ g andq ∈Q. (5)

This clearly implies the possibility of a choice as in (4) sinceR (and so, a Polish spaceY )
is not a union of less than continuum many meager sets.

To prove (5) fix v = 〈v0, v1〉 ∈ g, q ∈ Q \ {0}, and an open setU ⊂ R2 such that
U ∩ Y 6= ∅. We have to show thatU ∩ Y \ (qZ + v) 6= ∅. So, fix p = 〈x, y〉 ∈ U ∩ Y
and an open setV containingp such that cl(V ) ⊂ U . Let C0 be a connected component
ofKξ ∩V containingx. Then, by Proposition 1.1,C0 has more than one point. Consider a
compact connected setK = cl(C0)⊂ cl(V )⊂ U . Thenp ∈K and proj(K) is a nontrivial
interval, say[c, d], sinceKx ⊂ (Kξ )x is at most countable. Thus, it is enough to prove that
K \ ((T ×R)∪ (qZ+ v)) 6= ∅ which follows easily from the following property:∣∣proj(C)

∣∣= c for some connected componentC of K \ (qM + v), (6)

whereM is an arc from Lemma 2.1 containingZ.
By way of contradiction assume that (6) is false. Then every connected component of

K \ (qM + v) is vertical. Note that there exists a numberr ∈ (qX+ v0)∩ (c, d) such that
the vertical section{r} × (qM + v)r of qM + v is not contained inK, since otherwise we
would have(

(c, d)×R)∩ (qM + v)⊂ cl

( ⋃
r∈(qX+v0)∩(c,d)

{r} × (qM + v)r
)
⊂K ⊂Kξ

contradicting the fact that Case 1 does not hold. Leta < b be such that〈r, a〉 and〈r, b〉
are the endpoints of the vertical segment{r} × [a, b] of qM + v abover, i.e., such that
(qM + v)r = [a, b]. Since{r} × [a, b] is not a subset of a compact setK, we can find
s ∈ (a, b) such that〈r, s〉 /∈K. Take anε0> 0 such that
(α) ε0<

1
4 min{s − a, b− s, r − c, d − r} and

(β) the closed rectangle[r − ε0, r + ε0] × [s − ε0, s + ε0] is disjoint fromK.
It follows from Lemma 2.1 (in particular, the fact thatF0 is non-decreasing) that we may
find a positiveε1< ε0 such that either
(γ ) (∀x ∈ (r, r + ε1])(∀y ∈ (qM + v)x)(a − ε0< y < a + ε0), and
(δ) (∀x ∈ [r − ε1, r))(∀y ∈ (qM + v)x)(b− ε0< y < b+ ε0),

or symmetrical conditions interchanging(r, r + ε1], [r − ε1, r) hold. Without loss of
generality we may assume that we have the clauses(γ ), (δ) as formulated above. (For
Z andM as constructed in Lemma 2.1 this happens whenq > 0.) Consider the set

Dε1

def= ([r − ε1, r + ε1] × {s}
)∪ {〈(r + ε1, y)〉: y > s

}∪ {〈r − ε1, y〉: y 6 s
}
.
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We claim thatDε1 ∩ K = ∅. Why? Suppose that〈x, y〉 ∈ Dε1 ∩ K. By the choice of
ε0 (clause(β)) we know that eitherx = r + ε1 and y > s, or x = r − ε1 and y < s.
The two cases are handled similarly, so suppose that the first one takes place. By the
choice ofε1 (clause(γ )) we know that〈x, y〉 /∈ qM + v (asy > s > a + ε0). We have
assumed that each connected component ofK \ (qM + v) is contained in a vertical line,
so look at the connected componentC〈x,y〉 of K \ (qM + v) to which 〈x, y〉 belongs.
By Proposition 1.1 we know that cl(C〈x,y〉) ∩ (qM + v) 6= ∅. Hence, by clause(γ ), we
conclude that〈x, s〉 ∈ C〈x,y〉 (remembery > s > a + ε0), a contradiction with clause(β).

