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For non-empty topological spaces X and Y and arbitrary families A ⊆
P(X) and B ⊆ P(Y ) we put CA,B = {f ∈ Y X : (∀A ∈ A)(f [A] ∈ B)}. We
examine which classes of functions F ⊆ Y X can be represented as CA,B.
We are mainly interested in the case when F = C(X,Y ) is the class of
all continuous functions from X into Y . We prove that for a non-discrete
Tikhonov space X the class F = C(X,R) is not equal to CA,B for any
A ⊆ P(X) and B ⊆ P(R). Thus, C(X,R) cannot be characterized by images
of sets. We also show that none of the following classes of real functions can
be represented as CA,B: upper (lower) semicontinuous functions, derivatives,
approximately continuous functions, Baire class 1 functions, Borel functions,
and measurable functions.

1. Basic definitions and facts. Throughout the paper we use the
standard definitions and notation. In particular, the family of all functions
from a set X into Y is denoted by Y X . The symbol |X| stands for the
cardinality of X and P(X) for the family of all subsets of X. For a cardinal
number κ we write [X]κ to denote the family of all subsets Y of X with
|Y | = κ. (In particular, [X]1 stands for the set of all singletons in X and
[X]2 for the family of all doubletons in X.) Similarly we define [X]<κ, [X]≤κ

and [X]≥κ.
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We use the symbol ConstX,Y for the class of all constant functions from
X into Y , and write just Const when the spaces X and Y are clear from the
context. The identity map from X into X is denoted by idX . For topological
spaces X and Y the class of all continuous functions from X into Y is
denoted by C(X,Y ).

Following Engelking [4] we say that a space X is totally disconnected if
all quasi-components of X are singletons. All topological spaces considered
in this paper are at least T0 (distinguish between points) and contain at
least two points.

1.1. Main results. In order to announce our principal results we also
need the following frequently used notation: for non-empty sets X, Y and
families A ⊆ P(X), B ⊆ P(Y ),

CA,B = {f ∈ Y X : (∀A ∈ A)(f [A] ∈ B)}.
Some basic properties of CA,B are outlined below in Facts 1.2 and 1.3.

This work is motivated by a paper of Velleman [8] in which it is proved
that the class F = C(R,R) is not equal to CA,B for any A,B ⊆ P(R). Thus,
C(R,R) cannot be characterized by images of sets. This stays in contrast
with the fact that, by definition, the family C(X,Y ) can be characterized
by preimages of sets for every pair of topological spaces X, Y :

C(X,Y ) = {f ∈ Y X : f−1(V ) is open in X for every open V ⊆ Y }.
This phenomenon justifies the following terminology.

Definition 1.1. Let X and Y be topological spaces. We say that:

• the pair 〈X,Y 〉 of spaces has the V -property if there exist A ⊆ P(X)
and B ⊆ P(Y ) such that C(X,Y ) = CA,B;
• X is a V -space if 〈X,X〉 has the V -property.

In these terms Velleman’s theorem says that R is not a V -space. Our
aim is to generalize this result to a large class of pairs 〈X,Y 〉 of topological
spaces. In Section 3 we characterize the spaces X such that the pair 〈X,R〉
has the V -property. These are the spaces X such that every connected com-
ponent of X is open and admits only constant real-valued functions (The-
orem 3.1). In particular, for a non-discrete functionally Hausdorff space (in
particular, Tikhonov space) X the pair 〈X,R〉 does not have the V -property
(Corollary 3.6). The proof is, roughly speaking, based on:

(i) a reduction technique which permits us to consider only connected
spaces X (Theorem 2.1);

(ii) a construction, for X such that 〈X,R〉 has the V -property and
C(X,R) �= Const, of functions h ∈ C(X,R) that “detect non-closed sets”,
i.e., such that h−1 is not closed for some nowhere dense S ⊆ R (Lemma 3.8);
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(iii) a construction, for X such that C(X,R) �= Const, of an appropriate
discontinuous function g ∈ CA,B (Lemma 3.9).

Step (iii) also permits showing in Section 4 that no class of functions
from R to R between C(R,R) and the class of measurable functions can be
represented as CA,B (Corollary 4.2).

