Krzysztof Ciesielski; Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA e-mail: KCies@wvnvms.wvnet.edu Richard G. Gibson, Department of Mathematics, Columbus State University, Columbus, GA 31907, USA e-mail: Gibson_Richard@colstate.edu Tomasz Natkaniec, Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: mattn@ksinet.univ.gda.pl

κ -to-1 DARBOUX-LIKE FUNCTIONS

Abstract

We examine the existence of κ -to-1 functions $f : \mathbb{R} \to \mathbb{R}$ in the class of continuous functions, Darboux functions, functions with perfect roads, and functions with the Cantor intermediate value property. In this setting κ denotes a cardinal number (finite or infinite). We also consider different variations on this theme.

1 Continuous and Darboux Functions

We will use the standard terminology and notation as in [4]. In particular, ordinal numbers, will be identified with the set of their predecessors and cardinal numbers with the initial ordinals. Thus the first infinite cardinal ω is identified with the set of natural numbers. We will reserve the letters k and n for the natural numbers. The cardinality of the set \mathbb{R} of real numbers is denoted by \mathfrak{c} . The symbol |X| denotes the cardinality of the set X. For a cardinal $\kappa > 0$ we say that a function $f: X \to Y$ is κ -to-1 if $|f^{-1}(y)| = \kappa$ for every $y \in Y$. Similarly we define $\leq \kappa$ -to-1 and $\langle \kappa$ -to-1 functions. We will use the terms *countable-to-1* and *finite-to-1* for functions that are $\leq \omega$ -to-1 and

Key Words: $k\mbox{-to-1}$ functions, Darboux functions, perfect road, intermediate value property.

Mathematical Reviews subject classification: Primary 26A15.

Received by the editors March 3, 1998

^{*}The work of the first and the third author was partially supported by NSF Cooperative Research Grant INT-9600548 with its Polish part financed by Polish Academy of Science PAN. The results were obtained during a visit of the third author at Columbus State University and West Virginia University.

The first author was also supported by 1996/97 West Virginia University Senate Research Grant.

Papers authored or co-authored by a Contributing Editor are managed by a Managing Editor or one of the other Contributing Editors.

⁶⁷¹

 $<\omega$ -to-1, respectively. A function $f: \mathbb{R} \to \mathbb{R}$ is *Darboux* if it has the intermediate value property; that is, if the image f[J] of every connected subset Jof the domain (i.e., an interval) is connected in the range. The last property serves also as a general definition of a Darboux function from a topological space X into a topological space Y.

The notion of an *n*-to-1 function was introduced by O. G. Harrold, Jr. in 1939 in the paper [11] where he showed that there does not exist a continuous 2-to-1 function carrying an arc into an arc or a circle. Following this paper a sequence of papers appeared in the early 1940's which studied the existence of *n*-to-1 continuous functions defined on various classes of continua, [6], [9], and [17]. More recent relevant papers were published in the 1980's and among those are [12], [13], and [16].

In 1922 D. C. Gillespie stated in the Bulletin of the American Math. Soc. [10] that a function having the intermediate value property will be continuous unless the set of values it assumes an infinite number of times fills at least one interval. This fact is well-known and follows from the following proposition.

Proposition 1.1. [3, thm 5.2] If $f \colon \mathbb{R} \to \mathbb{R}$ is Darboux and all level sets $f^{-1}(y)$ of f are closed, then f is continuous.

As a consequence of those results we see that the question

For which
$$k < \omega$$
 does there exist a k-to-1 Darboux function? (1)

is equivalent to the following

For which $k < \omega$ does there exist a k-to-1 continuous function? (2)

Our first result is the following proposition, that is probably known.

Proposition 1.2. The following conditions are equivalent for $n < \omega$.

- (i) There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ that is n-to-1.
- (ii) There exist a set $Y \subset \mathbb{R}$ and a continuous function $f : \mathbb{R} \to Y$ that is *n*-to-1.
- (iii) n is odd.

PROOF. The implication $(i) \Rightarrow (ii)$ is obvious.

(ii) \Rightarrow (iii) Suppose that $f \colon \mathbb{R} \to Y$ is a continuous *n*-to-1 function and, by way of contradiction, assume that *n* is even, say n = 2k. Clearly n > 0. Fix a $y_0 \in Y$ and the points $x_1 < x_2 < \cdots < x_n$ such that $f(x_i) = y_0$ for $i = 1, 2, \ldots, n$.

κ -TO-1 DARBOUX-LIKE FUNCTIONS

For each $m = 1, \ldots, n-1$ let $I_m = [x_m, x_{m+1}]$. So, we have a partition of $[x_1, x_n]$ onto 2k - 1 intervals I_m such that for each m either $f|I_m \ge y_0$ or $f|I_m \le y_0$. We will suppose that the set $M = \{m: f|I_m \ge y_0\}$ has at least kelements, since the case when $|\{m: f|I_m \le y_0\}| \ge k$ is essentially the same. Put $h_m = \max f|I_m$ and $h = \min\{h_m: m \in M\}$. Then $h > y_0$ and for each $y \in (y_0, h)$ and $m \in M$ the set $f^{-1}(y) \cap I_m$ has at least 2 points. So

 $(x_1, x_n) \cap f^{-1}(y)$ has at least $2|M| \ge 2k$ points for every $y \in (y_0, h)$. (3)

Since $|f^{-1}(y)| = n = 2k$ for every y, we conclude that M has exactly k elements. Moreover, (3) implies that

$$\{x \colon f(x) > y_0\} \subset \bigcup_{m \in M} I_m \subset [x_1, x_n]$$

Thus, if $y_m = \max f|[x_1, x_n]$, then all *n* elements of $f^{-1}(y_m)$ belong to (x_1, x_n) and are local maxima. Therefore, for every $y < y_m$ which is close enough to y_m the set $f^{-1}(y)$ has at least 2n elements, a contradiction.

(iii) \Rightarrow (i) Assume that *n* is odd. If n = 1 we put f(x) = x. For n > 1 let *f* be the function defined by the formula f(x) = x + n dist (x, \mathbb{Z}) where dist (x, \mathbb{Z}) denotes the distance between *x* and the set \mathbb{Z} of integers. It is easy to observe that $f^{-1}(y)$ has *n* elements for each $y \in \mathbb{R}$.

Corollary 1.3. The following conditions are equivalent.

- (i) There exists a continuous κ -to-1 function $f : \mathbb{R} \to \mathbb{R}$.
- (ii) There exist a set $Y \subset \mathbb{R}$ and a continuous function $f \colon \mathbb{R} \to Y$ that is κ -to-1.
- (iii) $\kappa \in \{\mathfrak{c}, \omega\} \cup \{2k+1 \colon k < \omega\}.$

PROOF. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Since $f^{-1}(y)$ is a closed subset of \mathbb{R} for any continuous function f, we see that $\kappa \in \{\mathfrak{c}, \omega\} \cup \omega$. But if $\kappa \in \omega$, then κ cannot be an even number by Proposition 1.2.

