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ON THE SUP-MEASURABLE FUNCTIONS
PROBLEM

Abstract

We show some results connected with the problem whether it is
consistent that every sup-measurable function F : R2 → R is measurable.
We will also relate this problem to a von Weizsäcker problem concerning
a generalization of Blumberg theorem.

We use standard set-theoretical notation as in [3]. Symbol |X| will stand
for the cardinality of a set X. The cardinality of the set R of real numbers
is denoted by c. For a set E ⊆ R2, we denote by dom(E) and ran(E) its
projections on the first and on the second axis, respectively. A function f
from a subset of R into R will be identified with its graph. If I is a proper
ideal of subsets of R, by non(I) we denote the minimal cardinality of a set
that is not in I. Symbols M and N will stand for the ideals of meager sets
and of null sets in R, respectively.

We say that a function F : R2 → R is sup-measurable if the function
Ff : R → R given by Ff (x) = F (x, f(x)), x ∈ R, is measurable for each
measurable function f : R→ R. We will also consider a dual category analog
notion that is obtain from the above by replacing the requirement of mea-
surability of functions with the requirement that the appropriate functions
have the Baire property. If we want to distinguish these two notions, we will
use the phrases “Lebesgue sup-measurability” and “Baire sup-measurability.”
Observe that if in the above definitions we require that Ff is measurable (or
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has the Baire property) only for every Borel function f then we will still obtain
the same notions. (See [1, Lemma 1.1].)

It is not hard to find measurable functions which are not sup-measurable.
(See [13] or [1, Cor. 1.4].) Under the continuum hypothesis CH or some
weaker set-theoretical assumptions, nonmeasurable sup-measurable functions
were constructed in [7], [8], [9], and [1]. (Similarly, for the category case. See
[6].) These rather exotic functions are called “monsters” in the literature. (See
[10].) It is interesting to know whether the existence of such functions can be
proved in ZFC or whether there is a model of ZFC with no such examples.
(See [8], [9], [1], and [4] where this question was mentioned.) In our article we
discuss these problems.

Note that the existence of nonmeasurable sup-measurable functions has
some consequences in the theory of ordinary differential equations, which
was described in detail in the recent article of Kharazishvili [9]. Namely,
let G : R2 → R and 〈x0, y0〉 ∈ R2. We say that the Cauchy problem

y′ = G(x, y), y(x0) = y0 (1)

has a (unique) solution in the class ACl of locally absolutely continuous func-
tions on R if there exists a (unique) function f ∈ ACl such that f(x0) = y0

and f ′(x) = G(x, f(x)) for almost all x ∈ R. (Recall that f ∈ ACl if each
x ∈ R has a neighborhood V such that the restriction f |V of f to V is abso-
lutely continuous.) We will describe several nonmeasurable (sup-measurable)
functions G for which (1) has a unique locally absolutely continuous solution.

In [1, Prop. 1.7] the author constructs (in ZFC) a nonmeasurable set
H ⊆ R2 such that the characteristic function F of H satisfies the condition

|{x ∈ R : F (x, f(x)) 6= 0}| < c (2)

for every Borel function f : R → R. Then F is nonmeasurable and its sup-
measurability is implied by non(N ) = c. Consider the Cauchy problem (1)
where G(x, y) = F (x, y) + g(x) and g : R → R is a fixed locally Lebesgue
integrable function. Note that G is nonmeasurable. Using non(N ) = c and
(2) we can easily check that the function ϕ(x) = y0 +

∫ x
x0
g(t)dt, x ∈ R, is a

locally absolutely continuous solution of (1). This solution is unique since if
ψ ∈ ACl is an arbitrary solution of (1) then ψ(x0) = y0 and

ψ′(x) = F (x, ψ(x)) + g(x) (3)

for almost all x. But then Fψ is measurable. So the set {x ∈ R : Fψ(x) 6= 0}
is measurable and, by (2), it is of measure zero. Hence Fψ equals zero almost
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everywhere and from (3) we infer that

ψ(x) = y0 +

∫ x

x0

g(t)dt = ϕ(x)

for every x ∈ R. Note that in that last argument we do not use any extra
set-theoretical assumptions. Also the whole power of sup-measurability of F
is not needed to obtain the solution ϕ of (1). In fact, it suffices to know that
Ff equals zero almost everywhere for every Borel function f , which is implied
by non(N ) = c.

