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Abstract

A function f : R" — R is aconnectivity functiorif for every connected subsétof R” the graph
of the restrictionf | C is a connected subset Bf' 1, and f is anextendable connectivity function
if f can be extended to a connectivity functignR"t1 — R with R” embedded intd"*1 as
R”" x {0}. There exists a connectivity functigh: R — R that is not extendable. We prove that for
n > 2 every connectivity functiorf : R"” — R is extendableld 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Given functionsf : R” — R andg : R"*1 — R, we say thag extendsf if g extends the
compositionf o 7 :R" x {0} - R, wherer : R" x {0} — R" and

r((xl,xz,...,x,,,O))z(xl,xz,...,xn), Q)

for every (x1, x2, ..., x,) € R". A function f:R" — R is a connectivity functiorif for
every connected subs€tof R” the graph of the restrictiofi | C is a connected subset of
R**1 and f is anextendable connectivity functidginthere exists a connectivity function
g:R*™1 5 R extendingf.

Y This work was partially supported by NSF Cooperative Research Grant INT-9600548 with its Polish part being
financed by Polish Academy of Science PAN.

* Corresponding author.

E-mail addressesk_cies@math.wvu.edu (K. Ciesielski), mattn@ksinet.univ.gda.pl (T. Natkaniec),
jerzy@math.wvu.edu (J. Wojciechowski).

0166-8641/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PIl: S0166-8641(00)00038-9



194 K. Ciesielski et al. / Topology and its Applications 112 (2001) 193-204

It follows immediately from the definition that every extendable connectivity function
is a connectivity function. Cornette [3] and Roberts [9] proved that there exists a
connectivity functionf :R — R that is not extendable. This result was surprising and
sparked the interest in the family of extendable connectivity functions. Ciesielski and
Wojciechowski [2] asked whether there exists a connectivity funcfioR” — R, with
n > 2, that is not extendable. In this paper we will show that the answer to that question is
negative.

Theorem 1. If n > 2 then every connectivity functigh: R* — R is extendable.

To prove Theorem 1 we will use ideas from Gibson and Roush [5] where is formulated
a necessary and sufficient condition for a connectivity functfofio, 1] — [0, 1] to be
extendable to a connectivity functiofi: [0, 12 - [0, 1] (if one considerd0, 1] to be
embedded ifi0, 1% as[0, 1] x {0}).

Our basic terminology and notation is standard. (See [1] or [4].) In particularjsfa
subset of a metric spacg, then bdA, cl A and diamA will denote the boundary, closure,
and diameter ot in X, respectively, and iff is a function and is a subset of its domain,
then f[A] is the image ofdA undery.

The following additional terminology will be useful in our proof. Given a function
f:R" — R, aperipheral pair( for f) is an ordered paitA, I) with I being a closed
interval inR and A being an open bounded subset®f with f[bdA] C I. Givene > 0,
an e-peripheral pairis a peripheral paitA, I) with diamA < ¢ and dian’7 < ¢. Given a
pointx € R", a peripheral pair foy atx is a peripheral paitA, I) for f with x € A and
f(x) el.Afunction f:R" — R is said to bgeripherally continuou# for every x € R”
ande > 0 there is ar-peripheral pair forf atx.

The class of peripherally continuous functighsR — R is strictly larger than the class
of connectivity functions. However, the following result holds.

Theorem 2. If n > 2 then a functionf : R” — R is peripherally continuous if and only if
it is a connectivity function.

The implication that a connectivity function is peripherally continuous in Theorem 2
was proved by Hamilton [7] and Stallings [10], and the opposite implication was proved
by Hagan [6].

Let f:R" — R be a function and be a family of peripheral pairs fof . We say that
P locally converges td@ if for everye > 0 and every bounded s&t C R” the set

{(A.1) e P: ANX #¢ and diani > ¢}

is finite, and that? has theintersection propertyprovided I N I’ # ¢ for any
(A, I), (A", I} € P such that each of the setsnN A’, A\ A’, andA’ \ A is nonempty.
Given X C R", we say thatP is an f-base forX if for every ¢ > 0 andx € X there
exists are -peripheral pair forf atx that belongs td. Note that a functiory : R" — R
is peripherally continuous if and only if there exists Arbase for some set C R” that
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contains all points of discontinuity of. A peripheral family forf : R” — R is a countable
family of peripheral pairs forf that locally converges to 0, has the intersection property,
and is anf-base forlR”.

