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SETS OF RANGE UNIQUENESS FOR CLASSES
OF CONTINUOUS FUNCTIONS

MAXIM R. BURKE AND KRZYSZTOF CIESIELSKI

(Communicated by Alan Dow)

Abstract. Diamond, Pomerance and Rubel (1981) proved that there are sub-
sets M of the complex plane such that for any two entire functions f and g if
f [M ] = g[M ], then f = g. Baraducci and Dikranjan showed in 1993 that the
continuum hypothesis (CH) implies the existence of a similar set M ⊂ R for
the class Cn(R) of continuous nowhere constant functions from R to R, while
it follows from the results of Burke and Ciesielski (1997) and Ciesielski and
Shelah that the existence of such a set is not provable in ZFC. In this paper
we will show that for several well-behaved subclasses of C(R), including the
class D1 of differentiable functions and the class AC of absolutely continuous
functions, a set M with the above property can be constructed in ZFC. We
will also prove the existence of a set M ⊂ R with the dual property that for
any f, g ∈ Cn(R) if f−1[M ] = g−1[M ], then f = g.

1. Preliminaries

We use N, R, and C to denote the set of natural numbers, the set of real numbers,
and the set of complex numbers, respectively. We denote by C(X) the set of all
continuous real-valued functions on a topological space X and by Cn(X) the set of
all nowhere constant members of C(X), i.e., the functions which are not constant on
any nonempty open set. “Topological space” means “Tychonoff space”. Const(X)
will stand for the family of all constant functions from X into R. We will write
simply Const if X is clear from the context. The cardinality of a set X will be
denoted by |X |. The cardinality of R, the continuum, will be denoted by c. For
set-theoretic notation and terminology in general see [2] or [6].

The following basic concept was introduced in [3].
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Definition 1.1. If X is a topological space, then g ∈ C(X) is said to be a trunca-
tion of f ∈ C(X) if g is constant on every connected component of {x ∈ X : f(x) 6=
g(x)}.

Notice that every function is a truncation of every other function if X is totally
disconnected, making this concept trivial for such an X . We shall be interested in
it only when X is locally connected. (Mainly when X = Rn.) Note also that when
X is locally connected,

if f ∈ C(X), g ∈ Cn(X), and g is a truncation of f , then f = g.(1)

Our interest in truncations derives from the following theorem which is a special
case of Theorem 3.1 below.

Proposition 1.2 (Berarducci, Dikranjan [3, Thm. 8.1]). Let X be a separable
topological space. There exists a set M ⊆ R such that for every g ∈ C(X) and
every countable-to-one f ∈ C(X) if g[M ] ⊆ f [M ], then g is a truncation of f .

Note also that, by (1), if X is locally connected and g ∈ Cn(X), then the
conclusion “g is a truncation of f” in Proposition 1.2 can be replaced by “f = g.”

The main concepts studied in the first part of this paper are given by the following
definition.

Definition 1.3. Let X and Y be sets, and let F be a family of functions from X
to Y . Let M ⊆ X .

(a) M is a set of range uniqueness (SRU) for F provided that for any f, g ∈ F if
f [M ] = g[M ], then f = g;

(b) If X is a topological space and F ⊆ C(X), we will say M is a strong set of
range uniqueness (strong SRU) for F provided that for any open set U ⊆ X
and any f, g ∈ F if f [M ∩ U ] ⊆ g[M ], then f |̀U is a truncation of g |̀U .

We record for future reference the following results from [9] and [3].

Proposition 1.4 (Diamond, Pomerance, Rubel [9]). (a) There are sequences M
= {an : n ∈ N} of positive real numbers converging to zero (e.g., an = 1/n
or an = 1/n!) which are SRU’s for the class A of analytic functions in the
complex plane.

(b) There exist sequences M = {an : n ∈ N} of positive real numbers converging
to zero (e.g., an = 1/2n) which are not SRU’s for A.

