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Abstract

A functionf :Rn → R is aconnectivity functionif for every connected subsetC of Rn the graph
of the restrictionf � C is a connected subset ofRn+1, andf is anextendable connectivity function
if f can be extended to a connectivity functiong :Rn+1 → R with Rn embedded intoRn+1 as
Rn × {0}. There exists a connectivity functionf :R → R that is not extendable. We prove that for
n � 2 every connectivity functionf :Rn → R is extendable. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Given functionsf :Rn → R andg :Rn+1 → R, we say thatg extendsf if g extends the
compositionf ◦ τ :Rn × {0} → R, whereτ :Rn × {0} → Rn and

τ
(〈x1, x2, . . . , xn,0〉)= 〈x1, x2, . . . , xn〉, (1)

for every〈x1, x2, . . . , xn〉 ∈ Rn. A function f :Rn → R is a connectivity functionif for
every connected subsetC of Rn the graph of the restrictionf � C is a connected subset of
Rn+1, andf is anextendable connectivity functionif there exists a connectivity function
g :Rn+1 → R extendingf .
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It follows immediately from the definition that every extendable connectivity function
is a connectivity function. Cornette [3] and Roberts [9] proved that there exists a
connectivity functionf :R → R that is not extendable. This result was surprising and
sparked the interest in the family of extendable connectivity functions. Ciesielski and
Wojciechowski [2] asked whether there exists a connectivity functionf :Rn → R, with
n � 2, that is not extendable. In this paper we will show that the answer to that question is
negative.

Theorem 1. If n � 2 then every connectivity functionf :Rn → R is extendable.

To prove Theorem 1 we will use ideas from Gibson and Roush [5] where is formulated
a necessary and sufficient condition for a connectivity functionf : [0,1] → [0,1] to be
extendable to a connectivity functionf : [0,1]2 → [0,1] (if one considers[0,1] to be
embedded in[0,1]2 as[0,1] × {0}).

Our basic terminology and notation is standard. (See [1] or [4].) In particular, ifA is a
subset of a metric spaceX, then bdA, clA and diamA will denote the boundary, closure,
and diameter ofA in X, respectively, and iff is a function andA is a subset of its domain,
thenf [A] is the image ofA underf .

The following additional terminology will be useful in our proof. Given a function
f :Rn → R, a peripheral pair ( for f ) is an ordered pair〈A,I 〉 with I being a closed
interval inR andA being an open bounded subset ofRn with f [bdA] ⊆ I . Givenε > 0,
anε-peripheral pair is a peripheral pair〈A,I 〉 with diamA< ε and diamI < ε. Given a
point x ∈ Rn, a peripheral pair forf at x is a peripheral pair〈A,I 〉 for f with x ∈ A and
f (x) ∈ I . A functionf :Rn → R is said to beperipherally continuousif for everyx ∈ Rn

andε > 0 there is anε-peripheral pair forf atx.
The class of peripherally continuous functionsf :R → R is strictly larger than the class

of connectivity functions. However, the following result holds.

Theorem 2. If n � 2 then a functionf :Rn → R is peripherally continuous if and only if
it is a connectivity function.

The implication that a connectivity function is peripherally continuous in Theorem 2
was proved by Hamilton [7] and Stallings [10], and the opposite implication was proved
by Hagan [6].

Let f :Rn → R be a function andP be a family of peripheral pairs forf . We say that
P locally converges to0 if for everyε > 0 and every bounded setX ⊆ Rn the set{〈A,I 〉 ∈P : A∩X �= ∅ and diamA � ε

}
is finite, and thatP has the intersection propertyprovided I ∩ I ′ �= ∅ for any
〈A,I 〉, 〈A′, I ′〉 ∈ P such that each of the setsA ∩ A′, A \ A′, andA′ \ A is nonempty.
Given X ⊆ Rn, we say thatP is anf -base forX if for every ε > 0 andx ∈ X there
exists anε -peripheral pair forf at x that belongs toP . Note that a functionf :Rn → R
is peripherally continuous if and only if there exists anf -base for some setX ⊆ Rn that
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contains all points of discontinuity off . A peripheral family forf :Rn → R is a countable
family of peripheral pairs forf that locally converges to 0, has the intersection property,
and is anf -base forRn.

Theorem 1 follows from Theorem 2 and the following two results.

Theorem 3. If n � 2 and f :Rn → R is a peripherally continuous function, then there
exists a peripheral family forf .