(iii) \Rightarrow (i) For an odd number $\kappa \in \omega$ the existence of f follows from Proposition 1.2. For $\kappa = \omega$ it is enough to take $f(x) = x \sin x$. So assume that $\kappa = \mathfrak{c}$ and let $f_0: [0,1] \rightarrow [0,1]$ be such that $f_0(0) = 0$, $f_0(1) = 1$, and $|f_0^{-1}(y)| = \mathfrak{c}$ for each $y \in [0,1]$. An example of such a function is given in Bruckner's book [2, pp. 148–150]. Then $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = E(x) + f_0(x - E(x))$ is continuous and \mathfrak{c} -to-1, where E(x) denotes the integer part of x.

Corollary 1.3 gives the full answer for questions (1) and (2). However, the following more general problem might be also of interest.

Problem 1.1. For which maps $j: \mathbb{R} \to {\mathfrak{c}}, \omega \} \cup \omega$ does there exist a continuous function $f_j: \mathbb{R} \to \mathbb{R}$ such that $|f_j^{-1}(y)| = j(y)$ for every $y \in \mathbb{R}$?

To investigate this problem we will use the following terminology. For a map $j: \mathbb{R} \to \mathfrak{c} \cup \{\mathfrak{c}\}$ we say that a function $f: X \to \mathbb{R}$ is *j*-to-1 provided $|f^{-1}(y)| = |j(y)|$ for every $y \in \mathbb{R}$. Corollary 1.3 answers the above question for constant maps j. Some light on the general version of Problem 1.1 is shed by the following fact.

Proposition 1.4. Let $f: \mathbb{R} \to \mathbb{R}$ be a Darboux function, $y \in \mathbb{R}$, and $\kappa = |f^{-1}(y)|$. If $\kappa < \omega$ and $B_{\kappa} = \{z \in \mathbb{R} : |f^{-1}(z)| \ge \kappa\}$, then there exists an $\varepsilon > 0$ such that either $(y - \varepsilon, y] \subset B_{\kappa}$ or $[y, y + \varepsilon) \subset B_{\kappa}$. In particular, B_{κ} is an F_{σ} -set for each $\kappa < \omega$.

PROOF. Let $X = f^{-1}(y)$ and choose a positive δ such that the intervals $\{[x - \delta, x + \delta]\}_{x \in X}$ are pairwise disjoint. Let $X^* = \bigcup_{x \in X} \{x - \delta, x + \delta\}$ and put $X^+ = \{x \in X^* : f(x) > y\}$ and $X^- = \{x \in X^* : f(x) < y\}$. Then at least one of the sets X^+ and X^- has at least κ elements. Assume that $|X^+| \ge \kappa$ and let $y_1 = \min\{f(x) : x \in X^+\}$. Then $y_1 > y$ and $[y, y_1] \subset B_{\kappa}$. The case for $|X^-| \ge \kappa$ is similar.

Now, the set B_{κ} is F_{σ} since it is a countable union of nontrivial intervals; the components of B_{κ} .

For continuous finite-to-1 functions we have a full answer to Problem 1.1. It is a consequence of the following improvement of Proposition 1.4.

Proposition 1.5. Let f be a finite-to-1 continuous function from \mathbb{R} onto \mathbb{R} and for $k < \omega$ let $B_k = \{z \in \mathbb{R} : |f^{-1}(z)| \ge k\}$. Then for all $k, l \in \omega$ with $l \le 2k + 1$ and $y \in \mathbb{R} \setminus \operatorname{int} B_l$ with $k = |f^{-1}(y)|$ there exists an $\varepsilon > 0$ such that either $(y - \varepsilon, y) \subset B_t$ or $(y, y + \varepsilon) \subset B_t$, where t = 2k - l + 1 if l is even and t = 2k - l + 2 if l is odd.

PROOF. Suppose that $j(y) = |f^{-1}(y)| = k$ and

there exists a sequence
$$y_n \searrow y$$
 with $j(y_n) \le l - 1$. (4)

Note that since f is finite-to-1 and onto \mathbb{R} , we have either

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

or

$$\lim_{x \to -\infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f(x) = -\infty$.

Now $f^{-1}(y)$ partitions \mathbb{R} into k + 1 open intervals J_0, \ldots, J_k of which k - 1, say J_1, \ldots, J_{k-1} , are bounded. Also, for every $j \in \{0, \ldots, k\}$ we have

either $f|J_j > y$ or $f|J_j < y$. Moreover, by the above limit consideration, either $f|J_0 > y$ or $f|J_k > y$. Consequently, by condition (4), the set $M \subset \{1, \ldots, k-1\}$ of all *i* for which $f|J_i > y$ has at most E((l-2)/2) elements. Thus $N = \{1, \ldots, k-1\} \setminus M$ has at least k-1 - E((l-2)/2) elements. Let $\varepsilon > 0$ be such that min $f|J_i < y - \varepsilon$ for every $i \in N$. Then every value *z* from $(y - \varepsilon, y)$ is taken at least twice on each interval J_i with $i \in N$. Moreover, such a value is in at least one of the unbounded intervals by the above limit consideration. Thus, $|f^{-1}(z)| \ge 2k - 2 - 2E((l-2)/2) + 1$. Finally, note that 2k - 2 - 2E((l-2)/2) + 1 is equal to 2k - l + 1 if *l* is even and it is equal to 2k - l + 2 if *l* is odd. \Box

Corollary 1.6. Let f be a finite-to-1 continuous function from \mathbb{R} onto \mathbb{R} . Then for every even $k \in \omega$ and $y \in \mathbb{R}$ with $k = |f^{-1}(y)|$ (that is $y \in B_k \setminus B_{k+1}$) there exists an $\varepsilon > 0$ such that either $(y - \varepsilon, y) \subset B_{k+1}$ or $(y, y + \varepsilon) \subset B_{k+1}$. In particular, for every $n \in \omega$ the set $B_{2n} \setminus B_{2n+1}$ has an empty interior.

PROOF. This is a consequence of Proposition 1.5 with l = k + 1. Indeed, suppose that k is even. For every $y \in B_k \setminus B_{k+1}$, either $y \in int(B_{k+1})$ or y is an end-point of some interval contained in B_{k+1} .

Corollary 1.7. Let f be a finite-to-1 continuous function from \mathbb{R} onto \mathbb{R} . If $|f^{-1}(y)| = 2k + 1$ and $y \notin \operatorname{int} B_{2k+1}$, then there exists an $\varepsilon > 0$ such that either $(y - \varepsilon, y) \subset B_{2k+3}$ or $(y, y + \varepsilon) \subset B_{2k+3}$.

PROOF. Consider Proposition 1.5 with l = 2k + 1.

Theorem 1.8. Let $j : \mathbb{R} \to \{1, 2, 3, ...\}$. The following conditions are equivalent.

- (a) There exists a continuous *j*-to-1 function $f : \mathbb{R} \to \mathbb{R}$.
- (b) For every $k \in \omega$
 - (i) $C_k = j^{-1}(\{k, k+1, k+2, \ldots\})$ is a (possibly empty) union of pairwise disjoint non-trivial intervals,
 - (ii) $j^{-1}(2k)$ has an empty interior, and
 - (iii) if $y \in j^{-1}(2k+1) \setminus \text{int } C_{2k+1}$ then y is an end-point of a component of C_{2k+3} .