Proposition 1.5 (Berarducci, Dikranjan [3, Thm. 8.5]). If the continuum hypoth-
esis holds, then for every separable Baire topological space X there exists an SRU
for Cn(X).

The notion of a strong SRU was first considered in [5] in a more general setting.
The definition from [5] differs slightly from the one given above, however they agree
if X is locally connected, Baire, and the functions in F are assumed to be nowhere
constant. (The last two assumptions were imposed in [5].) In [5] the authors prove
that under CH (and some weaker assumptions) the class of functions which have
the property of Baire and are not constant on any nonmeager set (resp., the class
of Lebesgue measurable functions which are not constant on any set of positive
measure) has an SRU as long as we weaken the conclusion “f = g” in the definition
of an SRU to “f = g except on a meager set” (resp., “f = g a.e.”). It follows from
the results in [5] and [7] that one cannot prove in ZFC the existence of a set with
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either of these two properties, nor can one prove in ZFC the existence of the set
from Proposition 1.5 when X = R.

The terminology suggests that strong SRU’s are SRU’s and this is true when X is
both connected and locally connected. To see this note first that for any connected
and locally connected space X

if f, g ∈ C(X) are truncations of each other and f 6= g,

then f, g are both constant.
(2)

Indeed, let x0 ∈ W = {x ∈ R : f(x) 6= g(x)} and let U be the component of x0

in W . Then U is open in X and f and g are both constant on U (with different
values). If U = X we are done. But otherwise, by connectedness of X , there exists
a boundary point x ∈ X \W of U and so f and g assume different values at x, a
contradiction.

Note also that for any F ⊆ Const any nonempty M ⊂ R is simultaneously
an SRU and a strong SRU for F . Thus, we will concentrate on the case when
F 6⊂ Const.

Proposition 1.6. Let X be a connected locally connected topological space and let
F ⊆ C(X), F 6⊂ Const. Then any strong SRU for F is an SRU for F .

Proof. Let M ⊆ X be a strong SRU for F . We will show that M is an SRU for F .
If |F| ≤ 1, then any set is an SRU for F . So we can assume that |F| > 1. But

then M 6= ∅ since otherwise for any f, g ∈ F we would have f [M ] = ∅ = g[M ]
which, together with (2), would imply that F ⊆ Const.

Next, take f, g ∈ F such that f [M ] = g[M ]. Then f and g are truncations of
each other since M is a strong SRU for F . If f = g we are done. But otherwise, by
(2), f and g are different constant functions, which is impossible, since M 6= ∅.

2. Sets of range uniqueness for Cn(X) when X is Polish

We begin by analyzing the proof from [7] that in the model M constructed in
that paper, there are no SRU’s for Cn(R). The model M is constructed so that it
satisfies the following statement for X = 2ω.

Φ(X): For every set A ⊆ X of cardinality c there is a continuous function
f : X → [0, 1] such that f [A] = [0, 1].

It is then shown that Φ(2ω) implies Φ(R). This easily implies that there are no
SRU’s for Cn(R) of cardinality c (see [5]). That there are no SRU’s of cardinality
< c in M follows from the fact that sets of reals of cardinality < c are meager in
M and from the theorem in [5] that an SRU for Cn(R) cannot be meager.

Most of this argument will work with R replaced by an arbitrary perfect Polish
space. Consider a perfect Polish space X . In [5] it was shown that an SRU for
Cn(X) cannot be meager. Also, it is well known that if sets of size < c are meager
in R, then the same is true in X . Unfortunately, we do not know whether Φ(2ω)
implies Φ(X). We can however show that Φ(X) holds in M by using additional
properties of M established in [7], namely that in M we have c = ω2 and d = ω1,
where

d = min{|F | : F ⊆ ωω, ∀f ∈ ωω ∃g ∈ F ∀n < ω f(n) ≤ g(n)}.
(The equation d = ω1 is not stated explicitly in [7], but it follows from the fact that
the forcing used to get M is ωω-bounding, and this follows easily from [7, Lemma
5.1].)
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Proposition 2.1. Every Polish space can be covered by at most d compact zero-
dimensional sets.