If 〈A,I 〉 is a peripheral pair (for somef :Rn → R), then thecylindrical extensionof
〈A,I 〉 is a pair〈A′, I 〉, where

A′ = A× (−diamA,diamA) ⊆ Rn+1.

If P is a set of peripheral pairs, then thecylindrical extensionof P is the set of cylindrical
extensions of all the elements ofP .

The casen = 1 of the following theorem is a modification of a result of Gibson and
Roush [5].

Theorem 4. If n � 1 andP is a peripheral family forf :Rn → R, then there exists a
continuous function

h :Rn+1 \ (Rn × {0})→ R

such that every element of the cylindrical extension ofP is a peripheral pair for the
function

g = h∪ (f ◦ τ ) :Rn+1 → R,

whereτ :Rn × {0} → Rn is the bijection as in(1).

The proof of Theorem 3 is given in Section 2, and the proof of Theorem 4 can be found
in Section 3. Now we shall give the proof of Theorem 1.

Proof of Theorem 1. Let n � 2 andf :Rn → R be a connectivity function. Sincef is
peripherally continuous, it follows from Theorem 3 that there exists a peripheral family
P for f . Let Q be the cylindrical extension ofP . By Theorem 4 there exists a function
g :Rn+1 → R such thatg extendsf , the restriction ofg to Rn+1\ (Rn×{0}) is continuous,
and every element ofQ is a peripheral pair forg. The proof will be complete when we show
thatQ is ag-base forRn × {0} since then it will follow thatg is peripherally continuous
and hence a connectivity function.

Let ε > 0 andx = 〈x1, . . . , xn〉 ∈ Rn. SinceP is anf -base forRn, there is〈A,I 〉 ∈ P
such that diamA< ε/

√
5, diamI < ε, x ∈ A, andf (x) ∈ I . Then the cylindrical extension

〈A′, I 〉 ∈ Q of 〈A,I 〉 is anε-peripheral pair forg at x̄ = 〈x1, . . . , xn,0〉 implying thatQ is
ag-base forRn × {0}. ✷
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2. Peripheral families for connectivity functions

In this section we are going to prove Theorem 3. First, let us introduce some more
terminology. Throughout this section we will assume thatn is a fixed integer and that
n � 2.

GivenX,Y ⊆ Rn, theboundaryof X ∩ Y in X will be denoted by bdX Y . Theinductive
dimensionindX of a subsetX ⊆ Rn is defined inductively as follows. (See, for example,
Engelking [4].)

(i) indX = −1 if and only ifX = ∅.
(ii) ind X � m if for any p ∈ X and any open neighborhoodW of p there exists an

open neighborhoodU ⊆ W of p such that indbdX U � m− 1.
(iii) ind X = m if indX � m and it is not true that indX �m− 1.

A fundamental result of dimension theory states that indRn = n.
Given a setA ⊆ Rn and an integerm � 1, we say thatA is anm-dimensional Cantor

manifold if A is compact, indA = m, and for everyX ⊆ A with indX � m − 2, the set
A \X is connected. (See [8].) Given a subsetA of Rn, we say thatA is a quasiballif A is
a bounded and connected open set, and bdA is an(n − 1)-dimensional Cantor manifold.
(See [2].) A peripheral pair〈A,I 〉 with A being a quasiball will be called aniceperipheral
pair. Givenε, δ > 0, an〈ε, δ〉-peripheral pair is a peripheral pair〈A,I 〉 with diamA< ε

and diamI < δ. The following theorem follows immediately from Corollary 5.5 in [2].

Theorem 5. If f :Rn → R is a peripherally continuous function, then for anyε, δ > 0 and
x ∈ Rn there exists a nice〈ε, δ〉-peripheral pair forf at x.

We say that quasiballsA andA′ areindependentif each of the setsA∩ A′, A \ A′, and
A′ \A is nonempty. The following lemma is a restatement of Lemma 5.6 in [2].

Lemma 6. If A andA′ are independent quasiballs inRn, thenbdA∩ bdA′ �= ∅.

The following lemma follows immediately from Lemma 6.

Lemma 7. If P is a family of nice peripheral pairs, thenP has the intersection property.

