Dariusz Banaszewski, Mathematics Department, Pedagogical University, Chodkiewicza 30, 85–064 Bydgoszcz, Poland.

Krzysztof Ciesielski[†] Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, e-mail: kcies@wvnvms.wvnet.edu.XS

COMPOSITIONS OF TWO ADDITIVE ALMOST CONTINUOUS FUNCTIONS

Abstract

In the paper we prove that an additive Darboux function $f: \mathbb{R} \to \mathbb{R}$ can be expressed as a composition of two additive almost continuous (connectivity) functions if and only if either f is almost continuous (connectivity) function or dim $(\ker(f)) \neq 1$. We also show that for every cardinal number $\lambda \leq 2^{\omega}$ there exists an additive almost continuous functions with dim $(\ker(f)) = \lambda$. A question whether every Darboux function $f: \mathbb{R} \to \mathbb{R}$ can be expressed as a composition of two almost continuous functions (see [?] or [?]) remains open.

1 Definitions and Notation

Our terminology and notation is standard. In particular, functions will be identified with their graphs, and for a subset A of $\mathbb{R} \times \mathbb{R}$ (possibly, but not necessarily, a graph of a function) we will write dom (A) and rng (A) to denote the *x*-projection (the domain) and the *y*-projection (the range) of A, respectively. The cardinality of a set A will be denoted by card (A). Cardinals will be identified with the initial ordinals. The cardinality of the set \mathbb{R} of real numbers, the continuum, will be denoted by 2^{ω} .

Throughout the paper we will consider \mathbb{R} as a linear space over the field \mathbb{Q} of rational numbers. A linear basis of this space will be referred to as a *Hamel* basis. It is evident that the cardinality of every Hamel basis is equal to 2^{ω} .

Key Words: Darboux function, connectivity function, almost continuous function, additive function, composition of functions.

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 26A51.

Received by the editors March 6, 1997

^{*}Supported in part by the Polish Academy of Science PAN and by a 1996/97 West Virginia University Senate Research Grant.

[†]Papers authored or co-authored by a Contributing Editor are managed by a Managing Editor or one of the other Contributing Editors. Supported in part by NSF Cooperative Research Grant INT-9600548.

For an arbitrary set $A \subset \mathbb{R}$ the symbol L(A) will denote the linear subspace of \mathbb{R} over \mathbb{Q} spanned by A, i.e., the set of all finite linear combinations of elements of A with coefficients from \mathbb{Q} . Similarly for an arbitrary planar set $A \subset \mathbb{R} \times \mathbb{R}$ we define the set $L_2(A)$. Also, for $A \subset \mathbb{R}$ and $x \in \mathbb{R}$ we write x + Afor $\{x + a : a \in A\}$.

Now, let $L \neq \emptyset$ be a linear subspace of \mathbb{R} over \mathbb{Q} . A function $f: L \to \mathbb{R}$ is said to be *additive* if it satisfies Cauchy's equation f(x+y) = f(x) + f(y) for every $x, y \in L$. (See [?] or [?, p. 120].) The class of all additive functions from \mathbb{R} to \mathbb{R} will be denoted by $\mathcal{A}dd$. Recall that if $H \subset \mathbb{R}$ is a Hamel basis, then every function $f_0: H \to \mathbb{R}$ can be uniquely extended to the additive function $f: \mathbb{R} \to \mathbb{R}$. In fact, $f = L_2(f_0)$.

For $f \in Add$ its kernel ker(f) is defined as $f^{-1}(0)$. Clearly ker(f) is a linear subspace of \mathbb{R} . Thus, dim(ker(f)) denotes the (linear) dimension of ker(f) over \mathbb{Q} .

A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a *Darboux function* if it has the intermediate value property, i.e., whenever for every $x_1, x_2 \in \mathbb{R}$, $x_1 < x_2$, and every point c between $f(x_1)$ and $f(x_2)$ there exists $x \in [x_1, x_2]$ such that f(x) = c. The family of all Darboux functions from \mathbb{R} to \mathbb{R} will be denoted by \mathcal{D} .

A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *almost continuous* in the sense of Stallings if each open set (in \mathbb{R}^2) containing f contains also a (graph of) continuous function $g : \mathbb{R} \to \mathbb{R}$ [?]. The class of all almost continuous functions from \mathbb{R} into \mathbb{R} will be denoted by \mathcal{AC} .