PROOF. (a) \Rightarrow (b) Clearly $j^{-1}(\{k, k+1, \ldots\}) = \{z \in \mathbb{R} : |f^{-1}(z)| \ge k\} = B_k$ and, by Proposition 1.4, the component intervals of B_k are the non-trivial intervals, proving (i). Conditions (ii) and (iii) follow immediately from Corollaries 1.6 and 1.7, respectively.

(b) \Rightarrow (a) Let

- \mathcal{J}_k be the family of all components of C_{2k+1} $\mathcal{J}_k = \{J_{k,1}, J_{k,2}, \ldots\},\$
- $D_k = \operatorname{int} C_{2k+1} = \bigcup \{ \operatorname{int} J \colon J \in \mathcal{J}_k \},\$
- E be the set of all endpoints of intervals belonging to some \mathcal{J}_k and
- $E_k = \bigcup \{ \operatorname{bd}(J) \colon J \in \mathcal{J}_k \}.$

Note that E is countable, $E = \bigcup_k E_k$, and $C_{2k} \subset D_k \cup E_k$ for each positive integer k. The desired function f will be defined as a limit of functions f_k from \mathbb{R} onto \mathbb{R} . We start with f_0 being the identity function. Assume that f_k is defined. To construct f_{k+1} we take an arbitrary interval $J_{k+1,i}$ from \mathcal{J}_{k+1} and represent $\hat{J} = J_{k+1,i} \cup (\operatorname{bd} J_{k+1,i} \cap C_{2k-1})$ as a union of closed intervals $J_{k+1,i}^1, J_{k+1,i}^2, J_{k+1,i}^3, \ldots$ with disjoint interiors. We will assume also that

- (α) the length of $J^m_{k+1,i}$ is less than 2^{-k-1} ,
- (β) the endpoints of the intervals $J_{k+1,i}^m$ are disjoint from E, with the exception of the endpoints of \hat{J} , if they belong to $J_{k+1,i}^m$,
- (γ) if $J_{k+1,i}^n \cap J_{k,j}^m \neq \emptyset$ then $J_{k+1,i}^n \subset J_{k,j}^m$ and
- (δ) for every m there is an interval $I_{k+1,i}^m \subset f_k^{-1}(J_{k+1,i}^m)$ such that $f_k|I_{k+1,i}^m$ is linear, $f_k[I_{k+1,i}^m] = J_{k+1,i}^m$, and $I_{k+1,i}^m \subset I_{k,j}^n$ whenever $I_{k+1,i}^m \cap I_{k,j}^n \neq \emptyset$.

Also, we can order the family of all $J_{k+1,i}^m$ in the type of \mathbb{Z} , if \hat{J} is open, in the type of ω (or ω^*) if \hat{J} contains only left (right) endpoints, and in a finite type, when \hat{J} contains both endpoints.

The function f_{k+1} is obtained by modifying f_k on every interval $I_{k+1,i}^m$ The modification is obtained by replacing a $f_k|I_{k+1,i}^m$ by a function with graph of shape of letter N. (Or its mirror image.)

By (α) , the sequence $(f_k)_k$ is uniformly convergent to a continuous function $f : \mathbb{R} \to \mathbb{R}$.

Observe that for each $k \in \omega$ and $y \in \mathbb{R}$ we have

$$|f_k^{-1}(y)| = \begin{cases} |f_{k-1}^{-1}(y)| + 2 & \text{if } y \in D_k \\ |f_{k-1}^{-1}(y)| + 1 & \text{if } y \in E_k \cap C_{2k-1} \\ |f_{k-1}^{-1}(y)| & \text{otherwise.} \end{cases}$$
(5)

Thus, we easily obtain (by induction) the equations

$$|f_k^{-1}(y)| = \begin{cases} 2k+1 & \text{if } y \in D_k \\ 2k & \text{if } y \in E_k \cap C_{2k} \\ 2k-1 & \text{if } y \in E_k \cap (C_{2k-1} \setminus C_{2k}) \\ |f_{k-1}^{-1}(y)| & \text{otherwise.} \end{cases}$$
(6)

Note also the following properties of the sequence $(f_k)_k$.

If
$$k < n$$
 and $y \in \mathbb{R}$ then $|f_k^{-1}(y)| \le |f_n^{-1}(y)|.$ (7)

If
$$x \notin \bigcup_{m} \bigcup_{i} I_{k,i}^{m}$$
 then $f_k(x) = f_{k-1}(x)$. (8)

Statement (7) and condition (δ) imply that for each $x \in \mathbb{R}$ there is a k_0 with $x \in \bigcup_m \bigcup_i I_{k_0,i}^m \setminus \bigcup_{k>k_0} \bigcup_m \bigcup_i I_{k,i}^m$. Thus, by (8),

for each $x \in \mathbb{R}$ there is $k_0 \in \omega$ such that $f_k(x) = f_{k_0}(x)$ for $k > k_0$. (9)

Moreover,

if
$$y \in \bigcup_{m} \bigcup_{i} J_{k_0,i}^m \setminus \bigcup_{k>k_0} \bigcup_{m} \bigcup_{i} J_{k,i}^m$$
 then $f^{-1}(y) = f_{k_0}^{-1}(y);$ (10)

so f is finite-to-1. We will verify that f is j-to-1. Assume that $y \in C_k$ and consider two cases. If k is odd, say $k = 2k_0+1$ then, by (6), $|f_{k_0+1}^{-1}(y)| \ge 2k_0+1$, and, by (7), $|f_k^{-1}(y)| \ge 2k_0 + 1$ for all $k > k_0$ so, by (10), $|f^{-1}(y)| \ge 2k_0 + 1$. Similarly, if k is even, say $k = 2k_0$, then $|f_{k_0}^{-1}(y)| \ge 2k_0$; so $|f^{-1}(y)| \ge 2k_0$. Therefore,

$$(\forall k \in \omega) \quad C_k \subset \{ y \in \mathbb{R} \colon |f^{-1}(y)| \ge k \}.$$
(11)

Now suppose that $y \notin C_k$. Then for $k_0 = \mathbb{E}(\frac{k}{2})$ we have $|f_{k_0}^{-1}(y)| < 2k_0 \le k$ and $y \notin \bigcup_m \bigcup_i J_{k_0,i}^m$. Thus (10) implies $|f^{-1}(y)| = |f_{k_0}^{-1}(y)| < k$. Hence

$$(\forall k \in \omega) \quad \{y \in \mathbb{R} \colon |f^{-1}(y)| \ge k\} \subset C_k.$$
(12)

Finally, by (11) and (12) we obtain the statement

$$(\forall k \in \omega) \quad C_k = \{y \in \mathbb{R} \colon |f^{-1}(y)| \ge k\}.$$

Thus f is j-to-1.

Proposition 1.4 also yields the following result on Darboux countable-to-1 functions.