For every positive integeri ∈ N, let

Di =
{−4i2

4i
,
−4i2 + 1

4i
, . . . ,

4i2

4i

}
and

Ji = {Ji,q : q ∈ Di},
whereJi,q is the open interval

Ji,q =
(
q − 1

4i
, q + 1

4i

)
,

for eachq ∈ Di .
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Lemma 8. Letf :Rn → R be a function and, for everyi ∈ N andq ∈ Di , let

Pi,q = {〈Aγ , Iγ 〉: γ ∈ Γi,q

}
be a family of(1/i)-peripheral pairs forf such that

f−1(Ji,q ) ⊆
⋃

γ∈Γi,q

Aγ and Ji,q ⊆
⋂

γ∈Γi,q

Iγ .

Then

P =
⋃
i∈N

⋃
q∈Di

Pi,q

is anf -base forRn.

Proof. Let ε > 0 and x ∈ Rn. Then there arei ∈ N and q ∈ Di with 1/i � ε and
f (x) ∈ Ji,q . Since

f−1(Ji,q ) ⊆
⋃

γ∈Γi,q

Aγ ,

there isδ ∈ Γi,q such thatx ∈ Aδ . Since

Ji,q ⊆
⋂

γ∈Γi,q

Iγ ,

it follows that〈Aδ, Iδ〉 is anε-peripheral pair forf atx. ✷
Now we are ready to prove Theorem 3 .

Proof of Theorem 3. Let n � 2 andf :Rn → R be a peripherally continuous function.
Fix i ∈ N andq ∈ Di . By Theorem 5 for eachx ∈ f−1(Ji,q ) there exists a nice〈1/i,1/4i〉-
peripheral pair〈Ai,q,x , Ii,q,x〉 for f atx. Let

Ti,q = {〈
Ai,q,x ,cl(Ii,q,x ∪ Ji,q )

〉
: x ∈ f−1(Ji,q)

}
.

Note that since

f (x) ∈ Ii,q,x ∩ Ji,q �= ∅
for everyx ∈ f−1(Ji,q), the elements ofTi,q are〈1/i,3/4i〉-peripheral pairs forf .

Let j, k ∈ N be any positive integers withj > i. Set

T k
i,q = {〈A,I 〉 ∈ Ti,q : A∩Bk �= ∅ andA∩Bk′ = ∅ for everyk′ < k

}
,

whereBk is the open ball of center〈0,0, . . . ,0〉 and radiusk, and

T k,j

i,q =
{
〈A,I 〉 ∈ T k

i,q :
1

j
� diamA<

1

j − 1

}
.

Moreover, let

C
k,j

i,q = cl

( ⋃
〈A,I 〉∈T k,j

i,q

A

)
,
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and

E
k,j
i,q = C

k,j
i,q \

⋃
〈A,I 〉∈T k,j

i,q

A.

Fix y ∈ E
k,j

i,q . Let 〈Ay, I
′
y〉 be a nice〈1/j,1/4i〉-peripheral pair forf at y. Since

E
k,j

i,q ⊆ cl

( ⋃
〈A,I 〉∈T k,j

i,q

bdA

)
,

there is〈A,I 〉 ∈ T k,j
i,q such that

Ay ∩ bdA �= ∅.
Since diamAy < diamA, it follows that the quasiballsA andAy are independent and so

Lemma 6 implies thatI ∩ I ′
y �= ∅. Let Iy = I ∪ I ′

y for everyy ∈ E
k,j
i,q and

Sk,j
i,q = T k,j

i,q ∪ {〈Ay, Iy〉: y ∈ E
k,j
i,q

}
.

Note thatJi,q ⊆ I for every〈A,I 〉 ∈ Sk,j

i,q . Since the setCk,j

i,q is compact and

C
k,j

i,q ⊆
⋃

〈A,I 〉∈Sk,j
i,q

A,

there is a finite subsetPk,j
i,q of Sk,j

i,q such that

C
k,j
i,q ⊆

⋃
〈A,I 〉∈Pk,j

i,q

A.

Let

Pi,q =
⋃
k∈N

⋃
j>i

Pk,j
i,q = {〈Aγ , Iγ 〉: γ ∈ Γi,q

}
.

It is clear that the elements ofPi,q are(1/i) -peripheral pairs and

Ji,q ⊆
⋂

γ∈Γi,q

Iγ .