Theorem 1 follows from Theorem 2 and the following two results.

Theorem 3. If n > 2 and f:R" — R is a peripherally continuous function, then there
exists a peripheral family foy .

If (A, 1) is a peripheral pair (for som¢:R" — R), then thecylindrical extensiorof
(A, I)is apair(A’, I), where

A’ = A x (—diamA, diamA) € R"*L.

If P is a set of peripheral pairs, then tbgindrical extensiorof P is the set of cylindrical
extensions of all the elements Bt

The casen = 1 of the following theorem is a modification of a result of Gibson and
Roush [5].

Theorem 4. If n > 1 and P is a peripheral family forf :R" — R, then there exists a
continuous function

hR (R" x {0}) — R

such that every element of the cylindrical extensiorPofs a peripheral pair for the
function

g=hU(for): R SR,

wheret : R" x {0} — R”" is the bijection as ir{1).

The proof of Theorem 3 is given in Section 2, and the proof of Theorem 4 can be found
in Section 3. Now we shall give the proof of Theorem 1.

Proof of Theorem 1. Letn > 2 and f :R" — R be a connectivity function. Sincg is
peripherally continuous, it follows from Theorem 3 that there exists a peripheral family
P for f. Let Q be the cylindrical extension dP. By Theorem 4 there exists a function
g: R R such thag extendsf, the restriction og to R"+1\ (R” x {0}) is continuous,
and every element & is a peripheral pair fog. The proof will be complete when we show
that Q is ag-base forR" x {0} since then it will follow thatg is peripherally continuous
and hence a connectivity function.

Lete > 0 andx = (x1, ..., x,) € R". SinceP is an f-base forlR”", there is(A, I) € P
such that diamk < ¢/+/5, diam/ < ¢, x € A, andf (x) € I. Then the cylindrical extension
(A’, I) € Qof (A, I) is ans-peripheral pair fog atx = (x1, ..., x,, 0) implying thatQ is
ag-base foflR” x {0}. O
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2. Peripheral familiesfor connectivity functions

In this section we are going to prove Theorem 3. First, let us introduce some more
terminology. Throughout this section we will assume that a fixed integer and that
n>=2.

GivenX, Y C R", theboundaryof X NY in X will be denoted by bg Y. Theinductive
dimensionind X of a subseX € R” is defined inductively as follows. (See, for example,
Engelking [4].)

(i) indX =-1ifand only if X =@.
(ii) ind X < m if for any p € X and any open neighborhoddl of p there exists an
open neighborhootf € W of p such thatindbgd U <m — 1.
(i) ind X =m if ind X <m and itis not true that ind <m — 1.
A fundamental result of dimension theory states thaiifig= n.

Given a setA C R" and an integem > 1, we say thatd is anm-dimensional Cantor
manifoldif A is compact, indd = m, and for everyX C A with indX <m — 2, the set
A\ X is connected. (See [8].) Given a subdedf R", we say tha# is a quasiballif A is
a bounded and connected open set, and slan (n — 1)-dimensional Cantor manifold.
(See [2].) A peripheral paifA, I) with A being a quasiball will be calledrace peripheral
pair. Givene, § > 0, an{g, §)-peripheral pairis a peripheral paitA, I) with diamA < ¢
and diam/ < §. The following theorem follows immediately from Corollary 5.5 in [2].

Theorem 5. If f:R" — R is a peripherally continuous function, then for any > 0 and
x € R" there exists a nicéz, §)-peripheral pair for f at x.

We say that quasiballsé andA’ areindependenif each of the setst N A’, A\ A’, and
A"\ A is nonempty. The following lemma is a restatement of Lemma 5.6 in [2].

Lemma6. If A andA’ are independent quasiballs R, thenbdA NbdA’ £ @.
The following lemma follows immediately from Lemma 6.
Lemma 7. If P is a family of nice peripheral pairs, theR has the intersection property.

For every positive integere N, let
—4i2 —4i2+1 4i2
Dl = R BRI B

4i 4i 4i

and
Ji={Jiq" q € Di},

whereJ; , is the open interval

1 1
Ji,q= q_E’CI+E s

for eachg € D;.
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Lemma8. Let f:R" — R be a function and, for everye N andq € D;, let
Pi,q = {(Ay» Iy): Y € Fi,q}
be a family of(1/i)-peripheral pairs forf such that
e U A and Jiga< () L.
veliq veliq
Then

P=UJ U P

ieN geD;
is an f-base forR".