Proof. We first prove the statement for the Hilbert cube [0, 1]ω. Identify the irra-
tional numbers in [0, 1] with ωω and let {rn : n < ω} enumerate the rationals in [0, 1].
For f ∈ ωω, write Kf = {g ∈ ωω : for all n < ω, g(n) ≤ f(n)}∪{ri : i ≤ f(0)}. Kf

is a compact zero-dimensional subset of [0, 1]. For f ∈ ωω, let fi (i < ω) be the func-
tions defined by fi(n) = f(2i(2n + 1)) and let Lf be the compact zero-dimensional
subset of [0, 1]ω given by Lf = Πi<ωKfi . Since f ≤ f ′ implies Lf ⊆ Lf ′ , it is clear
that the sets Lf , as f ranges over a dominating family, cover [0, 1]ω.

For the general case, let X be any Polish space. We may assume that X is
a subspace of the Hilbert cube. By considering the intersections of X with each
member of a family of d compact zero-dimensional sets covering the Hilbert cube,
we may assume that X is zero-dimensional. By the Cantor-Bendixson theorem,
we may assume that X has no isolated points. Finally, by deleting a countable
dense set, we may assume that X has no nonvoid compact open sets. But now X
is homeomorphic to ωω and the desired conclusion is standard (and easy).

We now show that Φ(X) holds in M for any Polish space X . The following
result is more than we need, but seems to be of independent interest. It applies not
only to the model of [7], but also to the models of [13] and [8] as well.

Corollary 2.2. Suppose d < cf(c) and for every A ⊆ 2ω of cardinality c there is a
continuous function f : 2ω → [0, 1] such that f [A] = [0, 1].

(a) Every separable metric space of cardinality c maps uniformly continuously
onto [0, 1].

(b) If c < ℵω, then every metric space of cardinality c maps uniformly continu-
ously onto [0, 1].

Remark 2.3. In [8] it is pointed out that part (a) holds for subspaces of the real
line by results in [13]. Also, if we drop the word “uniformly,” then both (a) and
(b) are essentially shown in [13].

Proof. If c < ℵω, the nonseparable case reduces to the separable case by reductions
similar to those in [13]. First, if X has density ≥ c, then there is a set D ⊆ X of
cardinality ≥ c such that the distances between distinct points of D are bounded
away from zero. Any map from D onto [0, 1] is uniformly continuous and extends to
a uniformly continuous map of X onto [0, 1]. Second, if X has uncountable density
κ < c, then an argument in [13, p. 575] shows that X has a subspace of cardinality
c which has density < κ. (Note that since c < ℵω, κ and c are regular.) Iterating
this argument reduces us to the case where X is separable. Hence (b) reduces to
(a).

For (a), note that the completion of X is covered by at most d compact zero-
dimensional sets, and one of these, K say, is such that |K ∩X | = c. By removing
countably many points from K, we may assume K is homeomorphic to 2ω. The
conclusion now follows easily from our assumption.

Corollary 2.4. In the model constructed in [7], there is no SRU for Cn(X) for
any perfect Polish space X.

Next consider the following easy proposition.
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Proposition 2.5. Suppose X and Y are topological spaces and there is a continu-
ous function f : X → Y with dense range such that f−1[N ] is nowhere dense in X
for each nowhere dense N ⊆ Y . If A is an SRU for Cn(X), then f [A] is an SRU
for Cn(Y ).

Proof. Let g1, g2 : Y → R be nowhere constant continuous functions such that
g1[f [A]] = g2[f [A]]. Then g1 ◦ f and g2 ◦ f are nowhere constant and have the same
image of A. Hence g1 ◦ f = g2 ◦ f . Since f has dense range, g1 = g2.