A closed set $K \subset \mathbb{R} \times \mathbb{R}$ is said to be a *blocking set* for a function $f : \mathbb{R} \to \mathbb{R}$ provided $f \cap K = \emptyset$ while $g \cap K \neq \emptyset$ for every continuous function $g : \mathbb{R} \to \mathbb{R}$. A blocking set $K \subset \mathbb{R} \times \mathbb{R}$ for f is *irreducible* if no proper subset of K is a blocking set for f [?].

It is known that f is almost continuous if and only if it has no blocking set. Moreover, if f is not almost continuous, then there is an irreducible blocking set K for f, and the x-projection of K is a non-degenerate connected set [?]. Thus, if $f : \mathbb{R} \to \mathbb{R}$ intersects all closed sets $K \subset \mathbb{R}^2$ with the domain being a non-degenerate interval, then it is almost continuous (cf. [?]).

A function $f: \mathbb{R} \to \mathbb{R}$ is a *connectivity function* if its graph is connected (in \mathbb{R}^2). We will use a symbol *Conn* to denote the class of all connectivity functions $f: \mathbb{R} \to \mathbb{R}$. The class of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ will be denoted by *C*. We have the following chain of proper inclusions [?].

$$\mathcal{C} \subset \mathcal{AC} \subset \mathcal{C}onn \subset \mathcal{D}.$$

It is well–known that the composition of two Darboux functions is a Darboux function again. The problem of characterization of these Darboux functions which can be expressed as a composition of two almost continuous functions was considered in [?]. (See also [?].) In this paper we will consider the analogous problem in the class of additive functions.

2 Main Theorem

Let \mathcal{B} be the family of all closed sets $B \subset \mathbb{R} \times \mathbb{R}$ such that dom (B) is a non-degenerate interval and either

- (A) $B = \mathbb{R} \times \{y\};$ or,
- (B) $B^y = \{x \in \mathbb{R} : \langle x, y \rangle \in B\}$ is nowhere dense for each $y \in \mathbb{R}$.

We will use this family throughout the paper.

In what follows we will use the following lemma repeatedly.

Lemma 1. Let $f \in Add$ be such that $\ker(f) \neq \{0\}$. If $f \cap B \neq \emptyset$ for every $B \in \mathcal{B}$, then $f \in A\mathcal{C}$.

PROOF. Fix an arbitrary closed set $K \subset \mathbb{R}^2$ such that dom (K) is a nondegenerate interval. It is enough to show that $f \cap K \neq \emptyset$. If K^y is nowhere dense for each $y \in \mathbb{R}$, then $K \in \mathcal{B}$ and $f \cap K \neq \emptyset$. So, assume otherwise.

Then there is $y \in \mathbb{R}$ such that K^y contains a non-degenerate interval I. But $\mathbb{R} \times \{y\} \in \mathcal{B}$; so $f \cap (\mathbb{R} \times \{y\}) \neq \emptyset$. In particular, there exists $x \in \mathbb{R}$ such that f(x) = y. Also, ker(f) is dense, since ker $(f) \neq \{0\}$, and so $f^{-1}(y)$ contains a dense set x + ker(f). Thus $f^{-1}(y) \cap I \supset (x + \text{ker}(f)) \cap I \neq \emptyset$ and $\emptyset \neq f \cap (I \times \{y\}) \subset f \cap K$.

The next theorem constitutes one direction of our main characterization theorem.

Theorem 1. Let $f \in \mathcal{D} \cap \mathcal{A}dd$ be such that $\dim(\ker(f)) \neq 1$. Then f is a composition of two additive almost continuous functions.

PROOF. Fix $f \in \mathcal{D} \cap \mathcal{A}dd$ with dim $(\ker(f)) \neq 1$. If dim $(\ker(f)) = 0$, then f is continuous (see [?]) and $f = f \circ id$. Similarly, if $f \equiv 0$, then $f = f \circ id$. Hence we can assume that dim $(\ker(f)) \geq 2$ and $f \neq 0$.

Let $\{K_{\alpha} : \alpha < 2^{\omega}\}$ be an enumeration of the family \mathcal{B} such that $K_0 = \mathbb{R} \times \{0\}$ and let $\{b_{\alpha} : \alpha < 2^{\omega}\}$ be an enumeration of a fixed Hamel basis with $b_0 \in \ker(f)$.

