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Abstract. In this note we will construct several additive Darboux-like
functions f : R → R answering some problems from (an earlier version
of) [4]. In particular, in Section 2 we will construct, under different
additional set theoretical assumptions, additive almost continuous (in
sense of Stallings) functions f : R → R whose graph is either meager
or null in the plane. In Section 3 we will construct an additive almost
continuous function f : R→ R which has the Cantor intermediate value
property but is discontinuous on any perfect set. In particular, such an
f does not have the strong Cantor intermediate value property.
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1. Preliminaries

Our terminology is standard and follows [3]. We consider only real-valued
functions of one real variable. No distinction is made between a function
and its graph. By R and Q we denote the set of all real and rational
numbers, respectively. We will consider R and R2 as linear spaces over
Q. In particular, for a subset X of either R or R2 we will use the symbol
LINQ(X) to denote the smallest linear subspace (of R or R2) over Q that
contains X. Recall also that if D ⊂ R is linearly independent over Q and
f : D → R then F = LINQ(f) ⊂ R2 is an additive function (see definition
below) from LINQ(D) into R. Any linear basis of R over Q will be referred
as a Hamel basis. By a Cantor set we mean any nonempty perfect nowhere
dense subset of R.

The ordinal numbers will be identified with the sets of all their prede-
cessors, and cardinals with the initial ordinals. In particular 2 = {0, 1},
and the first infinite ordinal ω number is equal to the set of all natural
numbers {0, 1, 2, . . . }. The family of all functions from a set X into Y is
denoted by Y X . In particular, 2n will stand for the set of all sequences
s : {0, 1, 2, . . . , n− 1} → {0, 1}, while 2<ω =

⋃
n<ω 2n is the set of all finite

sequences into 2. The symbol |X| stands for the cardinality of a set X. The
cardinality of R, is denoted by c and referred as continuum. A set S ⊂ R is
said to be c-dense if |S ∩ (a, b)| = c for every a < b.

We will use also the following terminology [4]. A function f : R→ R is:
• additive if f(x+ y) = f(x) + f(y) for every x, y ∈ R;
• almost continuous (in sense of Stallings) if each open subset of R×R

containing the graph of f contains also a continuous function from R
to R [11];
• has the Cantor intermediate value property if for every x, y ∈ R and

for each Cantor set K between f(x) and f(y) there is a Cantor set C
between x and y such that f [C] ⊂ K;
• has the strong Cantor intermediate value property if for every x, y ∈ R

and for each Cantor set K between f(x) and f(y) there is a Cantor
set C between x and y such that f [C] ⊂ K and f |̀C is continuous.

Recall also that if the graph of f : R → R intersects every closed subset B
of R2 which projection pr(B) onto the x-axis has nonempty interior then f
is almost continuous. (See e.g. [10].)
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2. An additive discontinuous almost continuous function with a
small graph

In this section we will show that the continuum hypothesis implies the
existence of an additive almost continuous function f : R→ R whose graph
is first category (or null) in the plane. This answers a question of Grande [5].
(See also [6] and [4, Question 5.2].) The author likes here to thank Udayan
B. Darji for very helpful conversations on the subject.

Theorem 2.1. For i = 1, 2 let Si ⊂ R be such that q · Si ⊂ Si for every
q ∈ Q and that the set ⋂

r∈T
(r + Si)

is c-dense for any subset T of R of cardinality less than continuum. Then
there exists an additive discontinuous almost continuous function f : R→ R
such that f ⊂ (S1 × R) ∪ (R× S2).

Before we prove this theorem we like to notice the following corollary.

Corollary 2.2.
(1) If R is not a union of less than continuum meager sets then there exists

an additive discontinuous almost continuous function f : R → R with
the graph of measure zero.

(2) If R is not a union of less than continuum sets of measure zero then
there exists an additive discontinuous almost continuous function f : R→
R with a meager graph.

Proof. (1) Let S be a dense Gδ subset of R of measure zero and put
S1 = S2 =

⋃
q∈Q q · S. Then the sets S1 and S2 satisfy the assumptions

of Theorem 2.1, while the set (S1 × R) ∪ (R× S2) has measure zero.
(2) Replace S with a meager set of full measure.