Proof. Let ¢ > 0 andx € R"”. Then there aré € N andg € D; with 1/i < ¢ and
fx) e Jiq. Since

unc U 4y
veliqg
there iss e I'; , such thatc € As. Since
Ji,q - ﬂ I s
veliq

it follows that(A;, Is) is anes-peripheral pair forf atx. O
Now we are ready to prove Theorem 3.

Proof of Theorem 3. Letn > 2 and f :R" — R be a peripherally continuous function.
Fixi e Nandqg € D;. By Theorem 5 for each f‘l(J,;q) there exists a nicél/i, 1/4i)-
peripheral paifA; 4 x, Ii 4,x) for f atx. Let

IZ;,q = {(Ai,q,x» CI(Ii,q,x U Ji,q)>: X € f_l(-]i,q)}~
Note that since
f(x) € Ii,q,x N Ji,q # ?

for everyx e f*l(Jl-,q), the elements of; , are(1/i, 3/4i)-peripheral pairs foif .
Let j, k € N be any positive integers with> i. Set

T,.f‘q ={(A,I)eTi4y: AN By #9¥andA N By = for everyk’ <k},

whereBy is the open ball of centdf, 0, ... ., 0) and radius, and
; 1 1
Thi = {(A, I eT!: = <diamA < —}
q an j—1

Moreover, let

k’j
Ci =cl( U A),
ki
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and
k.j _ ~k.j
= C,,q \ A.

k.j
(A,DeT,

Fix y € Elkq’ Let(A,, I}/) be a nice(1/j, 1/4i)-peripheral pair forf aty. Since

Ef) cl( U bdA>,
(A, NeT!
thereis(A, I) 7;2"' such that
Ay, NbdA # 0.

Since diamd, < diamA, it follows that the quasiballd and A, are independent and so
Lemma 6 implies that N 1] # 0. Let I, = 1 U I| for everyy € E ’ and

SHT=T4 ufiAy. 1) ye BT

Note thatJ; , C I for every(A,I) e Sf’qj. Since the seCf’qj is compact and

k/
ctje U &
(A.)eS!)

there is a finite subsé?f;/ of S{f;’ such that

k,j
clc J A
(A.1ePl)

Let
k,
Pia=U UPY ={(A,. L) vy e D).
keN j>i
Itis clear that the elements & , are(1/i) -peripheral pairs and
Jig € m I,.
Ven,ll
Moreover,
— k,j
fugc U ac U dacyUc < U A
(A,1)eTiq (A,1)eTiq keN j>i veliy
implying, by Lemma 8, that
P = U U Pig
ieN geD;
is an f-base forR". Of courseP is countable and since all peripheral pairsfnare

nice, it follows from Lemma 7 thaP has the intersection property. It remains to prove the
following claim.

Claim. The familyP locally converges t® .
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We are going now to prove the claim. First note thatdf, 7) € 7;2-" andk’ < k, then
AN By =, implying thaty ¢ By (and hencet, ¢ By) foranyy e Elkq’ Therefore

A¢ By forany(A,I)e Sl.'f;jj andk’ < k. 2
Also note that

1 .
diamA < — forany(A, ) eS{"q" and;’ < j. 3)
] ,

Now let ¢ > 0 and X € R" be a bounded set. Then there afek’ € N such that
1/j' < e and X is a subset of the balB;_1. Let (A, I) € P be such that N X # @
and diam > ¢. SinceA N By 1 # ¥ and diamA < 1, it follows thatA € By.. Therefore,
since diam > 1/, it follows from (2) and (3) that ifA, I) e P}/ € Sf'/, thenk <&’
andj < j'. Thus

wnert'=J UUU 7y

k<k j<j'i<jqeDi

Since the setP/" is finite, the proof of the claim, and hence of the theorem is
complete. O

3. Connectivity functions are extendable

In this section we are going to prove Theorem 4.