Thus, in the model M, for any space X which can be mapped densely into [0, 1]
so that the preimages of nowhere dense sets are nowhere dense, there is no SRU
for Cn(Y ). We don’t know precisely which spaces have this property. Here are
a few simple observations. If the property is satisfied by one of the factors in a
product ΠαXα, then the product satisfies it as well. More generally, if there is a
continuous open surjection from X to Y , and Y has the property, then so does X .
In particular, if there is a continuous open surjection from X to [0, 1], then X has
the property. Thus, for example, the Stone space of the regular open algebra of
[0, 1] has the property. This idea gives a possible alternative proof of Corollary 2.4.

Problem 2.6. If X is a perfect Polish space, is there a continuous function f : X →
[0, 1] with dense range and such that f−1[N ] is nowhere dense for each nowhere
dense N ⊆ [0, 1]?

Added in proof. The answer is for any perfect metric space X . See M. R. Burke,
Continuous functions which take a somewhere dense set of values on every open
set, to appear in Topology Appl.

We have very few results relating the existence of an SRU for Cn(X) to the
existence of an SRU for Cn(Y ) for different spaces X and Y . For example we don’t
know the answer to the following question.

Problem 2.7. If there is an SRU for Cn([0, 1]), is there an SRU for Cn(2ω)?

3. Sets of range uniqueness for special classes
of continuous functions

The following theorem is a technical tool used to prove some of the results in
this section.

Theorem 3.1. Let X be a separable topological space with a fixed base B of car-
dinality ≤ c and let N be an ideal of subsets of R such that |V \ N | = c for every
N ∈ N and nonempty open interval V ⊂ R. Then there exists a set M ⊂ X with
the following property. If f, g ∈ C(X),

(a) {y ∈ R : f−1(y) is uncountable} ∈ N ,
(b) N ∈ N is an analytic set, U ∈ B, and
(c) g[M ∩ U ] \N ⊆ f [M ],

then g |̀U is a truncation of f |̀U .

Remark 3.2. If X is locally connected, then the conclusion holds for all open sets
U , regardless of whether they are in the fixed base B. To see this, note that if W is
a component of {x ∈ U : f(x) 6= g(x)}, then W is covered by the family S of (open)
components W ′ of the sets B ∈ B such that B ⊆ W . If we fix W ′

0 ∈ S, then the
union of the W ′ ∈ S which are joined to W ′

0 by a chain W ′
0, W

′
1, . . . , W

′
n = W ′ such
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that W ′
i ∩W ′

i+1 6= ∅ for all i = 0, 1, . . . , n−1 is an open connected subset of W and
hence equals W . Since g is constant on each W ′, it is clear that g is constant on
W .

Proof. Let {〈fα, gα, Nα, Uα〉 : α < c} be an enumeration of all four-tuples 〈f, g, N, U〉
such that f, g ∈ C(X), the properties (a) and (b) hold, and g |̀U is not a truncation
of f |̀U . Let Wα 6= ∅ be a fixed component of {x ∈ Uα : fα(x) 6= gα(x)} on which g
is not constant. We will construct, by induction on α < c, a set M = {mα : α < c}
such that mα ∈ Wα and gα(mα) 6∈ fα[M ]∪Nα for every α < c. This will finish the
proof.

We choose mα so that the following inductive assumptions are satisfied.
(Iα) mα ∈ Wα, gα(mα) /∈ Nα.
Note that mα ∈ Wα ⊆ Uα implies, in particular, that gα(mα) 6= fα(mα).
(IIα) gα(mα) /∈ {fα(mγ) : γ < α}.
Finally we need gα(mα) /∈ {fα(mγ) : γ > α}, i.e., fα(mγ) 6= gα(mα) for every

α < γ. By interchanging α and γ in the last condition we obtain fγ(mα) 6= gγ(mγ)
for every γ < α. So, it is enough to choose

(IIIα) gα(mα) /∈ gα

[⋃
γ<α f−1

γ (gγ(mγ))
]
.