To obtain a final contradiction note thatDε1 separates non-empty subsetsK ∩ ({c}×R)
andK ∩ ({d} ×R), which contradicts connectedness ofK. The proof is complete.2

It is also worth to mention that essentially the same proof as above gives the following
theorem with a slightly weaker set theoretical assumption.

Theorem 2.4. If R is not a union of less than continuum many of its meager subsets then
there exists anf ∈ Add ∩ Conn\AC.

Sketch of proof. The argument can be obtained by the following modification of the
proof of Theorem 2.3. Repeat the proof with replacing setsS, P , andPα ’s with the empty
set. Then (v) is always satisfied in void andT will become LINQ(

⋃
ζ<ξ Hζ ), which has

cardinality less thanc, but certainly does not have to beFσ . Then we note that the set
A= {z ∈R: |(Kξ )z| = c} is analytic, so it is either countable, or has cardinality continuum.
Thus, if case 2 does not hold thenA is countable. The proof is finished when we replace
the setX from the proof of Theorem 2.3 withX =Kξ \ (A×R) and notice that the sets
{z} ×R with z ∈ LINQ(

⋃
ζ<ξ Hζ ) are meager inX. 2

We will finish this section with the following open problems.

Problem 2.1. Does there exist a ZFC example of an additive connectivity function
f :R→R (with the CIVP property or not) which is not almost continuous?

Problem 2.2. Does there exist anf ∈ Add ∩ SCIVP∩ Conn\AC?

3. An additive almost continuous SCIVP functionf :R→R which is not extendable

The difficult aspect of constructing a function as in the title will be in making sure
that it will not be extendable. Since such a function must have a dense graph (as every
discontinuous additive function does) we may restrict our attention to such functions. For
these we have the following nice generalization of the SCIVP property.

Theorem 3.1. If f :R→ R is an extendable function with a dense graph then for every
a, b ∈ R, a < b, and for each Cantor setK betweenf (a) andf (b) there is a Cantor set
C betweena and b such thatf [C] ⊂ K and the restrictionf � C is continuous strictly
increasing.
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Proof. The basic idea of the proof of this theorem is the same as in the proof from [25]
that every extendable function is SCIVP. However, our schema of the proof will be more
similar to the one used to show that every normal topological space is completely regular.

Let a, b, andK be as in the theorem and let{qn: n < ω} be an enumeration of
some countable subset ofK such that the linear ordering({qn: n < ω},6) is dense and
q0 = minK, q1 = maxK. Since the graph off is dense (andf is Darboux) we can
find a < b0 < b1 < b with f (b0) = q0 and f (b1) = q1. Let F :R × [0,1] → R be a
connectivity function extendingf in a sense thatF(x,0)= f (x) for everyx ∈R. By [13]
(see also [10]) we can chooseF to be continuous outside the lineL0 = R × {0}. We
can also assume thatF(b0, y) = F(b0,0) = q0 andF(b1, y) = F(b1,0) = q1 for every
y ∈ [0,1]. (Indeed, letH be a closed subset ofR × [0,1] from which we remove two
V -shape regions with vertices at〈b0,0〉 and 〈b1,0〉. ExtendF � H to {0,1} × [0,1] as
above. Then, by Tietze extension theorem, we can extend such a function to the reminder
of V -shape regions continuously. Such modifiedF will still be connectivity.)

We will construct a sequence〈Bn: n < ω〉 of compact connected subsets ofR× [0,1]
such that the following conditions are satisfied for everym,n < ω, whereL` =R×{`} for
`= 0,1.

(i) B0= {b0} × [0,1] andB1= {b1} × [0,1].
(ii) Bn ∩L0 6= ∅ andBn ∩L1 6= ∅.
(iii) If qm < qn then, for`= 0,1, we have

max
({
x ∈R: 〈x, `〉 ∈Bm

})
<min

({
x ∈R: 〈x, `〉 ∈Bn

})
.

