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DECOMPOSING SYMMETRICALLY CONTINUOUS
AND SIERPIŃSKI-ZYGMUND FUNCTIONS

INTO CONTINUOUS FUNCTIONS

KRZYSZTOF CIESIELSKI

(Communicated by Alan Dow)

Abstract. In this paper we will investigate the smallest cardinal number κ
such that for any symmetrically continuous function f : R → R there is a
partition {Xξ : ξ < κ} of R such that every restriction f � Xξ : Xξ → R
is continuous. The similar numbers for the classes of Sierpiński-Zygmund
functions and all functions from R to R are also investigated and it is proved
that all these numbers are equal. We also show that cf(c) ≤ κ ≤ c and that it

is consistent with ZFC that each of these inequalities is strict.

1. Preliminaries

Our notation and terminology is standard and follows [5]. In particular, |X | will
stand for the cardinality of X . For a cardinal number κ we will write cf(κ) for its
cofinality. We also define [X ]κ = {Y ⊆ X : |Y | = κ}. The definition of [X ]<κ is
similar. The cardinality of the set R of real numbers is denoted by c. The functions
are identified with their graphs. The class of all function from a set X into a set Y
is denoted by Y X .

For Z ⊂ R and a cardinal number κ ≤ c let Πκ(Z) denote the family of all
coverings of Z with at most κ many sets. We will write Πκ for Πκ(R). In [4]
the authors considered the following cardinal decomposition function for arbitrary
families F ⊂ RZ , with Z ⊂ R, and G ⊂ ⋃{RX : X ⊂ Z}:

dec(F ,G)= min({κ ≤ c : (∀f ∈ F)(∃X ∈ Πκ(Z))(∀X ∈ X )(f �X ∈ G)} ∪ {c+}).
In particular, if C stands for the family of all continuous functions from a subset of
R into R, then

f : R → R is countable continuous if and only if dec({f}, C) ≤ ω.

In [4] the authors considered the values of dec(Bβ,Bα) for α < β < ω1, where Bα

stands for the functions of α-th Baire class. In particular, they proved that

cov(M) ≤ dec(B1, C) ≤ d,
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where cov(M) is the smallest cardinality of a covering of R by meager sets, and d,
the dominating number, is the smallest cardinality of a dominating family D ⊂ ωω,
that is, such that for every f ∈ ωω there exists g ∈ D such that f ≤∗ g. Moreover,
in papers [12] and [11] it has been proved that each of these inequalities can be
strict.

There are also some interesting results concerning the value of dec(C,D), where
D is the class of all (partial) differentiable functions. It has been proved by Morayne
[13, Theorem 6.1] that dec(C,D) ≥ cov(M), while Steprāns [13] proved that it is
consistent with ZFC that dec(C,D) < c.

For more information on the subject see also a survey paper [6].
In this paper we will examine the numbers dec(F , C), where F is one of the

following three classes:

RR of all functions from R to R;
SZ(X) of all Sierpiński-Zygmund functions from X ⊆ R into R, that is, all
f : X → R whose restrictions f � Y are discontinuous for all subsets Y of X
of cardinality continuum c (we will write SZ for SZ(R));
Sc of all symmetrically continuous functions f : R → R, that is, such that for
every x ∈ R we have

lim
h→0+

f(x− h)− f(x+ h) = 0.

Now, since F ⊂ F ′ implies dec(F ,G) ≤ dec(F ′,G) and a Sierpiński-Zygmund
function f : X → R, with X ∈ [R]c, cannot be covered by less than cf(c)-many
continuous functions, we obtain immediately the following inequalities:

cf(c) ≤ dec({f}, C) ≤ dec(SZ, C) ≤ dec(RR, C) ≤ c(1)

for any f ∈ SZ(X) with X ∈ [R]c. Also, in [7] the authors proved dec(Sc, C) > ω by
showing that there exists an f ∈ Sc such that f � X ∈ SZ(X) for some X ∈ [R]c.
This clearly implies that

cf(c) ≤ dec({f � X}, C) ≤ dec(Sc, C) ≤ dec(RR, C) ≤ c.(2)

The main results of this paper are the following three theorems refining the results
of (1) and (2).