Proof of Theorem 2.1. Let S = (S1 × R) ∪ (R × S2), and {A,C} be a
partition of c with each set having cardinality c. Let {Bξ : ξ ∈ A} be an
enumeration of all closed subsets B of R2 with pr(B) having nonempty
interior, and {rξ : ξ ∈ C} be an enumeration of R. By induction on ξ < c
we will choose a sequence 〈〈xξ, yξ〉 : ξ < c〉 such that the following inductive
assumptions are satisfied for every ξ < c.

(i) xξ /∈ LINQ({xζ : ζ < ξ}).
(ii) fξ = LINQ({〈xζ , yζ〉 : ζ ≤ ξ}) ⊂ S.
(iii) If ξ ∈ A then 〈xξ, yξ〉 ∈ Bξ.
(iv) If ξ ∈ C then rξ ∈ LINQ({xζ : ζ ≤ ξ}).
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Note first if we have such a sequence then, by (i) and (iv) the set {xξ : ξ < c}
is a Hamel basis. Thus f = LINQ({〈xξ, yξ〉 : ξ < c}) is an additive function
from R into R for which, by (ii), f ⊂ S = (S1 × R) ∪ (R × S2). Moreover,
by (iii), f is almost continuous and has a dense graph in R2.

To construct a sequence as described above assume that for some ξ < c the
sequence 〈〈xζ , yζ〉 : ζ < ξ〉 satisfying (i)–(iv) is already constructed. Then,
by the inductive hypothesis,

gξ = LINQ({〈xζ , yζ〉 : ζ < ξ}) =
⋃
ζ<ξ

fζ ⊂ S.

Let Dξ be the domain of gξ. The difficulty in choosing 〈xξ, yξ〉 is to make
sure that

fξ = {〈x, y〉+ q · 〈xξ, yξ〉 : 〈x, y〉 ∈ gξ & q ∈ Q} ⊂ S
which is equivalent to the choice of 〈xξ, yξ〉 from the set

⋂
〈x,y〉∈gξ

[〈x, y〉+ S)] ⊃

 ⋂
x∈Dξ

(x+ S1)

× R
∪
R×

 ⋂
x∈Dξ

(gξ(x) + S2)

 .
(Note that S is closed under rational multiplication.)

Assume first that ξ ∈ C. If rξ /∈ Dξ put xξ = rξ. Otherwise pick
an arbitrary xξ ∈ R \ Dξ. This will guarantee (i) and (iv). In order to
have (ii) choose yξ from

⋂
x∈Dξ(gξ(x) + S2), which is nonempty by the as-

sumption from the theorem since |Dξ| ≤ |ξ| + ω < c. Then 〈xξ, yξ〉 ∈
R×

(⋂
x∈Dξ(gξ(x) + S2)

)
implying (ii).

To finish the proof, assume that ξ ∈ A. The set T =
⋂
x∈Dξ(x + S1) is

c-dense so we can choose xξ ∈ T ∩ pr(Bξ) \Dξ. Take yξ such that 〈xξ, yξ〉 ∈
Bξ. Then (i), (ii), and (iii) are satisfied.

To state the last corollary of this section we need the following lemma,
that seems to have an interest of its own.

Lemma 2.3. There exists a meager set S ⊂ R of measure zero with the
properties that p+ q · S ⊂ S for every p, q ∈ Q, and the set⋂

i<ω

(ri + S)

contains a perfect set for every sequence 〈ri ∈ R : i < ω〉.
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Proof. For 1 < k < ω and a sequence 〈sn ⊂ n : k ≤ n < ω〉 of nonempty
sets let

T (〈sn〉) =

{ ∞∑
n=2

in
n!

: ∀k ≤ n < ω (in ∈ sn)

}
.

Note that T (〈sn〉) is a nonempty closed subset of [0, 1]. It is nowhere dense,
unless sn = n for all but finitely many n. Moreover, if there exists k ≤ N <
ω such that sn = n for all n > N then

m(T (〈sn〉)) =
N∏
n=k

|sn|
n
.

Also if cn = n− 1 for k ≤ n < ω then we denote the set T (〈cn〉) by T k. It
is easy to see that

m(T k) =
∞∏
n=k

n− 1
n

= 0 for every k.

Define
S =

⋃{
p+ qT k : p, q ∈ Q & 1 < k < ω

}
.