Corollary 1.9. If a Darboux function $f : \mathbb{R} \to \mathbb{R}$ is countable-to-1 and $j : \mathbb{R} \to \omega \cup \{\omega\}$ is defined by $j(y) = |f^{-1}(y)|$ then j is Borel measurable.

Note that in Corollary 1.9 the assumption that f is countable-to-1 is essential. This is even the case when f is continuous, since there is a continuous

function $f: \mathbb{R} \to \mathbb{R}$ for which the set $A_{\mathfrak{c}} = \{y: |f^{-1}(y)| = \mathfrak{c}\}$ is analytic non-Borel. This follows from the fact that the set

$$A = \left\{ x \in 2^{\omega} \colon \left| \mathrm{pr}_{1}^{-1}(x) \right| = \mathfrak{c} \right\} = \varphi^{-1}(\{ C \in K(2^{\omega}) \colon |C| > \omega \})$$

is analytic non-Borel, where φ is a homeomorphism between 2^{ω} and the space $K(2^{\omega})$ of all non-empty compact subsets of 2^{ω} (with the Hausdorff metric) and pr₁ is the projection of the graph of φ onto the first coordinate. This is a consequence of a theorem of Hurewicz that the set $\{C \in K(2^{\omega}): |C| > \omega\}$ is analytic non-Borel. (See [14, thm 27.5, p. 210]. This fact was pointed out to the authors by S. Solecki.) On the other hand for continuous f the sets $A_{\kappa} = \{z \in \mathbb{R}: |f^{-1}(z)| = \kappa\}$ are not too bad; they all are Borel for $\kappa \in \omega$ (This follows from Proposition 1.4.) and analytic for $\kappa = \mathfrak{c}$. Indeed, from the Mazurkiewicz-Sierpiński theorem it follows that $A_{\mathfrak{c}}$ is analytic. (See e.g. [15, thm 3, p. 496], or [14, thm 29.19, p. 231].) Consequently, the set A_{ω} must be co-analytic. Moreover, if $A_{\mathfrak{c}}$ is non-Borel, then A_{ω} is non-Borel (so non-analytic), too.

Note that the results above follow also for Borel functions with the Darboux property. Nothing good, though, can be said of the set $B_{\mathfrak{c}}$ for a general Darboux function $f: \mathbb{R} \to \mathbb{R}$, as follows for the next proposition.

Proposition 1.10. For every set $Z \subset \mathbb{R}$ there exists a Darboux function $f: \mathbb{R} \to \mathbb{R}$ with $Z = \{y: |f^{-1}(y)| = \mathfrak{c}\}.$

PROOF. Let $\{A_{\xi}: \xi < \mathfrak{c}\}$ be a partition of \mathbb{R} into countable dense sets. Take an $h: \mathfrak{c} \to \mathbb{R}$ such that $|h^{-1}(z)| = \mathfrak{c}$ for $z \in Z$ and $|h^{-1}(z)| = 1$ for $z \notin Z$. Define f by putting $f(x) = h(\xi)$ for every $x \in A_{\xi}$ and $\xi < \mathfrak{c}$. Then f satisfies the conclusion.

Note also that the main part of Proposition 1.4 is false for an infinite κ .

Remark 1.1. For $\kappa \in \{\omega, \mathfrak{c}\}$ there exists a continuous $\leq \kappa$ -to-1 function f from \mathbb{R} onto \mathbb{R} for which $B_{\kappa} = \{0\}$. Moreover, for every countable set $B \subset \mathbb{R}$ there exists a continuous function f from \mathbb{R} onto \mathbb{R} with the property that $B = \{z \in \mathbb{R} : |f^{-1}(z)| = \mathfrak{c}\}.$

PROOF. First assume that $\kappa = \omega$ and define f by putting f(0) = 0 and $f(x) = x^2 \sin(x^{-1})$ for $x \neq 0$. Then f has the desired properties.

For $\kappa = \mathfrak{c}$ first fix a perfect set P and a < b such that $P \subset [a, b] \subset (0, 1)$ and let $g: [a, b] \to \mathbb{R}$ be such that $g(x) = \operatorname{dist}(x, P)$ is the distance between x and P. Now it is easy to find an extension f from \mathbb{R} onto \mathbb{R} for which $B_{\mathfrak{c}} = \{0\}$.

To see the additional part let $B = \{b_n : n < \omega\}$ and define f_0 on a set $K = \bigcup_{n < \omega} (n + [a, b])$ by putting

 $f_0(n+x) = b_n + g(x)$ for every $n < \omega$ and $x \in [a, b]$.

Extend f_0 to f from \mathbb{R} onto \mathbb{R} such that f is linear on each of the intervals [n+b, (n+1)+a] and $f|(-\infty, a]$ is ω -to-1 and onto \mathbb{R} . It is easy to see that $B = \{z \in \mathbb{R} : |f^{-1}(z)| = \mathfrak{c}\}.$

In the remainder of this section we consider the analogous problems for continuous functions from \mathbb{R}^n or $[0,1]^n$ into \mathbb{R} and from [0,1] into \mathbb{R} . See [6], [11], [12], [13], [16] and [17]. J. H. Roberts in [17], proved that there does not exist a continuous 2-to-1 function defined on a closed 2-cell but left open the case for arbitrary *n*-cells. Paul Civin in [6], proved that there does not exist a continuous 2-to-1 function defined on a closed 3-cell and stated that it can easily be demonstrated that a continuous function defined on \mathbb{R} is not 2-to-1. However, Civin noted that for \mathbb{R}^n with *n* equal to 2 or 3 this question is unknown.

We will start with the following easy remark.

Proposition 1.11. Let n > 1 and $X = \mathbb{R}^n$ or $X = [0,1]^n$. If $f: X \to \mathbb{R}$ is Darboux then f[X] is an interval and for every interior point y of f[X] the set $f^{-1}(y)$ has cardinality \mathfrak{c} .

PROOF. f[X] is an interval since X it is connected. To see the other part take an interior point y of f[X]. Then the set $X \setminus f^{-1}(y)$ disconnects X since $f[X \setminus f^{-1}(y)] \subset f[X] \setminus \{y\}$. Thus $f^{-1}(y)$ has cardinality \mathfrak{c} . \Box

Remark 1.2. Proposition 1.11 remains true for an arbitrary Darboux function $f: X \to \mathbb{R}$ provided X cannot be disconnected by any set of cardinality less than \mathfrak{c} .

Corollary 1.12. Let n > 1 and $j : \mathbb{R} \to \mathfrak{c} \cup {\mathfrak{c}}$. The following conditions are equivalent.