(iv) F [Bn] = {qn}.
ClearlyB0 andB1 satisfy (ii)–(iv). So, assume that for somen < ω, n > 1, the sets

B0, . . . ,Bn−1 are already constructed. To findBn choosei, j < n such that(qi, qj ) is the
smallest interval containingqn with the endpoints from{q0, . . . , qn−1}. Let

bi =max
({
x ∈R: 〈x,1〉 ∈Bi

})
, bj =min

({
x ∈R: 〈x,1〉 ∈Bj

})
.

(So bi < bj .) Let A∗ = cl(F−1(qn) \ L0). Note that the setF−1(qn) \ L0 is closed in
R × (0,1] and thusA∗ \ F−1(qn) ⊆ L0. Now one easily shows that the setsBi , Bj are
contained in different components of the open set(R×[0,1])\A∗, soA∗ separatesBi,Bj .
Applying [28, Thm. 4.12, p. 51] (Property I) we may conclude that there is a connected
componentB∗ of A∗ which separates points〈bi,1〉 and 〈bj ,1〉, and thus separatesBi
andBj . Note thatB∗ ∩ L0 6= ∅ 6= B∗ ∩ L1. Take anx ∈ (bi, bj ) such that〈x,1〉 ∈ B∗
and letB be the connected component of the setB∗ \ L0 to which 〈x,1〉 belongs. Put
Bn = cl(B∗). We claim that the compact connected setBn satisfies our demands. To check
clause (iv) note that, by the definition of the setA∗, Bn \L0⊆ F−1(qn). Now suppose that
y ∈ L0∩Bn. Assume thatε = |F(y)− qn|> 0. Since every connectivity function onR2 is
peripherally continuous (see, e.g., [12]), there exists an open neighborhoodW of the point
y with the diameter< 1

2 and such that|F(z)− F(y)| < ε) for all z ∈ bd(W). But B∗ is
connected, intersectsW \ L0 and has the diameter> 1 (cl(B∗) intersectsL0 andL1), so
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there exists az ∈ bd(W)∩B∗, a contradiction. Finally, it should be clear thatBn ∩L1 6= ∅
andBn ∩L0 6= ∅ (e.g., use Proposition 1.1), and

max
({
x ∈R: 〈x, `〉 ∈ Bi

})
<min

({
x ∈R: 〈x, `〉 ∈ Bn

})
,

max
({
x ∈R: 〈x, `〉 ∈ Bn

})
<min

({
x ∈R: 〈x, `〉 ∈ Bj

})
.

The construction is completed.
LetB =⋃n<ω Bn and notice that

F � cl(B) is continuous. (7)

(Compare [25, Thm. 2].) Indeed, by way of contradiction assume that for somex ∈ cl(B)
there is a sequence〈xi ∈ B: i < ω〉 such that limi→∞F(xi) = L 6= F(x). Let ε ∈
(0, |L−F(x)|/2) andδ ∈ (0,1) be such that if|x−xi |< δ then|F(x)−F(xi)|> ε. Using
peripheral continuity of the functionF (see, e.g., [12]) we find an open neighborhoodW

of x with the diameter< δ and such that|f (x)− f (y)| < ε for everyy ∈ bd(W). Take
i, n < ω such thatxi ∈W ∩ Bn. Note thatBn is connected and has the diameter> 1, so
there existsy ∈ bd(W) ∩Bn. But then,

ε <
∣∣F(x)− F(xi)∣∣= ∣∣F(x)− yn∣∣= ∣∣F(x)−F(y)∣∣< ε,

a contradiction.
ConsiderL0 as ordered in natural order and forn < ω definexn =min(Bn∩L0). Notice

that, by (i) and (iii),xn < xm if and only if f (xn)= qn < qm = f (xm). Since{qn: n < ω}
(with the natural order) is a dense linear order, so isS = {xn: n < ω}. In particular, cl(S)
contains a perfect setC0 = C × {0}. But F is continuous on cl(B)⊃ cl(S) and is strictly
increasing onS. Consequently we may choose a perfect setC∗ ⊂ cl(S) such that between
every two points ofC∗ there is somexn. So,f � C∗ is strictly increasing, continuous, and
f [C∗] ⊆ f [cl(S)] ⊂ cl({qn: n < ω})=K. 2
Theorem 3.2. There exists an additive almost continuousSCIVP function f :R→ R
which is not extendable.