Moreover,

f−1(Ji,q ) ⊆
⋃

〈A,I 〉∈Ti,q

A ⊆
⋃

〈A,I 〉∈Ti,q

clA ⊆
⋃
k∈N

⋃
j>i

C
k,j
i,q ⊆

⋃
γ∈Γi,q

Aγ ,

implying, by Lemma 8, that

P =
⋃
i∈N

⋃
q∈Di

Pi,q

is an f -base forRn. Of courseP is countable and since all peripheral pairs inP are
nice, it follows from Lemma 7 thatP has the intersection property. It remains to prove the
following claim.

Claim. The familyP locally converges to0 .
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We are going now to prove the claim. First note that if〈A,I 〉 ∈ T k,j
i,q andk′ < k, then

A∩Bk′ = ∅, implying thaty /∈ Bk′ (and henceAy � Bk′ ) for anyy ∈ E
k,j
i,q . Therefore

A � Bk′ for any〈A,I 〉 ∈ Sk,j
i,q andk′ < k. (2)

Also note that

diamA<
1

j ′ for any〈A,I 〉 ∈ Sk,j
i,q andj ′ < j. (3)

Now let ε > 0 and X ⊆ Rn be a bounded set. Then there arej ′, k′ ∈ N such that
1/j ′ < ε andX is a subset of the ballBk′−1. Let 〈A,I 〉 ∈ P be such thatA ∩ X �= ∅
and diamA � ε. SinceA∩ Bk′−1 �= ∅ and diamA< 1, it follows thatA ⊆ Bk′ . Therefore,
since diamA � 1/j ′, it follows from (2) and (3) that if〈A,I 〉 ∈ Pk,j

i,q ⊆ Sk,j
i,q , thenk � k′

andj � j ′. Thus

〈A,I 〉 ∈ Pk′,j ′ =
⋃
k�k′

⋃
j�j ′

⋃
i<j

⋃
q∈Di

Pk,j
i,q .

Since the setPk′,j ′
is finite, the proof of the claim, and hence of the theorem is

complete. ✷

3. Connectivity functions are extendable

In this section we are going to prove Theorem 4.
A partial order on a setT is a binary relation� on T that is reflexive, transitive and

antisymmetric (that is,t � s ands � t imply t = s for everys, t ∈ T ). We say that� has
thefinite predecessor propertyif for every t ∈ T the set{s ∈ T : s � t} of � -predecessors
of t is finite. A partial order�∗ on a setT is anω-order if there is a bijectionf :ω → T

(whereω = {0,1, . . .}) such thatf (t) �∗ f (s) if and only if t � s. Given partial orders
� and�∗ on T , we say that�∗ extends� if and only if t � s implies t �∗ s for every
s, t ∈ T .

Lemma 9. If � is a partial order on an infinite countable setT with the finite predecessor
property, then there is anω-order�∗ onT that extends� .

Proof. It is enough to show that there is a bijectionf :ω → T such thatf (i) � f (j)

impliesi � j . Let� be any fixedω-order onT . We shall define the valuef (i) by induction
on i. Let i ∈ ω and assume thatf (j) has been defined for everyj < i. Let

Ti = T \ {f (j): j < i
}
,

and let T ′
i consist of all�-minimal elements inTi . For every t ∈ Ti the set of�-

predecessors oft is finite so there iss ∈ T ′
i with s � t . In particular,T ′

i is nonempty.
Let f (i) be the� -minimal element ofT ′

i .
It is obvious from the construction thatf is injective and thatf (i) � f (j) impliesi � j

for everyi, j ∈ ω. To see thatf is surjective note that for anyi ∈ ω andt ∈ Ti the set of
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�-predecessors oft is finite, so one of them is inT ′
i . This predecessor oft will eventually

become a value off since� is anω-order. Then the number of unassigned�-predecessors
of t becomes smaller and hence eventuallyt itself must become a value off . ✷

A family A of subsets of a metric spaceX is locally finite if for everyx ∈ X some open
neighborhood ofx intersects only finitely many elements ofA. Let aTietze familyfor a
metric spaceX be a countable family

F = {〈Cγ , Iγ 〉: γ ∈ Γ
}

such that:
(1) A= {Cγ : γ ∈ Γ } is a locally finite closed cover ofX with anyCγ intersecting only

finitely many elements ofA;
(2) for everyγ ∈ Γ , Iγ is either equal toR or is a closed interval inR;
(3) for everyΦ ⊆ Γ

if
⋂
γ∈Φ

Cγ �= ∅ then
⋂
γ∈Φ

Iγ �= ∅.

The following result will be the key step in our proof of Theorem 4.