Theorem 1.1 (Ciesielski, Szyszkowski1). dec(Sc, C) = dec(RR, C).

Theorem 1.2. dec(SZ, C) = dec(RR, C).

Theorems 1.1 and 1.2 immediately imply the following corollary.

Corollary 1.1. cf(c) ≤ dec(SZ, C) = dec(Sc, C) = dec(RR, C) ≤ c.

The next theorem tells us that neither of the inequalities in Corollary 1.1 can be
replaced by the equation.

Theorem 1.3. Let λ be a cardinal number with uncountable cofinality. Then

(a) it is relatively consistent with ZFC that c = λ = dec(RR, C); and
(b) it is relatively consistent with ZFC that c = λ and dec(RR, C) = cf(λ).

1This result was obtained during Mr. Szyszkowski’s work on his doctoral degree under the
author’s supervision. It will most likely become a part of Mr. Szyszkowski’s dissertation.
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The statement of the theorem is not very precise. (For example, we can’t have
κ = c+ in the conclusion of the theorem.) Our interpretation of it is that if λ satisfies
the assumption of the theorem in a model M of ZFC satisfying the Generalized
Continuum Hypothesis GCH, then we can find an extension of M to another ZFC
model in which all the cardinals are the same, have the same cofinalities, and either
(a) or (b) holds. In particular Theorem 1.3 implies the following corollary.

Corollary 1.2. (a) It is consistent with ZFC that cf(c) < c = dec(RR, C).
(b) It is consistent with ZFC that dec(RR, C) = cf(c) < c.

Theorems 1.1, 1.2, and 1.3 will be proved in the next sections. We will finish
this section with the following open problem.

Problem 1.1. Is it consistent with ZFC that cf(c) < dec(RR, C) < c?

2. Proof of Theorem 1.1

In order to prove the theorem we will show the following fact that is of indepen-
dent interest.

Proposition 2.1. There exists a perfect set P ⊂ R with the property that for every
f0 : P → [0, 1] there is a symmetrically continuous function f : R → R extending
f0.

The proof is a compilation of the results contained in [7] and [3]. In particular,
if C(f) stands for the set of points of continuity of a function f : R → R and
D(f) = R \C(f), then the following lemma is a rephrasing of [7, Lemma 2.1] (used
with {Aα}α∈A = {2D(h) + y : y ∈ X}).
Lemma 2.1. Let h : R → R and X ⊂ D(h) be such that h is symmetrically con-
tinuous and

(i) C(h) = h−1(0),
(ii) D(h) is an additive subgroup of R,
(iii) (2D(h) + x) ∩ (2D(h) + y) = ∅ for every distinct x, y ∈ X.

Then for every map r : X → [0, 1] the function

f(x) = h(x) ·
∑
y∈X

r(y)χ2D(h)+y(x)

is symmetrically continuous.

Now, in [3] (in the proof of Theorem 1) Chleb́ık shows that the function h : R →
[0, 1] defined by formula

h(x) = lim
m→∞

(
1 +

m∑
n=1

∣∣∣∣ 1n sin 3nx

∣∣∣∣
)−1

is upper semicontinuous, symmetrically continuous, and satisfies (i) and (ii) from
Lemma 2.1. Towards the construction of a set X he defines the following.

He takes an arbitrary linear basis H ⊂ (0, 1] of R over Q with 1 ∈ H, puts
Λ = H\{1}, and defines X = π ·ψ[Λ] for a continuous injection ψ : (0, 1]\Q → (0, 1)
given by the formula

ψ(x) =
∞∑

k=1

µk · 3−(2k+1),
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where x =
∑∞

k=1 µk · 2−k, with µk ∈ {0, 1}, is the unique binary representation of
x. Chleb́ık proves also that X ⊂ D(h) and that

2D(h) +H1 6= 2D(h) +H2 for every distinct H1, H2 ⊂ X,

while this last property is used in [7, Lemma 2.4] to prove that X satisfies (iii) of
Lemma 2.1.