Proof. Let 〈〈Iξ , yξ 〉: ξ < c〉 be a list of all pairs〈I, y〉 such thatI is a nonempty open
interval andy ∈ R. Choose the enumerations〈Cξ : ξ < c〉 of all perfect subsets ofR and
〈Bξ : ξ < c〉 of all closed subsets ofR2 whose projections have nonempty interior.

For our construction we will also use a Hamel basisH which can be partitioned onto
the sets{Pα : α 6 c} such that
• all sets inT = {Pα : α < c} are perfect, and
• every nonempty open interval contains continuum manyT ∈ T .

The existence of such a basis follows easily from the existence of a linearly independent
perfect set [17, Thm. 2, Ch. XI, Section 7] and has been described in detail in [8].

By induction choose a sequence〈〈Dξ ,Tξ 〉 ∈ [H ]<ω × T : ξ < c〉 such that the sets
{Dξ : ξ < c} and{Tξ : ξ < c} are pairwise disjoint and that for everyξ < c

(i) Tξ ⊂ Iξ ,
(ii) there exists anaξ ∈Dξ ∩ proj(Bξ ),
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(iii) there exist z ∈ R, 0 < n < ω, non-zero rational numbersq0, . . . , qn−1, and
{b0, . . . , bn−1, c0, . . . , cn−1} ∈ [(Dξ \ {aξ }) ∪⋃η6ξ Tη]2n with the property that
bξ = z +∑j<n qjbj andcξ = z +∑j<n qj cj belong toCξ and thatbj ∈ Tη if
and only ifcj ∈ Tη for everyj < n andη6 ξ ,

(iv) if yξ ∈H thenyξ ∈⋃η6ξ (Dη ∪ Tη).
To make an inductive step assume that for someξ < c the sequence〈〈Dη,Tη〉: η < ξ〉

has been already constructed and letMξ =⋃η<ξ (Dη ∪ Tη). It is easy to findTξ ∈ T with
Tξ ⊂ Iξ \Mξ and anaξ ∈ proj(Bξ ) \ (Tξ ∪Mξ). Next putκ = |⋃η<ξ Dη| + ω < c and
for x ∈ Cξ let x =∑i<mx

qxi h
x
i be a unique representation ofx in baseH (i.e., qxi ’s are

non-zero rationals andhxi ’s are different elements ofH ). By a combination of the pigeon-
hall principle and∆-system lemma (see, e.g., [18, Thm. 1.6, p. 49]) we can findm< ω,
∆⊂H , and anE ⊂ Cξ of cardinalityκ+ such that for every differentx, y ∈E we have:

mx =m, ∆= {hxi : i < m} ∩ {hyi : i < m}, and qxi = qyi for everyi < m.

Let n = m − |∆|. RefiningE and reenumerating the sets{hxi : i < m}, if necessary, we
can also assume thathxj = hyj and∆= {hxi : n 6 i < m} for all x, y ∈ E andn 6 j < m.
Moreover, since|(ξ + 2)n|6 κ < |E| we can additionally assume that for everyi < n and
η 6 ξ we havehxi ∈ Tη if and only if hyi ∈ Tη. Finally, by the definition ofκ , we can also
require that{hxi : i < n} ∩ ({aξ } ∪

⋃
η<ξ Dη)= ∅ for all x ∈E. Fix differentx, y ∈E and

notice thatz =∑n6i<m q
x
i h

x
i , bi = hxi , ci = hyi , andqi = qxi = qyi for i < n satisfy (iii).

Now we can defineDξ as({aξ } ∪ {b0, . . . , bn−1, c0, . . . , cn−1}) \⋃η6ξ Tη adding to ityξ ,
if necessary, to satisfy (iv). This finishes the inductive construction.

Notice that by (iv) we have

H =
⋃
ξ<c

(Dξ ∪ Tξ ).