To make such a choice possible, we will also require that
(?α) f−1

α (gα(mα)) is countable.
So, assume that for some α < c the sequence 〈mβ : β < α〉 satisfying the above

conditions is already constructed. Note that gα[Wα] is a non-trivial interval since
gα is not constant on Wα and Wα is connected. Let Sα = {y ∈ R : f−1

α (y) is
uncountable}. By conditions (a), (b), and our assumption on N we have that
gα[Wα]\ (Sα∪Nα) has cardinality continuum. But the set gα

[⋃
γ<α f−1

γ (gγ(mγ))
]

has cardinality less than c by the inductive assumption (?γ) for γ < α. Therefore,
we can pick

yα ∈ gα[Wα] \
(

Sα ∪Nα ∪ {fα(mγ) : γ < α} ∪ gα

[⋃
γ<α

f−1
γ (gγ(mγ))

])
.

Choose

mα ∈ Wα ∩ g−1
α (yα).

It is easy to see that it satisfies (Iα), (IIα), (IIIα), and (?α). This finishes the
proof.

Corollary 3.3. There is a meager strong SRU for the family

(N) = {f ∈ C(R) : f [E] has Lebesgue measure zero

for each set E of Lebesgue measure zero}.
Proof. Apply Theorem 3.1 with X = R, B being the family of all open sets in R,
and N being the ideal of Lebesgue measure zero sets. Let M be the set given by
the theorem and let H ⊆ R be a meager Borel set whose complement R \ H has
Lebesgue measure zero. Then M ∩H is the desired strong SRU.

Indeed suppose that f, g ∈ F , U ⊆ R is open, and g[M ∩ H ∩ U ] ⊆ f [M ∩ H ].
Assumption (a) of the theorem is satisfied [1] (see also [12]) and in assumption (b)
we take N = g[R \H ]. It is easily seen that (c) now holds and the theorem gives
the desired conclusion.
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Corollary 3.4. There exists a meager strong SRU set M for the class D1 ∪ AC.

Proof. This follows from Corollary 3.3 and the fact that D1 ∪AC ⊂ (N). (See [12]
for information on the relationship of the family (N) to D1, AC, and other familiar
families of functions.)

Corollary 3.4 implies in particular that that there exists a ZFC example of an
SRU set for the family C1 of continuously differentiable functions. This special case
is due partly to Lee Larson.

Remark 3.5. In the spirit of [5], Corollary 3.3 holds for the class of Lebesgue mea-
surable functions which map sets of measure zero to sets of measure zero and map
sets of positive measure to sets of positive measure. (See [5] for the definition of
strong SRU in this context.) The proof is similar to the proofs of Theorem 3.1 and
Corollary 3.3 with [11, Theorem 4.1] taking the place of the result of Banach used
in the proof of Corollary 3.3.

Problem 3.6. Is there a Borel SRU for the differentiable (or C∞) functions?

Problem 3.7. Is there an SRU for the class of differentiable (or C∞) functions on
Rn when n > 1?

Added in proof. The answer is yes. See M. R. Burke, A note on sets of range
uniqueness for differentiable functions, unpublished note, Nov. 24, 1998.

The following observation is essentially contained in [9]. We reproduce it here in
a form suitable to our purposes.

Proposition 3.8. Let F ⊂ C(R) be a family of functions that contains all func-
tions from R onto R which are the restrictions of entire functions of a complex
variable and which have a positive derivative at every point of R. If M is an SRU
for F , then M cannot be countable and dense.

Proof. Suppose M were a countable dense SRU for such a family of functions. By
the main result of [14] there is a function f ∈ F such that f [M ] = Q. Then
f [M ] = (−f)[M ] and hence f is not an SRU, contradiction.

Corollary 3.9. If F ⊂ C(R) contains the family C∞ of infinitely differentiable
functions, then an SRU for F cannot be countable.