Then S is meager, has measure zero, and is closed under Q addition and
multiplication. To finish the proof, choose a sequence 〈ri ∈ R : i < ω〉. It is
enough to prove that

⋂
3<i<ω(ri + S) contains a perfect set. To prove this

notice first that for every r ∈ R and every 1 < k < ω there exists a sequence
〈sn ⊂ n : k ≤ n < ω〉 with each |sn| ≥ n− 2 and such that

T (〈sn〉) ⊂ r +
⋃{

p+ T k : p ∈ Q
}
⊂ r + S.

This follows from the fact that if x, y ∈ T k have the same “m-th digit” im
in the representation

∑∞
n=2(in/n!), then the “m-th digits” of r+x and r+y

can differ by at most 1 modulo m. (To see it, assume that r is of the form
p +

∑∞
n=2(jn/n!) with p being an integer. Then x + p +

∑m
n=2(jn/n!) and

y + p +
∑m

n=2(jn/n!) have the same “m-th digit”, while by adding to any
number the reminder

∑∞
n=m+1(jn/n!) of r, we increase the “m-th digit” by

either 0 or 1 modulo m.)
Now, for each 3 < i < ω choose a sequence 〈sin ⊂ n : 2i ≤ n < ω〉 with

|sin| ≥ n− 2 for every n ≥ 2 for which

T (〈sin〉) ⊂ ri +
⋃{

p+ T 2i : p ∈ Q} ⊂ ri + S.

For every 8 ≤ n < ω let sn =
⋂

8≤2i≤n s
i
n ⊂ n. Then each sn has at least

two elements and

T (〈sn〉) ⊂
⋂

3<i<ω

T (〈sin〉) ⊂
⋂

3<i<ω

(ri + S).

This finishes the proof.
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Corollary 2.4. If the continuum hypothesis holds then there exists an ad-
ditive discontinuous almost continuous function f : R → R with the graph
which is simultaneously meager and of measure zero.

Proof. Apply Theorem 2.1 to S1 = S2 = S, where S is from Lemma 2.3.

Problem 2.1. Is it possible to find in ZFC an example of additive discon-
tinuous almost continuous function f : R→ R with small graph (in sense of
measure, category, or both)?

3. An additive almost continuous function with the Cantor
intermediate value property which is discontinuous on any

perfect set

In this section we will construct in ZFC an additive almost continuous
function f : R → R with the Cantor intermediate value property which is
discontinuous on any perfect set. In particular, such a function does not
have a strong Cantor intermediate value property. A similar example has
been constructed by K. Banaszewski and T. Natkaniec [2]: they constructed
an almost continuous function f : R→ R with the Cantor intermediate value
property which is of Sierpiński–Zygmund type, i.e., is discontinuous on any
set of cardinality continuum. However, they had to use an additional set
theoretical assumption in their construction (R is not a union of less than
continuum many meager sets) which is necessary, since there is a model
of ZFC with no Darboux (so almost continuous) Sierpiński–Zygmund func-
tion [1]. The constructed example answers Question 3.11 from [4].

Theorem 3.1. There exists an additive almost continuous function
f : R → R which has the Cantor intermediate value property, but is not
continuous on any perfect set. In particular, f does not have the strong
Cantor intermediate value property.

The proof of the theorem is based on the following two lemmas.

Lemma 3.2. Every perfect set P0 ⊂ R has a perfect subset P ⊂ P0 which
is linearly independent over Q.

Proof. This can be proved by a minor modification of the proof presented
in [7, thm. 2, Ch. XI sec. 7] that there exists a perfect subset of R which is
linearly independent over Q. (See also [8, 9].)
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Lemma 3.3. There exists a Hamel basis H which can be partitioned onto
the sets {Pξ : ξ ≤ c} with the following properties.

(1) For every ξ < c the set Pξ is perfect.
(2) Every nonempty interval contains continuum many sets Pξ and con-

tinuum many points from Pc.