We definef on H in such a way that for eachξ < c we have:〈aξ , f (aξ )〉 ∈ Bξ ,
f � Tξ ≡ yξ , andf (bi) = f (ci) for every i < n, wherebi and ci are the points from
(iii). We claim that the unique additive extension of such definedf � H has the desired
properties.

Clearlyf is additive and almost continuous, sincef intersects every setBξ . It is SCIVP
since for everya < b and perfectK betweenf (a) andf (b) there isξ < c with Iξ = (a, b)
andyξ ∈K. So,f � Tξ witness SCIVP. To see that it is not extendable first note thatf is
clearly discontinuous, so it has a dense graph. Thus, by Theorem 3.1 it is enough to show
thatf � C is not strictly increasing for every perfect setC. So, letC be perfect. We claim
that there are differentb, c ∈C such thatf (b)= f (c), which clearly implies thatf � C is
not strictly increasing.

Indeed letξ < c be such thatC = Cξ . Then pointsbξ , cξ ∈ Cξ from (iii) are different
and the additivity off implies that

f (bξ )= f
(
z+

∑
j<n

qjbj

)
= f

(
z+

∑
j<n

qj cj

)
= f (cξ ).

This finishes the proof.2
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4. Another ZFC example of almost continuous SCIVP function which is not
extendable

In [24] Rosen showed that the Continuum Hypothesis implies the existence of SCIVP
almost continuous functionf :R→ R with a dense graph such thatf [M] 6= R for every
meager setM ⊂ R. He also noticed that such anf is not extendable.2 In this section we
will show that a function with such properties can be constructed in ZFC. (See Theorem 4.2
and Corollary 4.3.) We also show (see Proposition 4.4) that there are serious obstacles to
make such a function additive.

Lemma 4.1. Suppose thatF ⊆ ωω ×ωω ×R is a Borel set such that for some basic open
setsU,V ⊆ ωω we have:

(a) the setZ
def= {〈x, y〉 ∈ U × V : (F )〈x,y〉 = ∅} is meager,

(b) the setA
def= {〈x, y〉 ∈ U × V : (F )〈x,y〉 is uncountable} is meager,

(c) for eachz ∈R the section(F )z is meager.
Then there is a perfect setP ⊆U × V such that(∀〈x, y〉 ∈ P )((F )〈x,y〉 6= ∅)
and for distinct〈x ′, y ′〉, 〈x ′′, y ′′〉 ∈ P we have(F )〈x ′,y ′〉 ∩ (F )〈x ′′,y ′′〉 = ∅ andx ′ 6= x ′′.

Proof. Without loss of generality we may assume thatU = V = ωω. (Remember that basic
open subsets ofωω are homeomorphic withωω.) Let Z∗ ⊆ ωω × ωω be a Borel meager
set such thatZ ⊆ Z∗ and letA∗ ⊆ ωω × ωω be a Borel meager set such thatA ⊆ A∗.
For a sufficiently large regular cardinalχ take a countable elementary submodelN of
〈H(χ),∈,<∗〉 (whereH(χ) is the family of sets that are hereditarily of size< χ , and
<∗ is a fixed well-ordering ofH(χ)) such that the setsF,Z∗, andA∗ are inN . (Strictly
speaking we require that the Borel codes of these sets are inN .)

Forn < ω a setT ⊆ ω6n ×ω6n is ann-tree if

〈σ0, σ1〉 ∈ T andσ ′0⊆ σ0 andσ ′1⊆ σ1⇒〈σ ′0, σ ′1〉 ∈ T
and for each〈σ0, σ1〉 ∈ T there is〈σ ∗0 , σ ∗1 〉 ∈ T such thatσ0⊆ σ ∗0 ∈ ωn andσ1⊆ σ ∗1 ∈ ωn.
Let P be the collection of allT ⊆ ω<ω × ω<ω which aren-trees for somen. We equipP
with the end-extension order, that is, ifT0, T1 aren0- andn1-trees, respectively, thenT0 is
stronger thanT1, T06 T1, if and only if n16 n0 andT0 ∩ (ωn1 × ωn1)= T1. Note thatP
is a countable atomless partial order (and it belongs toN ), so it is equivalent to the Cohen
forcing notion. (See, e.g., [4, Thm. 3.3.1].) LetG⊆ P be a generic filter overN . (It exists
sinceN is countable; of course it is produced by a Cohen real overN .) It is a routine to
check that