The article [9] contains a construction similar to that from [1] but its
advantage appears in special problems of type (1). Namely, in [9, Th.3] the
respective nonmeasurable set H ⊆ R2 additionally meets every straight line
in at most two points. In that case

|{x ∈ R : F (x, f(x)) 6= 0}| ≤ 2 (4)

provided that F is the characteristic function of H and f is of the form f(x) =
ax + b, x ∈ R. Thus the Cauchy problem (1), where G(x, y) = F (x, y) + a,
has the unique locally absolutely continuous solution ϕ(x) = ax+ (y0 − ax0),
x ∈ R, and this (by (4) and the previous argument) can be proved in ZFC.
(See [9, Th.4].) However, we do not know whether this F is sup-measurable.
(Though it follows from (2) and non(N ) = c.)

Now, let us recall the following simple lemma.

Lemma 1. [1, Prop. 1.5] The following conditions are equivalent:

(I) there is a nonmeasurable sup-measurable function F : R2 → R;

(II) there is a nonmeasurable set H ⊆ R2 such that dom(H∩f) is measurable
for each Borel function f : R→ R;

(III) there is a nonmeasurable sup-measurable function F : R2 → {0, 1}.

Remark 1. We can add three more conditions in Lemma 1:

(I′) there is a nonmeasurable function F : R2 → R such that Ff is measurable
for each continuous function f : R→ R;

(II′) there is a nonmeasurable set H ⊆ R2 such that dom(H∩f) is measurable
for each continuous function f : R→ R;

(III′) there is a nonmeasurable function F : R2 → {0, 1} such that Ff is
measurable for each continuous function f : R→ R.
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Among the implications

(I′)⇒ (I)⇒ (II)⇒ (II′)⇒ (III′)⇒ (I′)

only the first is nontrivial and it follows from [9, Lemma 1].

Remark 2. If we consider the category version of Lemma 1 (which holds true,
see [1, Prop. 1.5]) and category versions of (I′), (II′), and (III′), Baire class 1
functions should be used in (I′), (II′), and (III′) instead of continuous ones,
and then all the conditions are equivalent. This follows from the fact that if
Ff has the Baire property for every Baire class 1 function f : R → R then F
is Baire sup-measurable. To show this, consider a function g : R → R with
the Baire property. Then g|A is continuous for a Gδ comeager set A ⊆ R.
We can extend g to a function f : R → R of Baire class 1 [11, §35, VI]. Thus
Fg(x) = Ff (x) for each x ∈ A. Hence Fg has the Baire property.

Remark 3. Observe that there is an F : R2 → R such that Ff has the Baire
property for each continuous f : R→ R but F is not Baire sup-measurable.

To see it, first notice that the existence of an F as above follows from the
existence of a continuous function g : [0, 1] \D → R, where D is the set of all
dyadic numbers, such that

the set {x ∈ [0, 1] \D : f(x) = g(x)} is nowhere dense (5)

for every continuous f : R→ R.
Indeed, if g is such a function, take a subset B of [0, 1] \ D without the

Baire property and let F : R2 → R be the characteristic function of g|B. Then
F is not Baire sup-measurable since F−1

ḡ [{1}] = B, where ḡ : R → R is a
Borel extension of g. On the other hand Ff has the Baire property for every
continuous function f : R→ R since, by (5), there exists a nowhere dense set
N such that Ff (x) = 0 for all x ∈ R \N .

Now, function g satisfying (5) is constructed as follows. For x ∈ [0, 1]\D let
〈in(x) ∈ {0, 1} : n < ω〉 be a sequence from the unique binary representation
of x, that is, such that x =

∑
n<ω in(x)2−(n+1). The binary representation of

g(x) is obtained from the binary representation of x by leaving the digits on
the odd places unchanged and by interchanging all 0’s and 1’s at even places,
that is, we put

g(x) =
∑
k<ω

i2k+1(x)2−(2k+2) +
∑
k<ω

(1− i2k(x))2−(2k+1).

Now, g is continuous, since |g(x) − g(x′)| = |x − x′| for any x, x′ ∈ [0, 1] \D.
To finish the argument for (5) take continuous function f : R → R and put
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N = {x ∈ [0, 1] \D : f(x) = g(x)}. The set N is nowhere dense since for every
d ∈ D there exists an h > 0 such that

either N ∩ (d, d+ h) = ∅ or N ∩ (d− h, d) = ∅.

For suppose not, and let y ∈ D witness for it. Then, there are sequences
hj → y and kj → y in N such that the first is increasing and the second
is decreasing. Since y ∈ D, there exist sequences: 〈i+n (y) ∈ {0, 1} : n < ω〉
eventually equal to 0, and 〈i−n (y) ∈ {0, 1} : n < ω〉 eventually equal to 1 such
that y =

∑
n<ω i

+
n (y)2−(n+1) =

∑
n<ω i

−
n (y)2−(n+1). Let

g+(y) =
∑
k<ω

i+2k+1(y)2−(2k+2) +
∑
k<ω

(1− i+2k(y))2−(2k+1)

and
g−(y) =

∑
k<ω

i−2k+1(y)2−(2k+2) +
∑
k<ω

(1− i−2k(y))2−(2k+1).