A partial order on a setT is a binary relationg on T that is reflexive, transitive and
antisymmetric (that is;, < s ands < ¢ imply r = s for everys,t € T). We say thak has
thefinite predecessor propertifor everyr € T the set{s € T: s <t} of < -predecessors
of ¢ is finite. A partial orderx™ on a setT is anw-order if there is a bijectionf :w — T
(wherew = {0, 1, ...}) such thatf () <* f(s) if and only if + < 5. Given partial orders
< and<* on T, we say thakk* extendsx if and only if r < s impliest <* s for every
s, teT.

Lemma9. If xis a partial order on an infinite countable s&twith the finite predecessor
property, then there is an-order <* on T that extendsg .

Proof. It is enough to show that there is a bijectignw — T such thatf (i) < f ()
impliesi < j. Let< be any fixedo-order onT . We shall define the valug(i) by induction
oni. Leti € w and assume that(j) has been defined for evejy<i. Let

T,=T\{f(: j<i},

and let Tl/ consist of all<-minimal elements in7;. For everyt € T; the set ofx-
predecessors af is finite so there is € T/ with s < . In particular, T/ is nonempty.
Let f(i) be theS -minimal element of;.

It is obvious from the construction thdtis injective and thaff (i) < f(j) impliesi < j
for everyi, j € w. To see thaff is surjective note that for anye » andr € T; the set of
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<-predecessors ofis finite, so one of them is ifi’. This predecessor ofwill eventually
become a value of since< is anw-order. Then the number of unassignegredecessors
of t becomes smaller and hence eventualtgelf must become a value gf. O

A family A of subsets of a metric spadgis locally finiteif for every x € X some open
neighborhood of intersects only finitely many elements df Let aTietze familyfor a
metric spaceX be a countable family

F={(Cy. L) yeT}

such that:
(1) A={C,: y e I'} isalocally finite closed cover of with anyC,, intersecting only
finitely many elements af{;
(2) foreveryy e I', I, is either equal t®R or is a closed interval ifR;
(3) foreveryd C I

it () Cy#0then ()1, #0.
yed yed

The following result will be the key step in our proof of Theorem 4.

Theorem 10. Let X be a metric space an@# = {(C,, I,,): y € I'} be a Tietze family for
X. Then there is a continuous functibn X — R such that:[C, ] € I, for everyy e I.

Proof. LetA={C,: y € I'}, and

TA={q>gF: ﬂcy;«é@}.

yed

Let < 4 be the partial order of reversed inclusionBy, that is, letd1 < 4 @» if and only if

@, C 1. Since every element oA intersects only finitely many elements 4f it follows

that the elements df 4 are finite sets and that 4 has the finite predecessor property.
Let <y be anw-order extendings 4 and for everyd € 74 let

Co=[)Cy#0.
yed
Take the enumeratio®?1, @2, ... of T 4 with
D1y P2y
andforevery =1,2, ... let

i+1°

Ci:UC‘Dj’ C;:Ciﬂqu
j<i
and

I = ﬂ I, #0.

VED;
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We are going to define a sequeriehy, . .. of continuous functions; : C; — R such that
foreveryi =1, 2, ... the functioni; 1 is an extension of; and

hilC,NCi1C I, 4)

for everyy e I'. Having defined such a sequence of functions our proof will be complete
since it is easy to see that the function

o0
h=|Jhi
i=1

satisfies the required conditions. Indeed, (4) implies @, ] < I, for everyy € I', and
sinceF is a locally finite closed cover of it follows that/ is a continuous function oX.

Let h1:C1 — I1 be any continuous function. Suppose thahas been defined in such
a way that (4) is satisfied. Lét; be the restriction of; to C!. It follows from (4) that
hg :Cl.’ — Iiy1. SinceC{ is a closed subset afy, ,, it follows from Tietze Extension
Theorem that; can be extended to a continuous functign Ce,,, — ;1. Leth; 11 =
h; Uh!. SinceC; andCg,,, are closed subsets 6f, 1, the function; y1:Ciy1 — R is
continuous. It remains to show that (4) is satisfied/ifar; .

Suppose thay € I andx € C, N Ci11. If x € C;, thenh;;1(x) = h;(x) € I,, by the
inductive hypothesis. Otherwisee Co, , and soh; 1(x) = h/(x) € I;11. It suffices to
show thaty € ®; 1.

Indeed, sinc&, N Co, , # ¥, it follows that®; .1 U {y} € T 4. Since

D11 U{y} <4 it
and sincesf4 extends< 4, it follows that there isj <i + 1 with

i+1

Qi1Ufyt=9;.