Thus, h and X satisfy the assumptions of Lemma 2.1. However, to prove Propo-
sition 2.1 we need also two additional facts that

(iv) h is of Baire class one (as upper semicontinuous), and that
(v) X is a continuous image of H \ {1}, where H is an arbitrary linear basis of R

over Q with 1 ∈ H ⊂ (0, 1].

Now, take a perfect set K ⊂ [0, 1] which is linearly independent over Q. (See
e.g. [8, Theorem 2, Ch. XI sec. 7].) Decreasing it, if necessary, we can assume that
1 is linearly independent of K. (If it is not, take a finite subset A of K which spans
1 and replace K by its perfect subset disjoint with A.) Thus, there exists a linear
basis H ⊂ (0, 1] of R over Q such that {1} ∪K ⊂ H. In particular, X0 = ψ[K] is a
perfect subset of X = ψ[H \ {1}], so it satisfies (iii).

Now, h � X0 has a point of continuity, say x0 ∈ X0, since h is of Baire class one.
(See e.g. [2].) Since x0 ∈ X ⊂ D(h) = R \ h−1(0), we have h(x0) 6= 0. Thus, we
can take a perfect subset P of X0 for which h[P ] ⊂ [b, 1] for some b > 0. We will
show that P satisfies Proposition 2.1.

To see it note that by Lemma 2.1 used with X = P the function

f(x) =
1
b
h(x) ·

∑
y∈P

r(y)χ2D(h)+y(x)

is symmetrically continuous for any function r : P → [0, 1]. Moreover, f(x) =
1
bh(x) · r(x) for every x ∈ P since x ∈ 2D(h) + x. (D(h) is a group.) Thus defining
r by

r(x) =
b

h(x)
· f0(x) ≤ f0(x)

we obtain that r : P → [0, 1] and

f(x) =
1
b
h(x) · r(x) = f0(x)

for every x ∈ P . This finishes the proof of Proposition 2.1.

Proof of Theorem 1.1. Clearly dec(Sc, C) ≤ dec(RR, C). To prove the other inequal-
ity take an arbitrary g ∈ RR and let κ = dec({g}, C). It is enough to prove that

κ ≤ dec(Sc, C).(3)

If κ < ω1, then (3) follows from cf(c) ≤ dec(Sc, C). So, we can assume that κ is
uncountable. Also, if h is a homeomorphism between R and (0, 1), then it is easy
to see that dec({g}, C) = dec({h ◦ g}, C). So, we can assume that g : R → (0, 1).
Moreover, if N = R \ Q, then κ = dec({g}, C) = dec({g � N}, C), since κ is
uncountable.

Let h be a homeomorphism between N and a subset M of P , where P is from
Proposition 2.1, and define f0 : M → [0, 1] by f0 = g ◦ h−1. Once again it is easy
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to see that κ = dec({g}, C) = dec({f0}, C). Now, if f is a symmetrically continuous
function extending f0, which exists by Proposition 2.1, then

κ = dec({f0}, C) ≤ dec({f}, C) ≤ dec(Sc, C)

proving (3). The proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2

The inequality dec(SZ, C) ≤ dec(RR, C) follows from (1). To prove the other
inequality let κ = dec(RR, C). We will prove that

κ ≤ dec(SZ, C).(4)

First note that there exists an f ∈ RR such that

dec({f}, C) = dec(RR, C) = κ.(5)