⋃
G⊆ ω<ω ×ω<ω is a perfect tree. Let

P = {〈x, y〉 ∈ ωω ×ωω: (∀n ∈ ω)(∃T ∈G)(〈x � n,y � n〉 ∈ T )}.
One easily shows thatP is a perfect subset ofωω×ωω and that each〈x, y〉 ∈ P is a Cohen
real overN (i.e., this pair does not belong to any meager subset ofωω × ωω coded in the

2 In fact, Rosen’s function is from[0,1] to [0,1], but a minor modification gives one fromR toR.
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modelN ). But even more, all elements of the perfect setP aremutuallyCohen overN : if
〈x, y〉, 〈x ′, y ′〉 are distinct elements ofP then〈x, y〉 is Cohen overN[〈x ′, y ′〉]. (Compare
with [4, Lemma 3.3.2].) For our purposes it is enough to note that ifA ⊆ (ωω × ωω)2
is a Borel meager set coded inN and 〈x, y〉, 〈x ′, y ′〉 are distinct elements ofP then
〈〈x, y〉, 〈x ′, y ′〉〉 /∈A.)

We claim thatP is as required. First note thatP ∩ Z∗ = ∅ (so (F )〈x,y〉 6= ∅ for
every 〈x, y〉 ∈ P ) and thatP ∩ A∗ = ∅ (implying that (F )〈x,y〉 is countable for every
〈x, y〉 ∈ P ). Now suppose that〈x ′, y ′〉, 〈x ′′, y ′′〉 ∈ P are distinct. So〈x ′, y ′〉 is a Cohen
real overN[〈x ′′, y ′′〉] and in particularx ′ 6= x ′′ (as{x ′′} × ωω is a Borel meager set coded
in N[〈x ′′, y ′′〉]). We know that(F )〈x ′′,y ′′〉 is a countable set fromN[〈x ′′, y ′′〉], and hence⋃{(F )z: z ∈ (F )〈x ′′,y ′′〉} is a meager Borel set coded inN[〈x ′′, y ′′〉]. Thus〈x ′, y ′〉 does not
belong to it. Consequently(F )〈x ′,y ′〉 ∩ (F )〈x ′′,y ′′〉 = ∅ and the proof is finished.2
Theorem 4.2. There is a functionf :R→R such that
(⊗1) if F ⊆ R2 is a Borel set such that the projectionproj[F ] is not meager then

f ∩F 6= ∅,
(⊗2) if P ⊆ R is a perfect set andB ⊆ R is a non-meager Borel set then there are a

perfect setQ⊆ B and a realy ∈ P such thatf (x)= y for all x ∈Q,
(⊗3) if M ⊆R is meager thenf [M] 6=R.

Proof. First note thatR \Q is homeomorphic toωω × ωω, so it is enough to construct a
functionf :ωω ×ωω→R such that
(⊗∗1) if F ⊆ (ωω × ωω)×R is a Borel set such that the projection ofF ontoωω × ωω

is not meager thenf ∩F 6= ∅,
(⊗∗2) if P ⊆ R is a perfect set andB ⊆ ωω × ωω is a non-meager Borel set then there

are a perfect setQ⊆ B and a realz ∈ P such thatf �Q≡ z,
(⊗∗3) if M ⊆ ωω ×ωω is meager thenf [M] 6⊃R \ {0}.

(If a functionf :R \Q→R satisfies the demand(⊗∗1)–(⊗∗3), then the functionf̄ :R→R
such thatf ⊂ f̄ andf̄ �Q≡ 0 is as required in the theorem.)