Then

lim
n→∞

f(hn) = lim
n→∞

g(hn) = g−(y) 6= g+(y) = lim
n→∞

g(kn) = lim
n→∞

f(kn)

contradicting continuity of f .
We are going to study the question whether condition (I) given in Lemma 1

is independent of ZFC. However, the equivalent condition (II) will be more
convenient. In the sequel it will be denoted by (Nsup). As we have men-
tioned before, (Nsup) holds true in some models of ZFC where CH or some
weaker conditions (e.g. MA or non(N ) = c) are assumed. A. Ros lanowski and
I. Rec law (oral communication) have observed independently that a Luzin set
H ⊆ R2 fulfills (Nsup). In fact, we will try to show that some versions of
(Nsup), which seem stronger, are independent of ZFC. They are the following

(Nsup1) there is a nonmeasurable set H ⊆ R2 which is a function from R to
R such that dom(H∩f) is measurable for each Borel function f : R→ R;

(Nsup2) there is a nonmeasurable set H ⊆ R2 which is a function with a
nonmeasurable domain dom(H) and such that dom(H∩f) is measurable
for each Borel function f : R→ R.

Conditions (Nsup), (Nsup1), and (Nsup2) have their category analogues and
if we want to distinguish them, we write L-(Nsup) (like Lebesgue) or B-(Nsup)
(like Baire), and similarly for (Nsup1) and (Nsup2). To show that (Nsup1) and
(Nsup2) hold true in some models of ZFC we recall the construction from [1,
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Prop. 1.7] in a modified, sharper version. For this, we need the following
definitions.

A Borel set B ⊆ R2 is called big if |{x ∈ R : |Bx| > ω}| > ω where
Bx = {y ∈ R : 〈x, y〉 ∈ B} for x ∈ R. Observe that, by the Fubini theorem and
its category analog, all Borel sets of positive measure and all Borel nonmeager
sets in R2 are big. Also, we will say that a set T ⊆ R is thick provided it
intersects every perfect subset of R. (Such an intersection must then have
cardinality c.) Recall that a set S ⊆ R is a Bernstein set if both S and R \ S
are thick.

Theorem 1. Assume that T ⊆ R is thick. Then there exists a set H ⊆ T ×R
such that

• |Hx| = 1 for each x ∈ T , that is, H is a function from T into R,

• |dom(H ∩ f)| < c for each Borel function f : R→ R,

• H ∩B 6= ∅ for each big set B ⊆ R2.

In particular H is neither measurable nor has the Baire property (as a subset
of R2).

Proof. Note that if B ⊆ R2 is a big set then |Bx| > ω is equivalent to |Bx| = c
since Bx is Borel. Also {x ∈ R : |Bx| > ω} is analytic [11, §39, VII, Th. 3] and
since it is uncountable, it must contain a perfect subset. In particular,

|{x ∈ T : |Bx| > ω}| = c. (6)

That will be used in the construction.
First, we arrange, respectively, all numbers from T , all big subsets of R2,

and all Borel functions from R to R, into one-to-one transfinite sequences

〈xα : α < c〉, (7)

〈Bα : α < c〉, (8)

〈fα : α < c〉. (9)

For α < c we will define recursively the real numbers sα, yα, tα, and zα as
follows. Let s0 = x0 and pick an arbitrary y0 ∈ R. Let t0 be the first number
in (7) different from s0 and such that (B0)t0 6= ∅. Then pick an arbitrary
z0 ∈ (B0)t0 .

Next, assume that 0 < β < c and that the points sα, yα, tα, and zα are
already constructed for all α < β. We will define sβ , yβ , tβ , and zβ . So, let
sβ be the first number in (7) different from all sα and tα for α < β and pick

yβ ∈ R \ {fα(sβ) : α < β}.
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Choose tβ as the first number in (7) different sβ and from all sα and tα for all
α < β and such that |(Bβ)tβ | = c. Such a point exists by (6). Then pick

zβ ∈ (Bβ)tβ \ {fα(tβ) : α < β}.