Indeed, if κ is a successor cardinal, then (5) is obvious. So assume that κ is a
limit cardinal. Clearly for every ξ < κ there exists an fξ : R → R such that
dec({fξ}, C) ≥ |ξ|. Then dec({fξ}, C) = dec({fξ � N}, C) for every ω1 ≤ ξ < λ,
where N = R \ Q. Take a family {Nξ : ξ < κ} of pairwise disjoint subsets of R
homeomorphic to N and let hξ : Nξ → N be the homeomorphisms. It is easy to
see that dec({fξ � N}, C) = dec(fξ ◦ hξ, C). Thus, if f ∈ RR is any extension of⋃

ξ<κ fξ ◦ hξ, then

κ = sup
ω1≤ξ<κ

|ξ| ≤ sup
ω1≤ξ<κ

dec({fξ}, C) ≤ dec({f}, C) ≤ dec(RR, C) = κ

proving (5).
Now, if κ ≤ cf(c), then (4) follows from (1). So, we will be assuming that

κ > cf(c).(6)

Then, by (1), cf(c) < c.
Let f ∈ RR be such that dec({f}, C) = κ and let {Xξ : ξ < cf(c)} be a partition

of R such that |Xξ| < c for every ξ < cf(c). Notice that

dec({f}, C) ≤ sup
ξ<cf(c)

dec({f � Xξ}, C).(7)

To see it let λ = supξ<cf(c) dec({f � Xξ}, C) and for every ξ < cf(c) choose Xξ ∈
Πλ(Xξ) such that f � X ∈ C for every X ∈ Xξ. Then the family X =

⋃
ξ<cf(c) Xξ

has cardinality at most cf(c) ⊗ λ. Therefore, κ = dec({f}, C) ≤ cf(c) ⊗ λ. Hence,
by (6), λ ≥ κ = dec({f}, C) proving (7).

To finish the proof, let {gξ : ξ < c} be an enumeration of all continuous functions
from a Gδ subset of R into R and let 〈λξ : ξ < cf(c)〉 be an increasing sequence
cofinal with c. For every ξ < cf(c) choose a number bξ ∈ R such that

(bξ + f [Xξ]) ∩
⋃

ζ<λξ

gζ [Xξ] = ∅.(8)

Such a number can be found since the sets f [Xξ] and
⋃

ζ<λξ
gζ [Xξ] have cardinality

less than c. Let

g =
⋃
ξ<c

(bξ + f � Xξ)
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and note that, by (8), g(x) = bξ + f(x) 6= gζ(x) for any x ∈ Xξ and ζ < λξ. In
particular g ∈ SZ. Therefore, by (7),

dec({f}, C) ≤ sup
ξ<cf(c)

dec({f � Xξ}, C) = sup
ξ<cf(c)

dec({bξ + f � Xξ}, C) ≤ dec({g}, C)

and so

κ ≤ dec({g}, C) ≤ dec(SZ, C).

This finishes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Part (a) of Theorem 1.3 holds in a Cohen model obtained by adding λ = c
Cohen reals. This follows from the fact, proved by G. Gruenhage (see Rec law [9,
Theorem 4]) and S. Shelah [10] (see also [6]), that in such a model there exists an
f : R → R for which f � X is discontinuous for every uncountable X ⊂ R.

The fact that Theorem 1.3(a) holds in a Cohen model can also be easily proved
directly. (Some difficulty in the result of Gruenhage and Shelah comes from the
fact that their function is defined on the entire real line. For our proof, however,
it is enough to have a partial function f defined on a set of cardinality c with the
same property.) Simply, let {x〈ξ,i〉 : 〈ξ, i〉 ∈ λ × 2} be a one-to-one enumeration of
the Cohen reals and define f on X = {x〈ξ,0〉 : ξ < λ} by f(x〈ξ,0〉) = x〈ξ,1〉. Then f

has the desired property.2

In the proof of part (b) of Theorem 1.3 we will need the following lemma, which
is an easy variation of a result in Baldwin [1] that under the Martin’s Axiom MA
for every function f : R → R and every infinite κ < c there exists a κ-dense set
X ⊂ R such that f � X is continuous.