Fix enumerations
• {〈rα, sα〉: α < c} of ωω ×ωω,
• {Mα : α < c} of all Borel meager subsets ofωω ×ωω,
• {〈Pα,Bα〉: α < c} of pairs〈P,B〉 such thatP ⊆R is a perfect set, andB ⊆ ωω ×ωω

is a Borel non-meager set,
• {Fα : α < c} of all Borel setsF ⊆ ωω × ωω × R such that the projection ofF onto
ωω ×ωω is not meager.

By induction onα < c we will choose perfect setsQα ⊆ ωω and realsx0
α, x

1
α,wα ∈ ωω,

yα, zα ∈R, vα ∈R \ {0} such that forα,β < c:
(i) ({wα} ×Qα)⊆ Bα, zα ∈ Pα ,
(ii) 〈x0

α, x
1
α〉 /∈ {wβ} × Qβ and if α 6= β then 〈x0

α, x
1
α〉 6= 〈x0

β, x
1
β〉, wα 6= wβ , and

vα 6= vβ ,
(iii) 〈x0

2α, x
1
2α, y2α〉 ∈ Fα ,
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(iv) 〈rα, sα〉 ∈ {〈x0
γ , x

1
γ 〉: γ 6 2α + 1} ∪⋃γ62α+1{wγ } ×Qγ ,

(v) zα 6= vβ , and if 〈x0
α, x

1
α〉 ∈Mβ thenyα 6= vβ .

Assume that we can carry out the construction so that the demands (i)–(v) are satisfied.
Define a functionf :ωω × ωω→R by:

f �
({wα} ×Qα)≡ zα and f

(
x0
α, x

1
α

)= yα ∀α < c.

It follows from the clauses (ii) and (iv), that the above condition defines a function on
ωω×ωω. This function has the required properties:(⊗∗1) holds by clause (iii),(⊗∗2) follows
from clause (i), and(⊗∗3) is a consequence of (v) sincevα /∈ f [Mα].

So let us show how the construction may be carried out. Assume that we have defined
x0
β, x

1
β,wβ ∈ ωω, yβ, zβ ∈R, vβ ∈R \ {0}, andQβ ⊆ ωω for β < α. First choose non-zero

numbersvα ∈ R \⋃{{vβ, yβ, zβ}: β < α} andzα ∈ Pα \ {vβ : β 6 α}. The setBα is not
meager so we findwα ∈ ωω \⋃{{x0

β,wβ}: β < α} such that the section(Bα)wα is not
meager. Pick a perfect setQα ⊆ (Bα)wα . Next we consider two separate cases to choose
x0
α , x1

α , andyα .
Case1: α is odd, sayα = 2α0 + 1. Let 〈x0

α, x
1
α〉 ∈ ωω × ωω \ ({〈x0

β, x
1
β〉 :β < α} ∪⋃

β6α{wβ} ×Qβ) be such that

〈rα0, sα0〉 ∈
{〈x0

β, x
1
β〉: β 6 α

} ∪ ⋃
β6α
{wβ} ×Qβ,

and letyα ∈R \ {vβ, zβ : β 6 α}.
Case2:α is even, sayα = 2α0. Look at the setFα0. If there isy ∈R such that the section

(Fα0)
y is not meager then take such any asyα . Pick

x0
α ∈ ωω \

⋃{{wβ,x0
β} :β < α

} \ {wα}
such that((Fα0)

yα )x0
α

is not meager and

if vβ = yα, β 6 α, then(Mβ)x0
α

is meager.

(Note that there is at most oneβ as above.) Next choosex1
α ∈ ωω such that〈x0

α, x
1
α, yα〉 ∈

Fα0 and〈x0
α, x

1
α〉 /∈Mβ providedvβ = yα , β 6 α.

So suppose now that for eachy ∈R the section(Fα0)
y is meager. Let

A
def= {〈x0, x1〉 ∈ ωω ×ωω: (Fα0)〈x0,x1〉 is uncountable

}
.

It is an analytic set, so it has the Baire property. IfA is not meager then we may choose
x0
α ∈ ωω \

⋃{{wβ,x0
β}: β < α} \ {wα} andx1

α ∈ ωω andyα ∈ R \ {vβ : β 6 α} such that

〈x0
α, x

1
α, yα〉 ∈ Fα0.