Sincex e C, NCq,,, = Co, andx ¢ C;, it follows thatj =i + 1. Thusy € &;41 and so
the proof is complete. O

Lemma 11. Letn > 1, f:R" — R, P be a peripheral family forf, and Q be the
cylindrical extension oP. If {{A;,I;): 1< j <k} S Q andbdA; NbdA; # ¢ for every
i,j <k then_,1; #0.

Proof. First we shall prove the lemma fdr = 2. Suppose, by way of contradiction,
that there exist{A1, I1), (A2, I2) € Q with bdA1 NbdAs £ @ and I1 N I, = @. Let
(A}, ), (A), 1) € P be such that
A1=A] x (—a1,a1) and Az = A, x (—az, a2),
wherea; = diamA] anda; = diamAJ,.
Since f[bdA}] € I and f[bdA}] C I2, we have
bdA] NbdA, =0.

It follows that A7 N A%, # @ since otherwise we would have 4] N clA, = ¢ in
contradiction with bdi; N bdA2 # ¢. SinceP has the intersection property, one 4f,
A’ is a subset of the other.
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Assume thatd] € A’. Since clA] C clA’, and bdA} N bdA), = #, it follows that
clA] € A). Since the set ¢l is compact, there arey, x2 € cl A7 with diamA] equal
to the distance fromy to x2. Sincexy, x2 € A, and A} is open, it follows that

a1 =diamA] < diamA), = ay,
and so
bdA1 = bdAa_ X [—a1,a1]U Aa_ X {—a1,a1} C Alz X (—ap,a2) = Ay,

contradicting our assumption that Rd N bd A, # @.
Now for k > 2 the assertion follows easily from the fact that{if: 1< j <k}is a
family of intervals inR andi; N I, # @ for every j, m <k, thenﬂ’j‘.=1 Ij#9. O

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Let f:R" — R be a functionP be a peripheral family foy’, © be
the cylindrical extension oP, and
X =R"1\ (R” x {0}).

We need to construct a continuous functionX — R such thath[bdA] C I for every
(A, I) € Q. The existence of the functiolh will follow from Theorem 10 after we have
constructed a Tietze family

F={(Cy.I,): y eT}
for X such that for everyA, I) € Q there is® C I' with

xnbdAc | JC, and I,=1 foreveryyeo. (5)
yed

Let IC consist of all closed intervals of the following formig; i + 1], [—i — 1, —i],
[1/G+1),1/i],and[-1/i,—1/(i + 1)] foreveryi =1,2,.... Set

Ar={(cI B} \ B} ;) x [a,b] CR"™: [a,b]le K andk=1,2,...},

whereB;! € R" is the open ball with centel0, 0, ..., 0) and radiust. Note thatA; is a
locally finite closed cover oX.
Define

F1={(C.R): C € A1}
and

Fa={(bdANL,I): (A I)eQandL € L},
where

L={R" x [a,b]: [a,b] € K}.
Let I’y and > be disjoint sets of indices such that

Fi={(C,. I,): yei} and Fo=|{(C).1,): y € ID).
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Obviously, for every(A, I) € Q there is@ C I» such that (5) holds. Thus to complete the
proof it remains to prove the following claim.

Claim. The familyF; U F; is a Tietze family foX.

Let
A>={Cy: y eI}

Obviously,.41 U A5 is a closed cover oK. Since the familyP is locally convergent to
0, every bounded subset of an elementdhtersects only finitely many elements db.
Since each point € X has an open neighborhood contained in at most two elemeits of
it follows that.A; is locally finite, and hencel; U A3 is locally finite.

Since every elemert of A; U A2 is a bounded subset of an elementfit follows
that C intersects only finitely many elements iy, and it is clear thaC intersects only
finitely many elements afl;. Thus every element ofl; U A; intersects only finitely many
elementsind; U As.

Now suppose that

() G #9

yed1UD,y

for some®;, C I and @ € 1. Since( ), Cy # 9, it follows from Lemma 11 that
My co, Iy #9. Sincel, =R for y € &3, we have

N L=()L#2

yeP1UP, yedy

Thus F1 U F» is a Tietze family forX, and so the proof of the claim and hence of the
theorem is complete. O
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