Proof. It is easy to see that an SRU for any family containing C∞ functions must
be dense. (See e.g. [5].)

In Theorem 3.1, we could have taken C(X) to be the continuous complex-valued
functions on X . The theorem then provides us with various SRU’s and strong
SRU’s for the class A of analytic functions in the complex plane. (The fibers of
a nonconstant analytic function have finite intersection with any compact set, so
the theorem easily applies.) For example, there is a Bernstein subset of C (i.e.,
a set with the property that both it and its complement meet every uncountable
compact set) which is a strong SRU for A. And every uncountable compact subset
of the plane contains an SRU for A. We finish this section by strengthening the
result from [9] that M = {1/n! : n ∈ N} is an SRU for A. M cannot be a strong
SRU for A since it isn’t dense, but it has a similar property: f [M ] ⊆ g[M ] implies
either f is constant or f = g for entire functions f and g. Not every SRU for A has
this stronger property since, by Proposition 1.4, the set M ′ = {1/n : n ∈ N} is an
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SRU for A, while the functions f(z) = z2 and g(z) = z show that it fails to have
the stronger property.

Proposition 3.10. Let M = {1/n! : n ∈ N}. Then for every f, g ∈ A if f [M ] ⊆
g[M ], then either f is constant or f = g.

Proof. Assume f is not constant. As in the proof of [9, theorem 2], we may assume
f(0) = g(0) = 0. (They use f [M ] = g[M ] but in a context where f [M ] ⊆ g[M ] is
clearly enough.) We have f(z) ∼ cz` and g(z) ∼ dzm as z → 0 for some c 6= 0 6= d.

Say f(1/n!) = g(1/a(n)!) for all n. From [9, Lemma 1] it follows easily that
{a(n)} is eventually strictly increasing. In particular, a(n) →∞ as n →∞.

We have, as n →∞,

c

(n!)`
∼ d

(a(n)!)m

or,

u(n) =
(n!)`

(a(n)!)m
∼ c

d
6= 0.(∗)

We must have v(n) = u(n + 1)/u(n) ∼ 1 and hence w(n) = v(n)/v(n − 1) ∼ 1.
Calculating gives

w(n) =
(

1 +
1
n

)` [(a(n− 1) + 1) · · ·a(n)]m

[(a(n) + 1) · · ·a(n + 1)]m
∼ [(a(n− 1) + 1) · · ·a(n)]m

[(a(n) + 1) · · ·a(n + 1)]m
∼ 1

and hence

(a(n− 1) + 1) · · ·a(n)
(a(n) + 1) · · ·a(n + 1)

∼ 1.(∗∗)

Notice that the numbers a(n + 1) − a(n) eventually stabilize to say k. Indeed,
otherwise there would exist infinitely many numbers n for which the number of
factors in the denominator is greater than the number of factors in the numerator.
But since the numbers in the denominator are larger, we would obtain that for
infinitely many n

(a(n− 1) + 1) · · · a(n)
(a(n) + 1) · · · a(n + 1)

≤ 1
a(n + 1)

which contradicts (∗∗).
So we have a(n0 + i) = a(n0) + ki for some n0 and all i. Thus

v(n0 + i− 1) =
(n0 + i)`

[(a(n0) + k(i− 1) + 1) · · · (a(n0) + ki)]m
∼ 1.

The left-hand side is ∼ i`/(ki)km, and this is ∼ 1 if and only if ` = km and k = 1.
We now have ` = m and thus a(n) = a(n0 +(n−n0)) = a(n0)+n−n0 = n+ k0

for all large enough n, where k0 = a(n0)− n0.
It follows from (∗) that lim[n!/(n + k0)!] = (c/d)1/m. Since the right-hand side

is nonzero, we must have k0 = 0 which gives a(n) = n for all large enough n. Thus
f and g agree on a tail of the sequence {1/n!} and hence are equal.
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4. Sets of preimage uniqueness

Now consider the following notion “dual” to that of SRU.