So assume that the setA is meager. Take basic open setsU,V ⊆ ωω such that{〈x0, x1〉 ∈
U×V : (Fα0)〈x0,x1〉 = ∅} is meager. Note that the setsU,V andFα0 satisfy the assumptions
of Lemma 4.1. So we get a perfect setP ⊆ U × V such that(Fα0)〈x0,x1〉 6= ∅ for every
〈x0, x1〉 ∈ P and that for distinct〈x ′0, x ′1〉, 〈x ′′0, x ′′1〉 ∈ P :

(Fα0)〈x ′0,x ′1〉 ∩ (Fα0)〈x ′′0 ,x ′′1〉 = ∅ and x ′0 6= x ′′0 .
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Now we may easily find〈x0
α, x

1
α〉 ∈ P andyα ∈R \ {vβ : β 6 α} such that

x0
α /∈

{
wβ,x

0
β : β < α

} ∪ {wα} and
〈
x0
α, x

1
α, yα

〉 ∈ Fα0.

This finishes the inductive step of the construction. Checking that the demands (i)–(v) are
satisfied is straightforward in all cases. (Note that it follows from(⊗∗1)+ (⊗∗3) that for each
meager setM ⊂ ωω×ωω, the setR \f [M] is uncountable. One may easily guarantee that
these sets are of sizec, but there is no need for this.)

Thus the proof of the theorem is complete.2
Corollary 4.3. There exists an almost continuous functionf :R→R which has the strong
Cantor intermediate value property but is not an extendability function.

Proof. Let f :R→ R be the function constructed in Theorem 4.2. The property(⊗1)

implies that the functionf is almost continuous and rng(f ) is dense inR2, and the
property(⊗2) guarantees thatf ∈ SCIVP. To show thatf is not an extendability function
we use the third property listed in Theorem 4.2. So by way of contradiction assume that
f ∈ Ext. Then, by Rosen [23], there is a meager setM ⊆R such that

(⊕) if g :R→R andg �M = f �M theng is an extendability function.

We may additionally demand that cl(f [M])=R. (Just increaseM if necessary.) Pick any
r∗ ∈ f [M] and define a functiong :R→R by:

g(x)=
{
f (x) if x ∈M,
r∗ otherwise.

By (⊕), g is an extendability function (and thus Darboux) and by its definition rng(g) =
f [M] is a dense subset ofR (so it has to beR). But f [M] 6= R (remember(⊗3) of
Theorem 4.2), a contradiction.2

One would hope for getting an additive function as in Theorem 4.2. Unfortunately this
approach cannot work.

Proposition 4.4. Suppose thatf :R→R is an additive function such that
(1) for some perfect setP ⊆R, the restrictionf � P is continuous,
(2) for each nowhere dense setM ⊆R, the imagef [M] is notR.

Then there is a closed setF ⊆R2 such thatproj[F ] =R andf ∩F = ∅.

Proof. Let P ⊆ R be a compact perfect set such thatf � P is continuous. By Erd̋os,
Kunen, and Mauldin [11], we find a compact perfect setQ of Lebesgue measure 0 (and so
nowhere dense) such thatP +Q contains the interval[0,1]. By the second assumption,
we may pick a realr ∈R \ f [Q]. LetF be the subset of the planeR2 described by:

〈x, y〉 ∈ F if and only if

(∃w ∈ P)(∃z ∈Q)(∃m ∈ Z)(x =w+ z+m andy = f (w)+ f (m)+ r).
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SinceP,Q are compact andf � P is continuous, the setF is closed. By the choice of the
perfectQ we know that proj[F ] = R. Finally, suppose that〈x, y〉 ∈ F ∩ f . Takew ∈ P ,
z ∈Q andm ∈ Z witnessing〈x, y〉 ∈ F . Then

f (w)+ f (m)+ r = y = f (x)= f (w+ z+m)= f (w)+ f (z)+ f (m),
and hencef (z)= r, a contradiction with the choice ofr. 2
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