We construct, by induction on $\alpha < 2^{\omega}$, the sequences $\langle g_{\alpha} : \alpha < 2^{\omega} \rangle$ and $\langle h_{\alpha} : \alpha < 2^{\omega} \rangle$ of additive functions from subsets of \mathbb{R} into \mathbb{R} maintaining the following inductive properties for every $\alpha < 2^{\omega}$.

(i) $g_{\beta} \subset g_{\alpha}$ and $h_{\beta} \subset h_{\alpha}$ for every $\beta < \alpha$;

- (ii) card $(\operatorname{dom}(g_{\alpha})) \leq \max(\omega, \alpha)$, and card $(\operatorname{dom}(h_{\alpha})) \leq \max(\omega, \alpha)$;
- (iii) $\operatorname{rng}(g_{\alpha}) = \operatorname{dom}(h_{\alpha})$ and $h_{\alpha} \circ g_{\alpha} = f | \operatorname{dom}(g_{\alpha});$
- (iv) $g_{\alpha} \cap K_{\alpha} \neq \emptyset$ and $h_{\alpha} \cap K_{\alpha} \neq \emptyset$;
- (v) $b_{\alpha} \in \text{dom}(g_{\alpha}).$

To make an inductive step assume that for some $\alpha < 2^{\omega}$ the functions g_{β} and h_{β} satisfying conditions (i)–(v) have already been constructed for every $\beta < \alpha$.

If $\alpha = 0$, choose $s_0 \in \ker(f) \setminus L(\{b_0\})$. Such a choice is possible, since $\dim(\ker(f)) \geq 2$. Put $g_0 = L_2(\{\langle b_0, 0 \rangle, \langle s_0, s_0 \rangle\})$ and $h_0 = L_2(\{\langle s_0, 0 \rangle\})$. It is easy to see that g_0 and h_0 fulfill the conditions (i)–(v).

So, assume that $\alpha > 0$ and put $\overline{g}_{\alpha} = \bigcup_{\beta < \alpha} g_{\beta}$ and $\overline{h}_{\alpha} = \bigcup_{\beta < \alpha} h_{\beta}$. Clearly functions \overline{g}_{α} and \overline{g}_{α} satisfy the conditions (i)-(iii). We will find $x_{\alpha}, y_{\alpha}, s_{\alpha}, v_{\alpha}, c_{\alpha} \in \mathbb{R}$ such that

- (a) $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha};$
- (b) $\langle v_{\alpha}, f(s_{\alpha}) \rangle \in K_{\alpha};$
- (c) $g_{\alpha} = L_2(\overline{g}_{\alpha} \cup \{\langle x_{\alpha}, y_{\alpha} \rangle, \langle b_{\alpha}, c_{\alpha} \rangle, \langle s_{\alpha}, v_{\alpha} \rangle\})$ and $h_{\alpha} = L_2(\overline{h}_{\alpha} \cup \{\langle y_{\alpha}, f(x_{\alpha}) \rangle, \langle c_{\alpha}, f(b_{\alpha}) \rangle, \langle v_{\alpha}, f(s_{\alpha}) \rangle\})$ remain functions.

It is easy to see that such g_{α} and h_{α} will satisfy the conditions (i)–(v).

As a first step we will construct x_{α} and y_{α} . If $K_{\alpha} \cap \overline{g}_{\alpha} \neq \emptyset$, we simply choose $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha} \cap \overline{g}_{\alpha}$. So, assume that $K_{\alpha} \cap \overline{g}_{\alpha} = \emptyset$. In this case we will find $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$ such that

$$x_{\alpha} \notin \operatorname{dom}(\overline{g}_{\alpha}), \quad \text{and} \quad y_{\alpha} \notin \operatorname{dom}(\overline{h}_{\alpha}) = \operatorname{rng}(\overline{g}_{\alpha}).$$
 (1)

Such a restriction is necessary to guarantee condition (c).