Definition 4.1. A set M ⊆ R is a set of preimage uniqueness (SPU) for the family
F of functions from X into R if f, g ∈ F and g−1[M ] = f−1[M ], then f = g.

The existence of an SPU for many classes follows from the next theorem. It gives
a set with the stronger property obtained by replacing “g−1[M ] = f−1[M ]” in the
definition of SPU by “g−1[M ] ⊆ f−1[M ]”.

Theorem 4.2. There is a set M ⊆ R such that for any Polish space X the following
holds. For any Borel set Z ⊆ R and any f, g ∈ Cn(X) if g−1(Z) is meager and
g−1[M \ Z] ⊆ f−1[M ], then f = g.

In particular, M is an SPU for Cn(X) for any Polish space X.

Proof. Let {〈Xα, fα, gα, Zα〉 : α<c} be an enumeration of all quadruples 〈X, f, g, Z〉
such that X is a Polish subspace of the Hilbert cube, f, g ∈ Cn(X), f 6= g, and Z
is a Borel subset of R with g−1(Z) being meager. We will construct, by induction
on α < c, a set M = {mα : α < c} such that mα 6∈ Zα and g−1

α (mα) 6⊂ f−1
α [M ] for

every α < c. This will finish the proof.
We will define mα = gα(xα) for appropriately chosen xα, that is such that

xα /∈ f−1
α (M). To obtain this we will choose xα such that the following inductive

conditions are satisfied.
xα /∈ f−1

α (mα) = f−1
α (gα(xα)), i.e., such that

(Iα) xα ∈ Uα, where Uα = {x ∈ R : fα(x) 6= gα(x)}.
xα /∈ ⋃{f−1

α (mγ) : γ < α}, i.e., such that
(IIα) fα(xα) /∈ Mα = {mγ : γ < α}.
xα /∈ ⋃{f−1

α (mγ) : γ > α}, i.e., such that fα(xα) 6= mγ = gγ(xγ) for every
α < γ. By interchanging α and γ in the last condition we obtain gα(xα) 6= fγ(xγ)
for every γ < α. So, it is enough to choose xα such that

(IIIα) gα(xα) /∈ Hα ∪ Zα where Hα = {fγ(xγ) : γ < α}.
So assume that for some α < c the sequence 〈xβ : β < α〉 satisfying the above

conditions is already constructed. Let E = Uα\g−1
α (Zα) and let F = 〈fα, gα〉 : X →

R2. Then F is continuous and P = F [E] is analytic. We will be done if we show
that

S = P \ [(Mα × R) ∪ (R×Hα)] 6= ∅
since any xα ∈ E ∩ F−1[S] will satisfy the inductive requirements.

If S were empty, then P would be covered by less than c many horizontal and
vertical lines, and hence would be covered by countably many such lines [10]. But
then it follows from the definition of P and the fact that fα and gα are nowhere
constant that E, and hence Uα, is covered by countably many nowhere dense sets,
contradiction.

The following is an analog of Proposition 3.8.

Proposition 4.3. Let F ⊂ C(R) be a family of functions which contains all func-
tions from R onto R which are the restrictions of the entire functions of a complex
variable and which have a positive derivative at every point of R. If M is an SPU
for F , then M cannot be countable and dense.
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Proof. Suppose M were a countable dense SPU for such a family of functions.
Then, by the main result of [14], there is a strictly increasing function f ∈ F such
that f [Q] = M . Then, for g(x) = f(x − 1) we have g ∈ F , g[Q] = M , and f 6= g,
contradiction.

Corollary 4.4. If F ⊂ C(R) contains the family C∞, then an SPU for F cannot
be countable.

Proof. It is easy to see that an SPU for any family containing C∞ functions must
be dense.

Problem 4.5. Can an SPU for C∞, or differentiable functions be meager?

We do not even know whether an SPU for the analytic functions can be count-
able, though the answer is likely affirmative.
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