This finishes the recursive construction of numbers sα, yα, tα, and zα for all
α < c. Now, we put

H = {〈sα, yα〉 : α < c} ∪ {〈tα, zα〉 : α < c}. (10)

It follows from the construction that
⋃
α<c{sα, tα} = T and that H meets

every big set Bα. It is also clear that |Hx| = 1 for each x ∈ T . Moreover, for
each α < c we have

dom(H ∩ fα) ⊆ {sγ : γ < α} ∪ {tγ : γ < α}.

Hence |dom(H ∩ fα)| < c.
Finally, if we suppose that H is measurable then, by the Fubini theorem,

H should be a null set. But then there is a big set (of full measure) outside
H which contradicts our construction. Similarly H does not possess the Baire
property.

Corollary 1. Let H be a set from Theorem 1 used with T = R.

(a) If non(N ) = c then H witnesses L-(Nsup1).

(b) If non(M) = c then H witnesses B-(Nsup1).

Corollary 2. Let H be a set from Theorem 1 used with a Bernstein set T .

(a) If non(N ) = c then H witnesses L-(Nsup2).

(b) If non(M) = c then H witnesses B-(Nsup2).

Remark 4. In the construction given in Theorem 1 we can ensure that yβ and
zβ are chosen so that the points 〈sβ , yβ〉 and 〈tβ , zβ〉 are not colinear with any
two of points from H that are constructed earlier. Thus our set meets every
straight line in at most two points and has all nice applications described in
[9] and mentioned above.

Remark 5. By Remark 1 we may use only continuous functions f in the
measure formulation of (Nsup1) and (Nsup2). For category, by Remark 2, we
may use functions f of Baire class 1.

Now we shall prove a characterization of (Nsup2) connected with the dis-
continuity of restricted functions.
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Theorem 2. Condition L-(Nsup2) is true if and only if

(∗) there exists a nonmeasurable set H ⊆ R2 which is a function with a non-
measurable domain dom(f) and such that for each Z ⊆ dom(H), with
Z /∈ N , the function H|Z is not continuous.

The analogous characterization in the category case is also true.

Proof. First we will show that L-(Nsup2) implies the condition (∗). So, let
H ⊆ R2 satisfy L-(Nsup2) and put S = dom(H). Consider two cases.

Case 1. The only measurable subsets of S are null sets. (In other words,
the measurable kernel of S is empty.) Suppose the assertion is false. Thus
there is a set Z ⊆ S, Z /∈ N , such that the function H|S is continuous.
Consider a Borel extension f : R→ R of H|Z. (See [11, Th. 1, §35, I].) Then
Z ⊆ dom(f ∩H) ⊆ S, so dom(f ∩H) cannot be measurable, a contradiction.

Case 2. The measurable kernel K of S is nonempty. Observe that then
H∗ = H \ (K×R) can play the role of H in L-(Nsup2) and thus Case 1 works.
So, there is a set Z ⊆ S \K, Z /∈ N , such that the function H∗|Z = H|Z is
continuous.

The proof of the category version of this implication is essentially the same.
Now, to prove that (∗) implies L-(Nsup2) let H ⊆ R2 satisfy (∗) and

suppose that L-(Nsup2) is false. Thus there is a continuous function f : R→ R
such that dom(H ∩ f) is nonmeasurable. (Compare Remark 5.) Obviously for
Z = dom(H ∩ f) the function f |Z is continuous. Thus H|Z is continuous, a
contradiction.

In the category case we proceed similarly. Namely, we suppose that there
is a function f : R → R with the Baire property such that dom(H ∩ f) does
not have the Baire property. Hence there exists a comeager A ⊆ R such that
f |A is continuous. Thus f |Z is continuous for Z = A ∩ dom(H ∩ f) /∈ M, a
contradiction.

A function g from S ⊆ R to R will be called ugly if S is nonmeasurable
and g is nonmeasurable as a subsets of R2. Thus, by Theorem 2, condition
¬(L-(Nsup2)) is equivalent to the following statement.

For every ugly function g there exists a set Z ⊆ dom(g), Z /∈ N ,
such that g|Z is continuous.

The category case is analogous.
A similar statement for functions g : R→ R is connected with the following

open problem of von Weizsäcker. (See [5, Problem AR(a)] or [4, Problem 1].)

Is it consistent that every function g : R → R restricted to some
set of positive outer measure is continuous?
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The property considered in the above question will be denoted by (vWH), that
is,

(vWH) For every function g : R→ R there exists a set Z /∈ N such that g|Z
is continuous.

Remark 6. From (vWH) it follows that the same statement is true provided
g : S → R and S ⊆ R is an Fσ set such that S /∈ N .