Let $X_{\alpha} = \operatorname{dom}(\overline{g}_{\alpha})$, and $Y_{\alpha} = \operatorname{dom}(\overline{h}_{\alpha}) = \operatorname{rng}(\overline{g}_{\alpha})$. Then $\operatorname{card}(X_{\alpha}) < 2^{\omega}$ and $\operatorname{card}(Y_{\alpha}) < 2^{\omega}$. If K_{α} was chosen according to the part (A) of the definition of \mathcal{B} , then $K_{\alpha} = \mathbb{R} \times \{y\}$ for some $y \in \mathbb{R}$. Hence $y \notin Y_{\alpha}$, since $K_{\alpha} \cap \overline{g}_{\alpha} = \emptyset$. Put $y_{\alpha} = y$ and choose $x_{\alpha} \notin X_{\alpha}$. Then $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$ and the condition (??) is satisfied. So, assume that K_{α} was chosen according to the part (B) of the definition of \mathcal{B} , i.e., that K_{α}^{γ} is nowhere dense for every $y \in \mathbb{R}$. To deal with this case recall the following fact. (See [?, Th. 29.19, p. 231].)

For every closed set $K \subset \mathbb{R}^2$ the set

 $Z(K) = \{y \in \mathbb{R} : K^y \text{ contains a non-empty perfect set}\}$

is either countable or is of power continuum.

196

This leads us to the two natural subcases.

- card $(Z(K_{\alpha})) = 2^{\omega}$. Then card $(Z(K_{\alpha}) \setminus Y_{\alpha}) = 2^{\omega}$ and we can choose $y_{\alpha} \in Z(K_{\alpha}) \setminus Y_{\alpha}$. Moreover, card $(K_{\alpha}^{y_{\alpha}}) = 2^{\omega}$, and so we can pick $x_{\alpha} \in K_{\alpha}^{y_{\alpha}} \setminus X_{\alpha}$. Then $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$ satisfies (??).
- card $(Z(K_{\alpha})) \leq \omega$. Then the set $E_{\alpha} = \operatorname{dom}(K_{\alpha}) \setminus \bigcup \{K_{\alpha}^{y} : y \in Z(K_{\alpha})\}$ is a residual subset of the interval dom (K_{α}) since each set K_{α}^{y} is nowhere dense. In particular, card $(E_{\alpha}) = 2^{\omega}$. Moreover, K_{α}^{y} is countable for every $y \in \mathbb{R} \setminus Z(K_{\alpha})$. So the set $E_{\alpha}^{1} = E_{\alpha} \setminus (X_{\alpha} \cup \bigcup \{K_{\alpha}^{y} : y \in Y_{\alpha} \setminus Z(K_{\alpha})\})$ has cardinality 2^{ω} . Choose $x_{\alpha} \in E_{\alpha}^{1} \subset \operatorname{dom}(K_{\alpha}) \setminus (X_{\alpha} \cup \bigcup_{y \in Y_{\alpha}} K_{\alpha}^{y})$ and $y_{\alpha} \in \mathbb{R}$ with $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$. Then $y_{\alpha} \notin Y_{\alpha}$ and (??) is satisfied.

This finishes the construction of x_{α} and y_{α} .

To construct s_{α} and v_{α} first note that by (??),

$$\underline{g}_{\alpha} = L_2(\overline{g}_{\alpha} \cup \{\langle x_{\alpha}, y_{\alpha} \rangle\}), \quad \text{and} \quad \underline{h}_{\alpha} = L_2(\overline{h}_{\alpha} \cup \{(y_{\alpha}, f(x_{\alpha}))\})$$

are the additive functions. If $K_{\alpha} \cap \underline{h}_{\alpha} \neq \emptyset$, we choose $\langle v_{\alpha}, w_{\alpha} \rangle \in K_{\alpha} \cap \underline{h}_{\alpha}$ and take s_{α} such that $\underline{g}_{\alpha}(s_{\alpha}) = v_{\alpha}$. Such an s_{α} exists since dom $(\underline{h}_{\alpha}) = \operatorname{rng}(\underline{g}_{\alpha})$. Then $w_{\alpha} = \underline{h}_{\alpha}(v_{\alpha}) = \underline{h}_{\alpha}(\underline{g}_{\alpha}(s_{\alpha})) = f(s_{\alpha})$, so the condition (b) is satisfied. So, assume that $K_{\alpha} \cap \underline{h}_{\alpha} = \emptyset$. Then, as in the construction of x_{α} and y_{α} , we can find $\langle v_{\alpha}, w_{\alpha} \rangle \in K_{\alpha}$ such that

$$w_{\alpha} \notin \operatorname{dom}\left(\underline{h}_{\alpha}\right) = \operatorname{rng}\left(g_{\alpha}\right), \quad \text{and} \quad w_{\alpha} \notin \operatorname{rng}\left(\underline{h}_{\alpha}\right).$$
 (2)