Proof. Let P be a perfect set which is linearly independent over Q. (See
Lwmma 3.2.) Let K be a proper perfect subset of P and {xξ : ξ ≤ c} be an
enumeration of P \K. Then there is a sequence 〈〈pξ, qξ〉 ∈ (Q\{0})2 : ξ < c〉
such that the sets Pξ = pξxξ + qξK satisfy the first part of (2). They also
clearly satisfy (1). Now, it is easy to extend

⋃
ξ<c Pξ to a Hamel basis H

such that Pc = H \
⋃
ξ<c Pξ is a c-dense.

Proof of Theorem 3.1. Let 〈〈Iα,Kα〉 : α < c〉 be a list of all pairs 〈I,K〉
such that I is a nonempty open interval and K is a perfect set. By (2) of
Lemma 3.3 we can reenumerate sets Pξ to have Pα ⊂ Iα for every α < c.
We will construct function f to have f [Pα] ⊂ Kα. This will guarantee the
Cantor intermediate property of f . Next, let {Bξ : ξ < c} be an enumer-
ation of all closed subsets B of R2 with pr(B) having nonempty interior,
{xξ : ξ < c} be an enumeration of the Hamel basis H from Lemma 3.3, and
{Cξ : ξ < c} be an enumeration of all perfect sets C in R such that C is
linearly independent over Q. By induction on ξ < c construct a sequence
of functions 〈fξ : Dξ → R : ξ < c〉 such that the following inductive assump-
tions are satisfied for every ξ < c.

(i) {Dζ : ζ ≤ ξ} are countable pairwise disjoint subsets of H.
(ii) If x ∈ Dξ ∩ Pα for some α < c then fξ(x) ∈ Kα.
(iii) There exists z ∈ Dξ such that 〈z, fξ(z)〉 ∈ Bξ.
(iv) If Fξ = LINQ

(⋃
ζ≤ξ fζ

)
then xξ ∈ dom(Fξ) and Fξ |̀Cξ is discontinu-

ous.
To construct such a sequence assume that for some ξ < c a sequence
〈fζ : ζ < ξ〉 satisfying (i)–(iv) is already constructed. Let V =LINQ

(⋃
ζ<ξDζ

)
,

choose a perfect subset Z ⊂ Cξ \ V , and a countable dense subset D of Z.
Also, let A =

⋃
z∈D supp(z), where supp(z) is the support of z, i.e., the

smallest set S ⊂ H for which z ∈ LINQ(S). Then A is countable, so we can
choose zω ∈ Z \LINQ(A) and a sequence 〈zn ∈ D : n < ω〉 converging to zω.
Then {zn : n ≤ ω} ⊂ Cξ \ V . Moreover, if Hη = supp(zη) for η ≤ ω then
there exists y ∈ Hω \ (V ∪

⋃
{Hn : n < ω}). Choose

z ∈ pr(Bξ) ∩ Pc \ (V ∪
⋃
{Hn : n ≤ ω})
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and define
Dξ =

(
{xξ, z} ∪

⋃
{Hn : n ≤ ω}

)
\ V.

Function fξ is defined onDξ as follows. For x ∈ Dξ\{y, xξ, z} we define fξ(x)
arbitrarily, making only sure that condition (ii) is satisfied. By now, Fξ is
already defined on

⋃
{Hn : n ≤ ω}\{y}. Thus, the sequence 〈Fξ(zn) : n < ω〉

is already determined. If it does not converge, define fξ on y arbitrarily,
making sure that condition (ii) is satisfied. If it converges to a limit L,
define fξ(y) to force Fξ(zω) 6= L. This can be done even if y ∈ Pα for
some α < c since we still have many choices (all elements from Kα) for the
value of fξ(y). Notice that such a choice implies that Fξ |̀ {zn : n ≤ ω} is
discontinuous, while {zn : n ≤ ω} ⊂ Cξ. Thus (iv) is satisfied. We finish
the construction by choosing fξ(z) such that (iii) is satisfied, and fξ(xξ) in
arbitrary way (subject to condition (ii)) if xξ ∈ Dξ and fξ(xξ) is not defined
so far. The construction is completed.

Now, define f = LINQ
(⋃

ξ<c fξ

)
. Then f : R → R is additive, since⋃

ξ<cDξ = H. Clearly, by (iv), f is discontinuous on any perfect set since,
by Lemma 3.2, every perfect set contains some Cξ. Also, (iii) guarantees
that f is almost continuous, while (ii) guarantees that f has the Cantor
intermediate value property.
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