Lemma 4.1. If MA holds, then for every X ⊂ R with cardinality less than c and
for every f : X → R there exists a countable partition {Xn : n < ω} of X such that
f � Xn is continuous for every n < ω.

Proof. Let D be a countable dense subset of [−∞,∞]\X which contains {−∞,∞}
and let S be the family of all finite unions

⋃n
i=0(ai, bi)×(ci, di), where ai, bi, ci, di ∈

D, ai < bi, ci < di, and the intervals {(ai, bi)}n
i=0 form a disjoint cover of R \D.

Moreover, for k > 0 let Sk be the family of these unions
⋃n

i=0(ai, bi) × (ci, di)
from S for which (ai, bi) and (ci, di) have lengths less than 1/k for every i with
(ai, bi) ∩ (−k, k) 6= ∅.

Consider the forcing

Rf = {〈A, S〉 : A ∈ [X ]<ω & f � A ⊂ S ∈ S}
ordered by 〈A, S〉 ≤ 〈B, T 〉 if B ⊂ A and S ⊂ T . Define Pf as a finite support
product of forcings Rf , that is, Pf is the set of all sequences 〈〈Aj , Sj〉 : j < ω〉 from
(Rf )ω for which 〈Aj , Sj〉 = 〈∅,R2〉 for all but finitely many j’s.

It is easy to see that Pf is ccc (in fact, it is σ-centered) since the family S
is countable and any conditions from Rf with the same second coordinate are
compatible. Next notice that the following subsets of Pf are dense for every x ∈ X

2It has been pointed by the referee that the existence of such a partial function f follows from
the existence Lusin set (also Sierpinski set) of size continuum. Simply, choose f of size continuum
in the Lusin subset of the plane of size continuum.
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and i < k < ω:

Dx = {〈Aj , Sj〉j<ω ∈ Pf : x ∈
⋃
j<ω

Aj},

Ei,k = {〈Aj , Sj〉j<ω ∈ Pf : Si ∈ Sk}.
Let G = {Dx : x ∈ X} ∪ {Ei,k : i < k < ω} and let F be a G-generic filter in Pf .
For i < ω we put

Xi =
⋃
{Ai : 〈Aj , Sj〉j<ω ∈ F}.

Then the sets Dx guarantee that
⋃

i<ω Xi = X , while the sets Ei,k force that each
restriction f � Xi is continuous.

Now, to prove Theorem 1.3(b) start with a model M of ZFC+GCH and take a
cardinal λ with uncountable cofinality.

If cf(λ) = λ, then (b) holds in a model from part (a). Thus we will assume that
cf(λ) < λ. Let {λξ : ξ < cf(λ)} be an increasing sequence cofinal with λ such that
each λξ is a cardinal successor. Define P as a finite support iteration of forcings
Mξ, where each Mξ is a standard ccc forcing adding the Martin’s Axiom over the
previous model and making c = λξ. Let G be an M -generic filter over P . We claim
that (b) holds in M [G].

Checking that c = λ in M [G] is routine. To see that dec(RR, C) = cf(λ) it is
enough to show that dec({f}, C) ≤ cf(λ) for every f ∈ R → R. So fix f ∈ RR

from M [G] and let f̂ be a P -name for f . For ξ < cf(λ) let Xξ be the set of all
x ∈ R for which the value of f̂(x) is already decided in the model M [G ∩ Pξ],
where Pξ is the iteration of forcings Mζ up to ξ. Then R =

⋃
ξ<cf(λ)Xξ and, by

Lemma 4.1, in M [G ∩ Pξ+1] there is a cover {Xn
ξ : n < ω} of Xξ such that each

function f � Xn
ξ is continuous. Then functions {f � Xn

ξ : ξ < cf(λ) & n < ω}
witness dec({f}, C) ≤ cf(λ) in M [G], finishing the proof.
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