- (i) There exists a continuous nonconstant *j*-to-1 function $f: [0,1]^n \to \mathbb{R}$.
- (ii) There are $-\infty < a < b < \infty$ such that $j|(a,b) = \mathfrak{c}, \ j|\mathbb{R} \setminus [a,b] = 0$ and $|j(a)|, |j(b)| \in \{\omega, \mathfrak{c}\} \cup \omega \setminus \{0\}.$

PROOF. (i) \Rightarrow (ii) The range of f is a closed interval [a, b] by Proposition 1.11 and compactness of $[0, 1]^n$. Then, again by Proposition 1.11, we have also $j|(a, b) = \mathfrak{c}$, while for $d \in \{a, b\}$ we have $|j(d)| \in \{\omega, \mathfrak{c}\} \cup \omega \setminus \{0\}$ since $f^{-1}(d)$ is a non-empty closed subset of \mathbb{R}^n and $|j(d)| = |f^{-1}(d)|$.

(ii) \Rightarrow (i) Let A and B be closed subsets of $[0,1]^n$ with distance d > 1 and such that |j(a)| = |A| and |j(b)| = |B|. For $C \in \{A, B\}$ define $F_C = \{x \in [0,1]^n : \operatorname{dist}(x,C) \leq .5\}$, where $\operatorname{dist}(x,C)$ is the distance of x to C. Then $\operatorname{dist}(F_A, F_B) = d - 1 > 0$. For $x \in F_A$ define $g(x) = \operatorname{dist}(x, A) \in [0, .5]$ and for $x \in F_B$ put $g(x) = d - \operatorname{dist}(x, B) \in [d - .5, d]$. Then, by the Tietze Extension Theorem, we can extend g continuously onto $[0,1]^n$ such that it assumes on $[0,1]^n \setminus (F_B \cup F_B)$ only the values from [.5, d-.5]. Now if h is a homeomorphism between [0,d] and [a,b] then $f = h \circ g$ has the desired properties. \Box

A slight modification of the above argument gives also the following characterization.

Corollary 1.13. Let n > 1 and $j : \mathbb{R} \to \mathfrak{c} \cup {\mathfrak{c}}$. The following conditions are equivalent.

- (i) There exists a continuous nonconstant *j*-to-1 function $f : \mathbb{R}^n \to \mathbb{R}$.
- (ii) There are $-\infty \leq a < b \leq \infty$ such that $j|(a,b) \equiv \mathfrak{c}, \ j|\mathbb{R} \setminus [a,b] \equiv 0$, and $|j(c)| \in \{\omega,\mathfrak{c}\} \cup \omega$ for $c \in \{a,b\} \cap \mathbb{R}$.

The corresponding characterization of Darboux functions is slightly different.

Corollary 1.14. Let n > 1 and $j : \mathbb{R} \to \mathfrak{c} \cup {\mathfrak{c}}$. The following conditions are equivalent.

- (i) There exists a Darboux nonconstant *j*-to-1 function $f : \mathbb{R}^n \to \mathbb{R}$.
- (ii) There are $-\infty \leq a < b \leq \infty$ such that $j|(a,b) = \mathfrak{c}$ and $j|\mathbb{R} \setminus [a,b] = 0$.

PROOF. (i) \Rightarrow (ii) This follows immediately from Proposition 1.11.

 $(ii) \Rightarrow (i)$ Let a and b be as in (ii). Recall that every connectivity function $f: \mathbb{R}^n \to \mathbb{R}$, with n > 1, is Darboux. (See [8].) In [5] there has been constructed a connectivity function $g: \mathbb{R}^n \to \mathbb{R}$ such that for some dense G_{δ} set $G \subset \mathbb{R}^n$ any modification of g on G results still a connectivity function. Now, if h is a homeomorphism from \mathbb{R} onto (a, b) then $f_0 = h \circ g$ has a property that a function $f: \mathbb{R}^n \to [a, b]$ is connectivity provided f which agrees with f_0 outside of G. (Compare also [18, thm. 1].) Now, take disjoint sets $A, B \subset G$ such that |j(a)| = |A| and |j(b)| = |B|. Define f(x) = a for $x \in A$, f(x) = b for $x \in B$, and $f(x) = f_0(x)$ for $x \in \mathbb{R}^n \setminus (A \cup B)$. Then f is connectivity; so Darboux, and it has all other required properties.

In the remainder of this section we will consider functions $f: [0,1] \to \mathbb{R}$.

Proposition 1.15. Assume that n > 1. There is no continuous function $f: [0,1] \to \mathbb{R}$ which is n-to-1.

PROOF. For n = 2 it is easy and well-known. (See [11] and [16].) Suppose that n > 2. Let $y_1 = \max_{x \in [0,1]} f(x)$ and let $f^{-1}(y_1) = \{x_1, \ldots, x_n\}$ where $x_1 < \cdots < x_n$. Now, if $y_0 = \max\{\min f | [x_i, x_{i+1}] : i = 1, \ldots, n-1\}$ then for each $y \in (y_0, y_1), f^{-1}(y)$ has at least 2(n-1) > n points, a contradiction. \Box

Following Theorem 5.2 in [3], Bruckner and Ceder stated that there exists a continuous function defined on [0, 1] such that each value between 0 and 1 is taken on infinitely often. Such a function can be constructed by suitably modifying the well-known Cantor function on its intervals of constancy. For completeness we will include such a construction in the following proposition.

Proposition 1.16. If $\kappa \in \{\omega, \mathfrak{c}\}$ then there is a continuous function $f: [0, 1] \rightarrow [0, 1]$ such that $|f^{-1}(y)| = \kappa$ for each $y \in [0, 1]$.

PROOF. An example of a continuous function $f: [0,1] \to [0,1]$ such that $|f^{-1}(y)| = \mathfrak{c}$ for each $y \in [0,1]$ can be found in Bruckner's book [2, pp. 148–150].

Thus assume that $\kappa = \omega$ and define function $g \colon \mathbb{R} \to \mathbb{R}$ by a formula $g(x) = (x^2 + 1)^{-1} \sin x$ Notice that $\lim_{x \to -\infty} g(x) = \lim_{x \to \infty} g(x) = 0$. In particular, g takes value 0 infinitely many times and all other values only finitely many times. Let $C \subset I$ be the Cantor ternary set, i.e.,

$$C = \left\{ \sum_{i=1}^{\infty} \frac{k_i}{3^i} \colon k_i \in \{0, 2\} \text{ for every } i = 1, 2, \dots \right\}$$

and let f_0 be the Cantor function from C onto [0, 1]; that is, given by a formula $f_0(\sum_{i=1}^{\infty} \frac{k_i}{3^i}) = \sum_{i=1}^{\infty} \frac{k_i}{2^{i+1}}$. Thus f_0 is continuous, increasing and if I = (a, b) is a component of $[0, 1] \setminus C$ then $f_0(a) = f_0(b)$. Extend f_0 to f by putting on any such interval $f(x) = f_0(a) + (b - a)g(h_I(x))$, where h_I is an increasing homeomorphism from I = (a, b) onto \mathbb{R} . It is easy to see that f is continuous and ω -to-1.

Corollary 1.17. Let $\kappa \leq \mathfrak{c}$ be a cardinal number. The following conditions are equivalent.