Now, note that $\operatorname{rng}(f) = \mathbb{R}$, since f is a non-zero additive Darboux function. Choose $s_{\alpha} \in f^{-1}(w_{\alpha})$ and notice that $s_{\alpha} \notin \operatorname{dom}(\underline{g}_{\alpha})$ since otherwise $w_{\alpha} = f(s_{\alpha}) = \underline{h}_{\alpha}(\underline{g}_{\alpha}(s_{\alpha})) = \underline{h}_{\alpha}(v_{\alpha}) \in \operatorname{rng}(\underline{h}_{\alpha})$, contradicting (??). Thus, $\langle v_{\alpha}, f(s_{\alpha}) \rangle \in K_{\alpha}$, as required in (b).

Finally, to choose c_{α} note that

$$G_{\alpha} = L_2(\underline{g}_{\alpha} \cup \{\langle s_{\alpha}, v_{\alpha} \rangle\}), \quad \text{and} \quad H_{\alpha} = L_2(\underline{h}_{\alpha} \cup \{\langle v_{\alpha}, f(s_{\alpha}) \rangle\})$$

are the additive functions. If $b_{\alpha} \in \text{dom}(G_{\alpha})$, we put $c_{\alpha} = G_{\alpha}(b_{\alpha})$. Otherwise we choose $c_{\alpha} \in \mathbb{R} \setminus \text{dom}(H_{\alpha})$. It is easy to see that $x_{\alpha}, y_{\alpha}, s_{\alpha}, v_{\alpha}$, and c_{α} chosen above satisfy (a)–(c). This finishes the inductive construction.

Having constructed functions g_{α} and h_{α} let

$$g = \bigcup_{\alpha < 2^{\omega}} g_{\alpha}, \quad \text{and} \quad h^0 = \bigcup_{\alpha < 2^{\omega}} h_{\alpha}.$$

It is easy to see that g and h^0 are additive functions such that dom $(g) = \mathbb{R}$ (by (v)) and that $f = h^0 \circ g$. Now, if $h \colon \mathbb{R} \to \mathbb{R}$ is any additive extension of h^0 , then, by (iv), g and h are almost continuous, while we still have $f = h \circ g$. This finishes the proof.

Next we will prove the converse of Theorem ??. For this we will need the following simple and well known fact.

Lemma 2. If $g, h \in Add$ and g is a surjection, then

$$\dim(\ker(h \circ g)) = \dim(\ker(h)) + \dim(\ker(g)).$$

PROOF. Let G, H be linearly independent sets such that $L(G) = \ker(g)$ and $L(H) = \ker(h)$. For every $w \in H$ choose $s_w \in g^{-1}(w)$ and notice that $F = G \cup \{s_w : w \in H\}$ is linearly independent. Indeed, suppose that

$$x = \sum_{i=1}^{n} q_i v_i + \sum_{j=1}^{k} p_j s_{w_j} = 0$$
(3)

for some $n, k \in \mathbb{N}$, $q_i, p_j \in \mathbb{Q}$, $v_i \in G$, and $w_j \in H$, where $i = 1, \ldots, n$, and $j = 1, \ldots, k$. Then

$$g(x) = \sum_{i=1}^{n} q_i g(v_i) + \sum_{j=1}^{k} p_j g(s_{w_j}) = \sum_{j=1}^{k} p_j g(s_{w_j}) = \sum_{j=1}^{k} p_j w_j = 0$$

which shows that $p_j = 0$ for j = 1, ..., k. Hence, by (??), $\sum_{i=1}^n q_i v_i = 0$, which implies that $q_i = 0$ for i = 1, ..., n.

It is easy to see that $L(F) = \ker(h \circ g)$ and consequently,

 $\dim(\ker(g)) + \dim(\ker(h)) = \operatorname{card}(G) + \operatorname{card}(H) = \operatorname{card}(F) = \dim(\ker(h \circ g)).$

This finishes the proof.