Indeed, each of the spaces R and S can be partitioned into a countable
number of uncountable Polish spaces with nonzero finite Lebesgue measure.
In the case of S we consider intS (the interior of S) and divide S \ intS
into a countable number of closed parts. Next, if necessary, we divide intS
into uncountable parts and add to them countable parts from the division
of S \ intS. Then we consider a Borel isomorphism ϕ from R onto S which
transforms Polish parts of R onto the respective Polish parts of S and such
that for each E ⊆ R the conditions E ∈ N and ϕ[E] ∈ N are equivalent. This
can be deduced from the fact that any two Polish probability spaces (where
the probabilities vanish on the singletons) are Borel isomorphic. (See e.g. [2,
Th. 4.20].) Now, if g : S → R, we apply (vWH) to g ◦ ϕ and find a set Z /∈ N
such that (g ◦ ϕ)|Z is continuous. Thus ϕ[Z] /∈ N . By the Luzin theorem we
find a sequence {Fn}∞n=1 of pairwise disjoint closed subsets of S of positive
measure such that S \

⋃∞
n=1 Fn ∈ N and ϕ−1|Fn is continuous for every n.

Since for the outer Lebesgue measure λ∗ we have

λ∗(ϕ[Z]) =

∞∑
n=1

λ∗(ϕ[Z] ∩ Fn),

therefore W = ϕ[Z] ∩ Fk /∈ N for some k and ϕ−1|W is continuous. Thus
(g ◦ ϕ ◦ ϕ−1)|W = g|W is continuous.

Remark 7. The category analogue of (vWH) is consistent with ZFC which
was shown by Shelah [12].

Remark 8. From the category analogue of (vWH) it follows its version where
g : S → R and S ⊆ R is a Gδ set such that S /∈M.

The proof is similar to that presented for Remark 6. We use the fact that
there is a Borel isomorphism ϕ from R onto S such that for each E ⊆ R the
conditions E ∈ M and ϕ[E] ∈ M are equivalent. (See e.g. [2, Th. 3.15].)
If g : S → R, we find a set Z /∈ M such that (g ◦ ϕ)|Z is continuous. Hence
ϕ[Z] /∈M. Note that ϕ−1|A is continuous for a comeager subset A of S. Thus
W = ϕ[Z] ∩A /∈M and (g ◦ ϕ ◦ ϕ−1)|W = g|W is continuous.
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Theorem 3. Condition (vWH) implies condition ¬(L-(Nsup1)). Moreover,
the analogous implication for the category case is also true.

Proof. We have to show that for each function H : R → R which is a non-
measurable subset of R2 there exists a Borel function f : R → R such that
dom(H ∩ f) is nonmeasurable. Thus let H : R → R be a function such that
H ⊆ R2 is nonmeasurable. Applying (vWH) to g = H we obtain a set Z /∈ N
such that H|Z is continuous. Consider a Borel extension f : R → R of H|Z.
Then dom(H ∩f) /∈ N . If dom(H ∩f) is nonmeasurable, the proof is finished.
So assume that dom(H ∩ f) is measurable and include it in a Gδ set A of
the same measure. Let B = R \ A. Then B /∈ N since otherwise H = f
almost everywhere, and thus H would be a measurable subset of R2. Now, we
apply the version of (vWH) from Remark 6 to the function H|B. Then there
is a set Z1 ⊆ B, Z1 /∈ N , such that H|Z1 is continuous. Consider a Borel
extension f1 : B → R of H|Z1. Then dom(H ∩ f1) /∈ N . If dom(H ∩ f1) is
nonmeasurable, the proof is finished since, for the Borel function h : R → R
given by

h(x) =
{ f(x) for x ∈ A
f1(x) for x ∈ B,

the set dom(H ∩ h) is nonmeasurable. So assume that dom(H ∩ f1) is mea-
surable and include it in a Gδ set A1 of the same measure. Let B1 = B \A1.
Then B1 /∈ N since otherwise, H = h almost everywhere (for h given above),
and thus H would be a measurable subset of R2. We proceed inductively, con-
structing the sets Aξ and Bξ for ξ < ω1. In some step before ω1 we obtain the
required Borel function since otherwise, the sets A,A1, A2, . . . , Aξ, . . . would
exhaust R in a countable number of steps (that is, their union would be of full
measure in R) and consequently H would be a measurable subset of R2.

In the analogous proof for the category analog we use Remark 8.

From Remark 7 and the category part of Theorem 3 we infer the following.

Corollary 3. ¬(B-(Nsup1)) is consistent with ZFC.

From Corollaries 1(b) and 3 we obtain also

Corollary 4. B-(Nsup1) is independent of ZFC.
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