- (i) There exists a continuous nonconstant κ -to-1 function $f: [0,1] \to [0,1]$.
- (ii) $\kappa \in \{\omega, \mathfrak{c}\}.$

2 Perfect Road Functions

Recall that a function $f: \mathbb{R} \to \mathbb{R}$ has a *perfect road* at $x \in \mathbb{R}$ if there exists a perfect set $P \subset \mathbb{R}$ having x as a bilateral limit point for which the restriction f|P of f to P is continuous at x. The function $f: \mathbb{R} \to \mathbb{R}$ has the perfect road property if it has a perfect road at each point $x \in \mathbb{R}$. (See, e.g., [8].)

Theorem 2.1. For every function $j: \mathbb{R} \to \mathfrak{c} \cup {\mathfrak{c}} \setminus {0}$ there exists a *j*-to-1 function $f_j: \mathbb{R} \to \mathbb{R}$ with the perfect road property.

PROOF. Let $\{\langle I_n, J_n \rangle : n < \omega\}$ be a one-to-one enumeration of all sets of the form $(p,q) \times (r,s)$, where p,q,r,s are rationals, p < q, and r < s. Inductively choose the sequences $\{P_n : n < \omega\}$ and $\{Q_n : n < \omega\}$ of pairwise disjoint perfect nowhere dense sets such that $P_n \subset I_n$ and $Q_n \subset J_n$ for every $n < \omega$.

Let $g: \bigcup_{n < \omega} P_n \to \bigcup_{n < \omega} Q_n$ be a function such that $g|P_n$ is a homeomorphism between P_n and Q_n for every $n < \omega$. Notice that

every extension $f \colon \mathbb{R} \to \mathbb{R}$ of g has the perfect road property. (13)

Indeed, to show that f has a perfect road from the left at a point $x \in \mathbb{R}$ find a sequence $\{n_j\}_{j < \omega}$ such that $I_{n_j} < I_{n_k}$ and $J_{n_j} < J_{n_k}$ for every $j < k < \omega$ and that $\lim_{j\to\infty} I_{n_j} = x$ and $\lim_{j\to\infty} J_{n_j} = f(x)$. Then $f\left|\left(\{x\} \cup \bigcup_{j < \omega} P_{n_j}\right)\right|$ is continuous at x. The right hand side perfect road at x can be found similarly, proving (13).

To find an appropriate extension f_j of g note that $G = \mathbb{R} \setminus \bigcup_{n < \omega} P_n$ has cardinality \mathfrak{c} . Thus there exists a partition $\{X_y : y \in \mathbb{R}\}$ of G such that $|X_y| = |j(y)|$ if $y \notin \bigcup_{n < \omega} Q_n$ and $|X_y| = |j(y)| - 1$ for $y \in \bigcup_{n < \omega} Q_n$. Finally put

$$f_j(x) = \begin{cases} g(x) & \text{for } x \in \bigcup_{n < \omega} P_n \\ y & \text{for } x \in X_y \text{ and } y \in \mathbb{R}. \end{cases}$$

It is easy to observe that f_j has the desired properties.

Next we will consider a question for which functions $j: \mathbb{R} \to \mathfrak{c} \cup \{\mathfrak{c}\}$ a function f_j as in Theorem 2.1 can be Borel measurable. Clearly, if $f: \mathbb{R} \to \mathbb{R}$ is a Borel onto function then the function $j_f: \mathbb{R} \to \mathfrak{c} \cup \{\mathfrak{c}\}$ defined by $j_f(y) = |f^{-1}(y)|$ must be "nice." In particular, $j_f: \mathbb{R} \to \mathcal{K}_0 = (\omega \setminus \{0\}) \cup \{\omega, \mathfrak{c}\}$. In the following theorems we shall consider \mathcal{K}_0 as the topological space with the discrete topology.

Theorem 2.2. If $j : \mathbb{R} \to \mathcal{K}_0$ is a Borel function then there exists a Borel *j*-to-1 function $f_j : \mathbb{R} \to \mathbb{R}$ with the perfect road property.

PROOF. Let $g: \bigcup_{n < \omega} P_n \to \bigcup_{n < \omega} Q_n$ satisfy the condition (13). Note that $\hat{j}: \mathbb{R} \to \omega \cup \{\omega, \mathfrak{c}\}$ given by $\hat{j}(y) = j(y)$ if $y \notin \bigcup_{n < \omega} Q_n$ and $\hat{j}(y) = j(y) - 1$ if $y \in \bigcup_{n < \omega} Q_n$ is Borel as well. Partition $G = \mathbb{R} \setminus \bigcup_{n < \omega} P_n$ into Borel sets $\{B_{\kappa}: \kappa \in \mathcal{K}_0\}$ such that $|B_{\kappa}| = \kappa \otimes |\hat{j}^{-1}(\kappa)|$ for every $\kappa \in \mathcal{K}_0$. We claim that

for every $\kappa \in \mathcal{K}_0$ there is a κ -to-1 Borel function $f_{\kappa} \colon B_{\kappa} \to \hat{j}^{-1}(\kappa)$. (14)

First note that (14) immediately implies the theorem, since then $f_j \colon \mathbb{R} \to \mathbb{R}$ defined by

$$f_j(x) = \begin{cases} g(x) & \text{for } x \in \bigcup_{n < \omega} P_n \\ f_\kappa(x) & \text{for } x \in B_\kappa \text{ and } \kappa \in \mathcal{K}_0 \end{cases}$$

clearly has the desired properties.

To prove (14) we will consider three cases.

If $\kappa < \mathfrak{c}$, then partition B_{κ} into Borel sets $\{B_{\kappa}^{i}: i < \kappa\}$ each of cardinality $|\hat{\mathfrak{j}}^{-1}(\kappa)|$ and for every $i < \kappa$ define f_{κ} on B_{κ}^{i} as a Borel isomorphism between B_{κ}^{i} and $\hat{\mathfrak{j}}^{-1}(\kappa)$. (Recall that any two Borel sets of the same size are Borel isomorphic. See, e.g., [15, p. 451] or [14, thm 15.6, p. 90].)

If $\kappa = \mathfrak{c}$ and $\lambda = |\hat{j}^{-1}(\mathfrak{c})| < \mathfrak{c}$ then $\lambda \leq \omega$. Partition $B_{\mathfrak{c}}$ onto λ Borel sets $\{B_{\mathfrak{c}}^{y}: y \in \hat{j}^{-1}(\mathfrak{c})\}$ each of cardinality \mathfrak{c} and define $f_{\mathfrak{c}}(x) = y$ for $x \in B_{\mathfrak{c}}^{y}$. If $\kappa = \hat{j}^{-1}(\mathfrak{c}) = \mathfrak{c}$ then define $f_{\mathfrak{c}}$ as a \mathfrak{c} -to-1 Borel function from $B_{\mathfrak{c}}$ onto

If $\kappa = \hat{j}^{-1}(\mathbf{c}) = \mathbf{c}$ then define $f_{\mathbf{c}}$ as a \mathbf{c} -to-1 Borel function from $B_{\mathbf{c}}$ onto $\hat{j}^{-1}(\mathbf{c})$. Such an $f_{\mathbf{c}}$ can be constructed as follows. Let \mathcal{N} denote the space of all irrationals. Let φ be a Borel isomorphism between $B_{\mathbf{c}}$ and $\mathcal{N} \times \mathcal{N}$, $\varphi = (\varphi_1, \varphi_2)$, and let ψ be a Borel isomorphism between \mathcal{N} and $\hat{j}^{-1}(\mathbf{c})$. Define $f_{\mathbf{c}} = \psi \circ \varphi_1$. Then $f_{\mathbf{c}}$ is \mathbf{c} -to-1 and Borel measurable.