With this lemma in hand we are ready for the next theorem.

Theorem 2. Assume $f \in Add$ and $\dim(\ker(f)) = 1$.

(I) If $f \notin AC$, then $f = h \circ g$ for no $h, g \in Add \cap AC$.

(II) If $f \notin Conn$, then $f = h \circ g$ for no $h, g \in Add \cap Conn$.

PROOF. Fix $f \in Add \cap D$ such that $\dim(\ker(f)) = 1$ and suppose that there exist $g, h \in Add \cap D$ with $f = h \circ g$. Then, g is surjection, since $g \not\equiv 0$. By Lemma ??, either $\dim(\ker(g)) = 0$ or $\dim(\ker(h)) = 0$. Consequently, either g or h is a Darboux injection, so it is equal to a linear homeomorphism L(x) = ax. (Any other additive function has a dense graph, so it cannot be

198

Darboux and one-to-one at the same time.) Since the classes \mathcal{AC} and $\mathcal{C}onn$ are closed under composition with homeomorphisms (cf, e.g., [?]), we conclude that $f \in \mathcal{AC}$ ($f \in \mathcal{C}onn$) if and only if $g, h \in \mathcal{AC}$ ($g, h \in \mathcal{C}onn$).

Theorems ?? and ?? give us as a corollary the main characterization. (Since $\mathcal{AC} \subset \mathcal{C}onn$.)

Corollary 1. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive Darboux function. Then

- (I) f is a composition of two additive almost continuous functions if and only if either f is almost continuous or dim $(\ker(f)) \neq 1$;
- (II) f is a composition of two additive connectivity functions if and only if either f is a connectivity function or $\dim(\ker(f)) \neq 1$.

3 Final Remarks

Although Corollary ?? gives a full characterization of additive Darboux functions which can be expressed as a composition of two additive almost continuous (or connectivity) functions it still does not exclude the possibility that every additive Darboux function can be expressed as a such composition. To conclude this, we need also the following example.

Example 1. There exists a function $f \colon \mathbb{R} \to \mathbb{R}$ such that $\dim(\ker(f)) = 1$ and $f \in \mathcal{A}dd \cap \mathcal{D} \setminus \mathcal{C}onn$.

PROOF. Let H be a Hamel basis and H_0 be a proper subset of H be with card $(H_0) = 2^{\omega}$. Choose $h_0 \in H_0$, fix a bijection $\varphi \colon H_0 \setminus \{h_0\} \longrightarrow H_0$ and define $\overline{f} \colon H \to \mathbb{R}$ as follows.

$$\overline{f}(h) = \begin{cases} 0 & \text{for} \quad h = h_0 \\ \varphi(h) & \text{for} \quad h \in H_0 \setminus \{h_0\} \\ h & \text{for} \quad h \in H \setminus H_0. \end{cases}$$

Let f be the additive extension of \overline{f} . It is easy to observe that

$$\overline{f}(h) \in h + L(H_0) \text{ for } h \in H, \tag{4}$$

and therefore

$$f(x) \in x + L(H_0)$$
 for every $x \in \mathbb{R}$. (5)

It is obvious that ker $(f) = L(\{h_0\})$. Also rng $(f) = \mathbb{R}$, since rng $(\overline{f}) = H$. Thus $f^{-1}(y) \neq \emptyset$ for every $y \in \mathbb{R}$. Moreover, since all level sets are congruent under translations and ker(f) is dense [?], $f^{-1}(y)$ is dense for every $y \in \mathbb{R}$. Hence, the graph of f is dense in \mathbb{R}^2 and $f[J] = \mathbb{R}$ for every interval $J \subset \mathbb{R}$. In particular, $f \in \mathcal{D}$. Moreover, by (??),

$$f \subset \bigcup_{b \in L(H_0)} \{ \langle x, x + b \rangle \colon x \in \mathbb{R} \}$$

and consequently, the line y = x + c separates the graph of f for every number $c \in \mathbb{R} \setminus L(H_0)$. So, f is not a connectivity function.

Corollary 2. There exists an additive Darboux function $f : \mathbb{R} \to \mathbb{R}$ such that $f = h \circ g$ for no $f, g \in Add \cap Conn$.