Theorem 10. LetX be a metric space andF = {〈Cγ , Iγ 〉: γ ∈ Γ } be a Tietze family for
X. Then there is a continuous functionh :X → R such thath[Cγ ] ⊆ Iγ for everyγ ∈ Γ .

Proof. Let A= {Cγ : γ ∈ Γ }, and

TA =
{
Φ ⊆ Γ :

⋂
γ∈Φ

Cγ �= ∅
}
.

Let�A be the partial order of reversed inclusion onTA, that is, letΦ1 �A Φ2 if and only if
Φ2 ⊆ Φ1. Since every element ofA intersects only finitely many elements ofA, it follows
that the elements ofTA are finite sets and that�A has the finite predecessor property.

Let �∗
A be anω-order extending�A and for everyΦ ∈ TA let

CΦ =
⋂
γ∈Φ

Cγ �= ∅.

Take the enumerationΦ1,Φ2, . . . of TA with

Φ1 �∗
A Φ2 �∗

A · · ·
and for everyi = 1,2, . . . let

Ci =
⋃
j�i

CΦj , C′
i = Ci ∩CΦi+1,

and

Ii =
⋂
γ∈Φi

Iγ �= ∅.
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We are going to define a sequenceh1, h2, . . . of continuous functionshi :Ci → R such that
for everyi = 1,2, . . . the functionhi+1 is an extension ofhi and

hi[Cγ ∩Ci ] ⊆ Iγ (4)

for everyγ ∈ Γ . Having defined such a sequence of functions our proof will be complete
since it is easy to see that the function

h =
∞⋃
i=1

hi

satisfies the required conditions. Indeed, (4) implies thath[Cγ ] ⊆ Iγ for everyγ ∈ Γ , and
sinceF is a locally finite closed cover ofX it follows thath is a continuous function onX.

Let h1 :C1 → I1 be any continuous function. Suppose thathi has been defined in such
a way that (4) is satisfied. Leth′

i be the restriction ofhi to C′
i . It follows from (4) that

h′
i :C′

i → Ii+1. SinceC′
i is a closed subset ofCΦi+1, it follows from Tietze Extension

Theorem thath′
i can be extended to a continuous functionh′′

i :CΦi+1 → Ii+1. Let hi+1 =
hi ∪ h′′

i . SinceCi andCΦi+1 are closed subsets ofCi+1, the functionhi+1 :Ci+1 → R is
continuous. It remains to show that (4) is satisfied forhi+1.

Suppose thatγ ∈ Γ andx ∈ Cγ ∩ Ci+1. If x ∈ Ci , thenhi+1(x) = hi(x) ∈ Iγ by the
inductive hypothesis. Otherwisex ∈ CΦi+1 and sohi+1(x) = h′′

i (x) ∈ Ii+1. It suffices to
show thatγ ∈ Φi+1.

Indeed, sinceCγ ∩CΦi+1 �= ∅, it follows thatΦi+1 ∪ {γ } ∈ TA. Since

Φi+1 ∪ {γ } �A Φi+1

and since�∗
A extends�A, it follows that there isj � i + 1 with

Φi+1 ∪ {γ } = Φj .

Sincex ∈ Cγ ∩ CΦi+1 = CΦj andx /∈ Ci , it follows thatj = i + 1. Thusγ ∈ Φi+1 and so
the proof is complete. ✷
Lemma 11. Let n � 1, f :Rn → R, P be a peripheral family forf , and Q be the
cylindrical extension ofP . If {〈Aj , Ij 〉: 1 � j � k} ⊆ Q andbdAi ∩ bdAj �= ∅ for every
i, j � k, then

⋂k
j=1 Ij �= ∅.

Proof. First we shall prove the lemma fork = 2. Suppose, by way of contradiction,
that there exist〈A1, I1〉, 〈A2, I2〉 ∈ Q with bdA1 ∩ bdA2 �= ∅ and I1 ∩ I2 = ∅. Let
〈A′

1, I1〉, 〈A′
2, I2〉 ∈P be such that

A1 = A′
1 × (−a1, a1) and A2 = A′

2 × (−a2, a2),

wherea1 = diamA′
1 anda2 = diamA′

2.
Sincef [bdA′

1] ⊆ I1 andf [bdA′
2] ⊆ I2, we have

bdA′
1 ∩ bdA′

2 = ∅.
It follows that A′

1 ∩ A′
2 �= ∅ since otherwise we would have clA′

1 ∩ clA′
2 = ∅ in

contradiction with bdA1 ∩ bdA2 �= ∅. SinceP has the intersection property, one ofA′
1,