We finish this section with the following remark.

Proposition 2.3. Assume that $f \colon \mathbb{R} \to \mathbb{R}$ is Borel measurable. Then

- (i) the set $j_f^{-1}(\mathbf{c})$ is analytic and
- (ii) the set $j_f^{-1}(1)$ can be co-analytic and non-Borel.

PROOF. The statement (i) is a consequence of the Mazurkiewicz-Sierpiński theorem (see [14, thm 29.19, p. 231]), because the graph of a Borel measurable function from \mathbb{R} into \mathbb{R} is a Borel subset of \mathbb{R}^2 . (See [14, thm. 14.12, p. 88].)

To prove (ii) fix an analytic non-Borel set $A \subset \mathbb{R}$. (Such sets exist by the Suslin theorem [14, thm. 14.2, p. 85].) There exists a continuous function $h: \mathcal{N} \to \mathbb{R}$ with $h[\mathcal{N}] = A$. (See [14, p. 85].) Let $\varphi: \mathcal{N} \to \mathcal{N} \times 2$ be a homeomorphism, $\varphi = \langle \varphi_0, \varphi_1 \rangle$, and let $\mathcal{N}_i = \varphi_1^{-1}(i)$ for i = 0, 1. Observe that $f_0: \mathcal{N}_0 \to \mathbb{R}$ defined by $f_0(x) = h(\varphi_0(x))$ is continuous and $f_0[\mathcal{N}_0] = A$. Let $f_1: \mathbb{R} \setminus \mathcal{N}_0 \to \mathbb{R}$ be a Borel isomorphism. (See the isomorphism theorem [14, thm 15.6, p. 90].) Put $f = f_0 \cup f_1$. Then f is Borel measurable and $j_f^{-1}(1) = \mathbb{R} \setminus A$. Thus j_f^{-1} is co-analytic and, by the Lusin Separation Theorem [14, thm 14.7, p. 87], it is non-Borel.

3 CIVP Functions

Recall the following definitions that are introduced in [7] and [19], respectively. (See also [8].)

• $f: \mathbb{R} \to \mathbb{R}$ has the *Cantor intermediate value property* (CIVP), if for every $x, y \in \mathbb{R}$ and for each Cantor set K between f(x) and f(y) there is a Cantor set C between x and y such that $f[C] \subset K$. • $f : \mathbb{R} \to \mathbb{R}$ has the strong Cantor intermediate value property (SCIVP), if for every $x, y \in \mathbb{R}$ and for each Cantor set K between f(x) and f(y)there is a Cantor set C between x and y such that $f[C] \subset K$ and f|C is continuous.

The notion *Cantor set* means a perfect nowhere dense set. Note that in the definitions above the Cantor sets can be replaced by perfect sets.

Theorem 3.1. For every function $j: \mathbb{R} \to \mathfrak{c} \cup {\mathfrak{c}} \setminus {0}$ there exists a *j*-to-1 function $f_j: \mathbb{R} \to \mathbb{R}$ with CIVP.¹

PROOF. Let \mathcal{P} be a family of pairwise disjoint perfect subsets of \mathbb{R} such that $|\mathbb{R} \setminus \bigcup \mathcal{P}| = \mathfrak{c}$ and $|\{P \in \mathcal{P} : P \subset (a, b)\}| = \mathfrak{c}$ for any a < b. Take an enumeration $\{\langle U_{\xi}, Q_{\xi} \rangle : \xi < \mathfrak{c}\}$ of $\{(a, b) : a < b\} \times \{Q \subset \mathbb{R} : Q \text{ is perfect}\}.$

For every $\xi < \mathfrak{c}$ choose $P_{\xi} \in \mathcal{P}$ such that $P_{\xi} \subset U_{\xi}$ and $P_{\xi} \neq P_{\eta}$ for $\xi \neq \eta$. Finally, partition \mathbb{R} into Bernstein sets $\{B_{\xi} : \xi \leq \mathfrak{c}\}$ and define a function $f_0 \colon \bigcup_{\xi < \mathfrak{c}} P_{\xi} \to \mathbb{R}$ such that for every $\xi < \mathfrak{c}$ the restriction $f_0 \mid P_{\xi}$ is a bijection between P_{ξ} and $B_{\xi} \cap Q_{\xi}$. Then f_0 is one-to-one, since sets B_{ξ} are pairwise disjoint. Notice that

any extension
$$f \colon \mathbb{R} \to \mathbb{R}$$
 of f_0 has the CIVP. (15)

Indeed, fix a < b such that $f(a) \neq f(b)$ and a perfect set K between f(a) and f(b). There exists $\xi < \mathfrak{c}$ such that $(a,b) = U_{\xi}$ and $K = Q_{\xi}$. Then P_{ξ} is a perfect set between a and b and $f[P_{\xi}] \subset K$.

To finish the proof let $G = \mathbb{R} \setminus \bigcup_{\xi < \mathfrak{c}} P_{\xi}$ and $Z = \mathbb{R} \setminus f_0[\bigcup_{\xi < \mathfrak{c}} P_{\xi}]$. Observe that $|G| = |Z| = \mathfrak{c}$ because $\mathbb{R} \setminus \bigcup \mathcal{P} \subset G$ and $B_{\mathfrak{c}} \subset Z$. Partition G into sets $\{X_y : y \in \mathbb{R}\}$ such that $|X_y| = |j(y)|$ for $y \in Z$ and $|X_y| = |j(y)| - 1$ for $y \in \mathbb{R} \setminus Z$. Finally, it is easy to verify that the function $f_j : \mathbb{R} \to \mathbb{R}$ defined by

$$f_j(x) = \begin{cases} f_0(x) & \text{for } x \in \bigcup_{\xi < \mathfrak{c}} P_\xi \\ y & \text{for } x \in X_y \text{ and } y \in \mathbb{R} \end{cases}$$

satisfies all assertions of the theorem.

It seems to be reasonable to ask whether f_j in Theorem 3.1 can be Borel if $j: \mathbb{R} \to \mathcal{K}_0$ is Borel. However it is easy to see that if a Borel function $f: \mathbb{R} \to \mathbb{R}$ has the CIVP, then it has also the SCIVP. (See e.g., [8, p. 500].) The case of SCIVP functions will be covered in the next section.

684

¹Although Theorem 3.1 implies Theorem 2.1, their proofs are different and we used the proof of Theorem 2.1 in Theorem 2.2.

4 SCIVP Functions

The analog of Theorem 3.1 does not hold. This follows from the following analog of Proposition 1.1.

Theorem 4.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a countable-to-1 SCIVP function. If $f^{-1}(y)$ is closed for every $y \in \mathbb{R}$ then f is continuous.