Our last theorem is a variation of the example above. For its proof we will need one more easy lemma.

Lemma 3. Let f be an additive function and $F = L_2(f \cup \{\langle u, v \rangle\})$ where $u \notin \text{dom}(f)$ and $v \notin \text{rng}(f)$. Then ker(F) = ker(f).

PROOF. Obviously $\ker(f) \subset \ker(F)$. To prove that $\ker(F) \subset \ker(f)$, fix an arbitrary $x \in \ker(F)$. Then

 $x = q_0 u + q_1 w$ where $q_0, q_1 \in \mathbb{Q}$ and $w \in \text{dom}(f)$.

Since $F(x) = q_0 v + q_1 f(w) = 0$, $q_0 v = -q_1 f(w)$. Because $v \notin \operatorname{rng}(f)$, $q_0 = 0$ and consequently, $x \in \operatorname{dom}(f)$. Which shows that $x \in \operatorname{ker}(f)$.

Theorem 3. For every cardinal number $\lambda \leq 2^{\omega}$ there exists an additive almost continuous function $f \colon \mathbb{R} \to \mathbb{R}$ such that dim $(\ker(f)) = \lambda$.

PROOF. Since the function $f \equiv 0$ is almost continuous and dim $(\ker(f)) = 2^{\omega}$ for such f, we can assume that $\lambda < 2^{\omega}$. If $\lambda = 0$, then the identity function *id* has required properties and so we may also assume that $\lambda > 0$.

Now, let $H \subset \mathbb{R}$ be a Hamel basis and $H_0 \subset H$ be such that $\operatorname{card}(H_0) = \lambda$. Also, let $\{b_{\alpha} : \alpha < 2^{\omega}\} = H \setminus H_0$ and choose an enumeration $\{K_{\alpha} : \alpha < 2^{\omega}\}$ of the family \mathcal{B} of blocking sets from Lemma ??, with $K_0 = \mathbb{R} \times \{0\}$. The construction will be a slight modification of that in the proof of Theorem ??.

By transfinite induction construct a sequence $\langle f_{\alpha} : \alpha < 2^{\omega} \rangle$ of additive partial functions from \mathbb{R} into \mathbb{R} such the that following inductive conditions are satisfied for every $\alpha < 2^{\omega}$.

- (i) $f_{\beta} \subset f_{\alpha}$ for every $\beta < \alpha$;
- (ii) $f_{\alpha} \cap K_{\alpha} \neq \emptyset$;
- (iii) $b_{\alpha} \in \text{dom}(f_{\alpha}) \text{ and } \text{card}(f_{\alpha}) \leq \max(\lambda, \omega, \alpha);$

(iv)
$$\ker(f_{\alpha}) = L(H_0).$$

We start the induction by putting $f_0 = L_2((H_0 \times \{0\}) \cup \{\langle b_0, 1 \rangle\})$. It is obvious that f_0 fulfills the conditions (i)–(iv).

To make an inductive step, fix $\alpha < 2^{\omega}$, $\alpha > 0$, and assume that we have already chosen functions f_{β} for $\beta < \alpha$ which satisfy conditions (i)–(iv). If $b_{\alpha} \in \text{dom}(\bigcup_{\beta < \alpha} f_{\beta})$, we put $\overline{f}_{\alpha} = \bigcup_{\beta < \alpha} f_{\beta}$. Otherwise, by (iii), card $(\text{rng}(\bigcup_{\beta < \alpha} f_{\beta})) < 2^{\omega}$ and we can choose $c_{\alpha} \in \mathbb{R} \setminus \text{rng}(\bigcup_{\beta < \alpha} f_{\beta})$. Put

$$\overline{f}_{\alpha} = L_2 \left(\{ \langle b_{\alpha}, c_{\alpha} \rangle \} \cup \bigcup_{\beta < \alpha} f_{\beta} \right).$$

Clearly \overline{f}_{α} satisfies (i), (iii) and (iv). Also, if $K_{\alpha} \cap \overline{f}_{\alpha} \neq \emptyset$, then $f_{\alpha} = \overline{f}_{\alpha}$ satisfies (ii) as well and the construction is completed.