A′
2 is a subset of the other.
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Assume thatA′
1 ⊆ A′

2. Since clA′
1 ⊆ clA′

2 and bdA′
1 ∩ bdA′

2 = ∅, it follows that
clA′

1 ⊆ A′
2. Since the set clA′

1 is compact, there arex1, x2 ∈ clA′
1 with diamA′

1 equal
to the distance fromx1 to x2. Sincex1, x2 ∈ A′

2 andA′
2 is open, it follows that

a1 = diamA′
1 < diamA′

2 = a2,

and so

bdA1 = bdA′
1 × [−a1, a1] ∪A′

1 × {−a1, a1} ⊆ A′
2 × (−a2, a2) = A2,

contradicting our assumption that bdA1 ∩ bdA2 �= ∅.
Now for k > 2 the assertion follows easily from the fact that if{Ij : 1 � j � k} is a

family of intervals inR andIj ∩ Im �= ∅ for everyj,m� k, then
⋂k

j=1 Ij �= ∅. ✷
Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let f :Rn → R be a function,P be a peripheral family forf , Q be
the cylindrical extension ofP , and

X = Rn+1 \ (Rn × {0}).
We need to construct a continuous functionh :X → R such thath[bdA] ⊆ I for every
〈A,I 〉 ∈ Q. The existence of the functionh will follow from Theorem 10 after we have
constructed a Tietze family

F = {〈Cγ , Iγ 〉: γ ∈ Γ
}

for X such that for every〈A,I 〉 ∈ Q there isΦ ⊆ Γ with

X ∩ bdA ⊆
⋃
γ∈Φ

Cγ and Iγ = I for everyγ ∈ Φ. (5)

Let K consist of all closed intervals of the following forms:[i, i + 1], [−i − 1,−i],
[1/(i + 1),1/i], and[−1/i,−1/(i + 1)] for everyi = 1,2, . . . . Set

A1 = {
(clBn

k \Bn
k−1)× [a, b] ⊆ Rn+1: [a, b] ∈K andk = 1,2, . . .

}
,

whereBn
k ⊆ Rn is the open ball with center〈0,0, . . . ,0〉 and radiusk. Note thatA1 is a

locally finite closed cover ofX.
Define

F1 = {〈C,R〉: C ∈A1
}

and

F2 = {〈bdA∩L,I 〉: 〈A,I 〉 ∈Q andL ∈L
}
,

where

L= {
Rn × [a, b]: [a, b] ∈K

}
.

Let Γ1 andΓ2 be disjoint sets of indices such that

F1 = {〈Cγ , Iγ 〉: γ ∈ Γ1
}

and F2 = {〈Cγ , Iγ 〉: γ ∈ Γ2
}
.
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Obviously, for every〈A,I 〉 ∈Q there isΦ ⊆ Γ2 such that (5) holds. Thus to complete the
proof it remains to prove the following claim.

Claim. The familyF1 ∪F2 is a Tietze family forX.

Let

A2 = {Cγ : γ ∈ Γ2}.
Obviously,A1 ∪ A2 is a closed cover ofX. Since the familyP is locally convergent to
0, every bounded subset of an element ofL intersects only finitely many elements ofA2.
Since each pointx ∈ X has an open neighborhood contained in at most two elements ofL,
it follows thatA2 is locally finite, and henceA1 ∪A2 is locally finite.

Since every elementC of A1 ∪ A2 is a bounded subset of an element ofL, it follows
thatC intersects only finitely many elements inA2, and it is clear thatC intersects only
finitely many elements ofA1. Thus every element ofA1 ∪A2 intersects only finitely many
elements inA1 ∪A2.

Now suppose that⋂
γ∈Φ1∪Φ2

Cγ �= ∅

for someΦ1 ⊆ Γ1 andΦ2 ⊆ Γ2. Since
⋂

γ∈Φ2
Cγ �= ∅, it follows from Lemma 11 that⋂

γ∈Φ2
Iγ �= ∅. SinceIγ = R for γ ∈ Φ2, we have⋂

γ∈Φ1∪Φ2

Iγ =
⋂
γ∈Φ2

Iγ �= ∅.

ThusF1 ∪ F2 is a Tietze family forX, and so the proof of the claim and hence of the
theorem is complete.✷
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