Properties of CA,B are given in Section 1.2. In Section 1.3 we give the first
examples of non-trivial V -spaces (Cook’s continuum) and their permanence
properties. More precisely, if the pair 〈X,Y 〉 has the V -property, then so
does every pair 〈X ′, Y ′〉 where X ′ is a retract of X and Y ′ is a subspace of
Y (Proposition 1.8 and Corollary 1.10). In Section 5.1 step (i) is elaborated
further in Theorem 5.1 which permits one to describe the behavior of V -
spaces under topological sums (Corollary 5.2). This gives new examples of
V -spaces (Corollary 5.6 and Proposition 5.7).

In our main result, Corollary 3.6, R can be replaced by Sierpiński’s dyad
S: for a T0-space X the pair 〈X,S〉 has the V -property if and only if X is
discrete. (See also open question 5.16.) Consequently, if a pair 〈X,Y 〉 has the
V -property for T0-spaces X and Y with C(X,Y ) �= Y X , then Y is necessarily
T1. Hence among T0-spaces the finite V -spaces are precisely the discrete ones
(Example 5.8(I)). Here we discuss also another class of V -spaces—the spaces
with the co-finite (more generally, co-α) topology (Example 5.8(II)).

In Section 5.2 we study stability of the V -property under cartesian prod-
ucts (Proposition 5.9, Corollaries 5.10 and 5.11). We also show that all fi-
nite powers of a Cook continuum are V -spaces (Corollary 5.12). We finish
Section 5.2 with further examples of V -spaces based on another natural
topological construction carried out on Cook’s continuum (Example 5.17,
Remark 5.18).

1.2. Properties of CA,B. First, note that CA,B can be the empty family.
This happens, for example, if ∅ ∈ A and ∅ �∈ B. Since this is a trivial case,
in what follows we always assume that all classes of functions we consider
are non-empty.

Now, if CA,B �= ∅ it is easy to see that CA,B = CA\{∅},B\{∅}. Thus, for the
remainder of this paper we assume that ∅ �∈ A.

Note also that if A = ∅ then CA,B = Y X . However, we also have Y X =
CP(X),P(Y ) = CP(X)\{∅},P(Y )\{∅}. Thus, we always assume that A contains
a non-empty set.

With this agreement in place we can state the first basic observation
that is similar in flavor to that from [2, Thm. 1].

Fact 1.2. (i) If A∗ = {f [A] : A ∈ A & f ∈ CA,B} ⊆ B then CA,B =
CA,A∗ .

(ii) Const ⊆ CA,B if and only if [Y ]1 ⊆ B.
(iii) If [Y ]1 ⊆ B then CA,B = CA\[X]1,B = CA∪[X]1,B.
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(iv) If [Y ]1 ⊆ B and there exists B ∈ B ∩ [Y ]2 then BX ⊆ CA,B.
(v) If X = Y then idX ∈ CA,B if and only if A ⊆ B.
(vi) If X = Y then CA,B forms a semigroup with respect to composition

iff CA∗,A∗ = CA,B, where A∗ is as in (i).

P r o o f. The properties (i)–(v) are obvious, as is the implication “⇐”
in (vi). To see the other implication of (vi) notice that, by (i), CA∗,A∗ ⊆
CA,A∗ = CA,B, since, by (v), A ⊆ A∗. On the other hand, CA,A∗ ⊆ CA∗,A∗ ,
as CA,A∗ = CA,B is closed under composition.

In the case when a pair 〈X,Y 〉 has the V -property we can extend the
remarks of Fact 1.2 as follows. Note first that if X is discrete (or Y is
indiscrete) then C(X,Y ) = Y X , and so 〈X,Y 〉 has the V -property. In fact,
any discrete space (and any indiscrete space) is a V -space. Thus, to avoid
this trivial case we will try to stay away from the situation when X is
discrete.