So, assume that $K_{\alpha} \cap \overline{f}_{\alpha} = \emptyset$ and let $X_{\alpha} = \text{dom}(\overline{f}_{\alpha})$, and $Y_{\alpha} = \text{rng}(\overline{f}_{\alpha})$. From (iii) we have that $\text{card}(Y_{\alpha}) \leq \text{card}(X_{\alpha}) \leq \max(\omega, \alpha, \lambda) < 2^{\omega}$. We will choose $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$ such that

$$x_{\alpha} \notin X_{\alpha} \quad \text{and} \quad y_{\alpha} \notin Y_{\alpha} \tag{6}$$

and define $f_{\alpha} = L_2(\overline{f}_{\alpha} \cup \{\langle x_{\alpha}, y_{\alpha} \rangle\})$. This will finish the construction since, by Lemma ??, $\ker(f_{\alpha}) = \ker(\overline{f}_{\alpha}) = L(H_0)$.

Now, if $K_{\alpha} = \mathbb{R} \times \{y\}$ for some $y \in \mathbb{R}$, then $y_{\alpha} = y \notin Y_{\alpha}$, since $K_{\alpha} \cap \overline{f}_{\alpha} = \emptyset$. Choose an arbitrary $x_{\alpha} \in \mathbb{R} \setminus X_{\alpha}$. Then $\langle x_{\alpha}, y_{\alpha} \rangle$ satisfies (??).

So, assume that $K_{\alpha} = \mathbb{R} \times \{y\}$ for no $y \in \mathbb{R}$. Then K_{α}^{y} is nowhere dense for every $y \in \mathbb{R}$. Since $Z(K_{\alpha}) = \{y \in \mathbb{R} : K_{\alpha}^{y} \text{ contains non-empty perfect set}\}$ is either countable or has the cardinality of the continuum, we have the following two cases to consider.

- card $(Z(K_{\alpha})) = 2^{\omega}$. Choose $y_{\alpha} \in Z(K_{\alpha}) \setminus Y_{\alpha}$. Then card $(K_{\alpha}^{y_{\alpha}}) = 2^{\omega}$ and we may choose $x_{\alpha} \in K_{\alpha}^{y_{\alpha}} \setminus X_{\alpha}$. Clearly $\langle x_{\alpha}, y_{\alpha} \rangle$ satisfies (??).
- card $(Z(K_{\alpha})) \leq \omega$. Then the set

$$E_{\alpha} = \operatorname{dom}(K_{\alpha}) \setminus \bigcup \{K_{\alpha}^{y} \colon y \in Z(K_{\alpha})\}$$

is residual in dom (K_{α}) and the set

$$E^{1}_{\alpha} = E_{\alpha} \setminus \left(X_{\alpha} \cup \bigcup \{ K^{y}_{\alpha} \colon y \in Y_{\alpha} \setminus Z(K_{\alpha}) \} \right)$$

has the cardinality of the continuum. Choose $x_{\alpha} \in E_{\alpha}^{1}$ and $y_{\alpha} \in \mathbb{R}$ such that $\langle x_{\alpha}, y_{\alpha} \rangle \in K_{\alpha}$. Then $\langle x_{\alpha}, y_{\alpha} \rangle$ satisfies (??) as well.

This finishes the inductive construction.

Now, put

$$f = \bigcup_{\alpha < 2^{\omega}} f_{\alpha}.$$

It is easy to see that f has the desired properties.

References

- A. L. Cauchy, Cours d'analyse de l'Ecole Polytechnique, 1. Analyse algébrique, V., Paris, 1821.
- [2] D. Gillespie, A property of continuity, Bull. Amer. Math. Soc. 28 (1922), 245–250.
- [3] Z. Grande, A. Maliszewski, T. Natkaniec, Some problems concerning almost continuous functions, Real Analysis Exchange 20(2) (1994–95), 429– 432.
- [4] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
- [5] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. **31** (1974), 125–128.
- [6] K. R. Kellum, Almost continuity and connectivity sometimes it's as easy to prove a stronger result, Real Analysis Exchange 8(1) (1982–83), 244–252.
- M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, PWN Warszawa– Kraków–Katowice 1985.
- [8] T. Natkaniec, Almost Continuity, Real Analysis Exchange 17 (1991–92), 462–520.
- [9] T. Natkaniec, On compositions and products of almost continuous functions, Fund. Math. 139 (1991), 59–74.
- [10] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47 (1959), 249–263.

202