PROOF. Suppose that f is discontinuous at some $x \in \mathbb{R}$ from the right. We can assume that $\limsup_{h\to 0^+} f(x+h) = L > f(x)$. Choose $M \in (f(x), L)$, $m \in (f(x), M)$, and $x_0 \in (x, x+1)$ such that $f(x_0) > M$. Let $Q_0 \subset (m, M) \subset (f(x), f(x_0))$ be perfect. By SCIVP there exists a perfect set $P_0 \subset (x, x_0)$ such that $f|P_0$ is continuous and $f[P_0] \subset Q_0$. Observe that $|f[P_0]| = \mathbf{c}$; so we can choose a perfect subset Q_1 of $f[P_0] \subset Q_0$. Next find $x_1 \in (x, x+1/2)$ such that $(x, x_1) \cap P_0 = \emptyset$ and $f(x_1) > M$. Then $Q_1 \subset Q_0 \subset (m, M) \subset (f(x), f(x_1))$. Thus, by SCIVP we can find perfect sets $P_1 \subset (x, x_1)$ and $Q_2 \subset f[P_1] \subset Q_1$. In this way for every $n < \omega$, n > 0, we define by induction

- $x_n \in (x, x+1/(n+1))$ such that $(x, x_n) \cap P_{n-1} = \emptyset$ and $f(x_n) > M$,
- perfect sets $P_n \subset (x, x_n)$ and $Q_n \subset f[P_n] \subset Q_{n-1} \subset (m, M)$.

Let $y \in \bigcap_{n < \omega} Q_n$. Then $f^{-1}(y) \cap P_n \neq \emptyset$ for every n; so x belongs to the closure of $f^{-1}(y)$. But $x \notin f^{-1}(y)$, since f(x) < m < y, a contradiction. \Box

Corollary 4.2. If $f : \mathbb{R} \to \mathbb{R}$ is SCIVP and finite-to-1 then it is continuous.

Clearly there exist discontinuous SCIVP functions which are ω -to-1. For example, the function

$$f(x) = \begin{cases} \sin(1/x) & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

has this property.

Proposition 4.3. There exists an ω -to-1 SCIVP function $f : \mathbb{R} \to \mathbb{R}$ that is nowhere continuous.

PROOF. Let $\langle P_n \rangle_n$ be a sequence of pairwise disjoint nowhere dense perfect sets such that every non-degenerate interval contains some P_n . For every nlet $\hat{P}_n = P_n \setminus \{\min(P_n), \max(P_n)\}$ and let f_n be a continuous non-decreasing Cantor-like function from \hat{P}_n onto \mathbb{R} that is ≤ 2 -to-1. Moreover, let g be an injection from $\mathbb{R} \setminus \bigcup_n \hat{P}_n$ onto \mathbb{R} . Put $f = g \cup \bigcup_n f_n$. Then

• f maps intervals onto the whole real line; so it is nowhere continuous,

- f is ω -to-one, and
- f has SCIVP. Indeed, let a < b, $K \subset (f(a), f(b))$ be a perfect set, and $P_n \subset (a, b)$. Then there exists a perfect set $C \subset P_n$ with $f[C] \subset K$. \Box

Also, it is well-known that there exist SCIVP functions that are c-to-1. (Actually there are continuous functions with this property.) Moreover there exist nowhere continuous SCIVP functions $f: \mathbb{R} \to \mathbb{R}$ that are c-to-1. An example of such a function can be found in [1]. For the sake of completeness we will repeat here an easy construction of such a function.

Proposition 4.4. There exists a c-to-1 SCIVP function $f : \mathbb{R} \to \mathbb{R}$ that is nowhere continuous.

PROOF. Let \mathcal{P} be a family of pairwise disjoint perfect sets with the property that $|\mathbb{R} \setminus \bigcup \mathcal{P}| = \mathfrak{c}$ and $|\{P \in \mathcal{P} \colon P \subset (a, b)\}| = \mathfrak{c}$ for every a < b. Let $\{\langle J_{\xi}, r_{\xi} \rangle \colon \xi < \mathfrak{c}\}$ be an enumeration of $\{(a, b) \colon a < b\} \times \mathbb{R}$. Choose pairwise disjoint sets $P_{\xi} \in \mathcal{P}$ such that $P_{\xi} \subset J_{\xi}$ for every $\xi < \mathfrak{c}$ and define f_0 on $\bigcup_{\xi < \mathfrak{c}} P_{\xi}$ by making $f_0|P_{\xi} \equiv r_{\xi}$. It is easy to see that any extension $f \colon \mathbb{R} \to \mathbb{R}$ of f_0 has the SCIVP and is nowhere continuous.

References

- [1] K. Banaszewski, Algebraic properties of functions with the Cantor intermediate value property, Math. Slovaca **48** (1998), to appear.
- [2] A. M. Bruckner, Differentiation of real functions, CMR Series Vol. 5, Amer. Math. Soc. 1994.
- [3] A. M. Bruckner and J. Ceder, *Darboux Continuity*, Jahresber. Deutsch. Math.-Verein. 67 (1965), 93–117.
- [4] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997.
- [5] K. Ciesielski and I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions, Real Analysis Exch. 21 (1995–96), 459–472. (Preprint* available.²)
- [6] P. Civin, Two-to-one mappings on manifolds, Duke Math. J. 10 (1943), 49–57.

²Preprints marked by * are available in electronic form accessible from *Set Theoretic Analysis Web Page:* http://www.math.wvu.edu/homepages/kcies/STA/STA.html

- [7] R. G. Gibson and F. Roush, The Cantor intermediate value property, Top. Proc. 7 (1982), 55–62.
- [8] R. G. Gibson and T. Natkaniec, *Darboux like functions*, Real Analysis Exch. 22(2) (1996–97), 492–534. (Preprint* available.)
- [9] P. Gilbert, n-to-1 mappings of linear graphs, Duke Math. J. 9 (1942), 475–486.
- [10] D. C. Gillespie, A property of continuity, Bull. Amer. Math. Soc. 28 (1922), 245–250.
- [11] O. G. Harrold, Jr., The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789–793.
- [12] J. Heath, k-to-1 functions between graphs with finitely many discontinuities, Proc. Amer. Math. Soc. 103(2) (1988), 661–666.
- [13] H. Katsuura and K. Kellum, k-to-1 functions on an arc, Proc. Amer. Math. Soc. 101(4) (1987), 629–633.
- [14] A. S. Kechris, *Lectures on classical descriptive set theory*, Springer Verlag, Berlin 1995.
- [15] K. Kuratowski, *Topology*, Vol. 1, Academic Press Polish Scientific Publishers, 1966.
- [16] S. Nadler, Jr. and L. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87(2) (1983), 351–354.
- [17] J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256– 262.
- [18] H. Rosen, Limits and sums of extendable connectivity functions, Real Analysis Exch. 20 (1994–95), 183–191.
- [19] H. Rosen, R. G. Gibson, and F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Analysis Exch. 17 (1991– 92), 248–257.