Fact 1.3. Let X be a non-discrete topological space and CA,B = C(X,Y ).
Then

(i) Const ⊆ CA,B and [Y ]1 ⊆ B;
(ii) B ∩ [Y ]2 = ∅;
(iii) A ⊆ P(W ) ∪ P(X \W ) for every clopen subset W of X;
(iv) each A ∈ A is contained in some quasi-component of X;
(v) X is not a totally disconnected space;
(vi) CA,A∗ = C(X,Y ) with A∗ = {f [A] : A ∈ A & f ∈ C(X,Y )} ⊆ B;
(vii) if X = Y then CA∗,A∗ = C(X,X) where A∗ is as in (vi).

P r o o f. (i) follows from Fact 1.2(ii).
(ii) follows from (i) and Fact 1.2(iv) since X is not discrete and Y is T0.
(iii) follows from (ii) since for every A ∈ A \ (P(W ) ∪ P(X \W )) and

any distinct b0, b1 ∈ Y the characteristic function f : X → Y equal to b1 on
W and b0 on X \W belongs to C(X,Y ) = CA,B, and so {b0, b1} = f [A] ∈ B.

(iv) follows immediately from (iii).
To see (v) note that if X were totally disconnected then, by (iv), A ⊆

[X]1 and, by Fact 1.2(iii), CA,B = C∅,B = Y X , implying that X is discrete.
(vi) and (vii) follow immediately from Fact 1.2(i) and (vi), respectively.

Note that by Facts 1.2(ii) and 1.3(i) we can assume that [X]1 ⊆ A and

(1) X =
⋃
A

when considering the problem whether 〈X,Y 〉 has the V -property. No-
tice also that Fact 1.3(v) implies, in particular, that no non-discrete zero-
dimensional space is a V -space.

According to Fact 1.3(vi) if 〈X,Y 〉 is a pair with the V -property for some
A and B, then it is so for A and A∗, where A∗ consists of all continuous



FUNCTIONS CHARACTERIZED BY IMAGES 215

images of sets of A. In other words, the class B is not relevant once we
know that the V -property is available. In particular, for a V -space X we
have C(X,X) = CA∗,A∗ for some family A∗ ⊆ P(X).

1.3.When the V -property is available. Below we give some easy examples
of pairs with the V -property. The case C(X,Y ) = Y X was already discussed
above. Now we consider the opposite case, i.e., when C(X,Y ) = Const.

Lemma 1.4. If C(X,Y )=Const, then the pair 〈X,Y 〉 has the V -property.

P r o o f. It suffices to note that C(X,Y ) = C{X},[Y ]1 .
A large number of examples of pairs 〈X,Y 〉 with the V -property can

be found with the help of the above proposition. We recall that a space
X is irreducible if every non-empty open subset of X is dense in X (or,
equivalently, every open subspace of X is connected).

Corollary 1.5. The pair 〈X,Y 〉 has the V -property in either of the
following cases.

• X is arcwise connected and Y does not contain any arc.
• X is connected and Y is totally disconnected.
• X is irreducible and Y is Hausdorff.

P r o o f. This follows from the fact that in all these cases C(X,Y ) =
Const.

This idea cannot help to get non-trivial V -spaces X as idX ∈ C(X,X).
To this end we have to take larger C(X,X).

Proposition 1.6. If X is a compact topological space such that every
continuous function f : X → X is either constant or a homeomorphism
then X is a V -space.

P r o o f. Let A be the family of all closed subsets of X that do not have
precisely two elements. We claim that C(X,X) = CA,A.

Clearly C(X,X) ⊂ CA,A. To see the other inclusion take f ∈ CA,A\Const.
Then f is one-to-one, since otherwise there is a three-element set A (which
belongs to A) such that f [A] has two elements, i.e., does not belong to
A. Thus, f is continuous, being a closed mapping which is one-to-one and
defined on a compact space.

In [3] Cook constructed a continuum K such that C(K,K) = Const∪
{idK}.
Corollary 1.7. There exists a continuum K (Cook’s continuum) which

is a V -space.

P r o o f. Follows from Proposition 1.6.

We finish this section with the following easy but fundamental facts.
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Proposition 1.8. If 〈X,Z〉 has the V -property and Y is a subspace of
Z then 〈X,Y 〉 also has the V -property.

P r o o f. Let A ⊆ P(X) and B ⊆ P(Z) be such that C(X,Z) = CA,B and
let B′ = B ∩ P(Y ). It is enough to notice that C(X,Y ) = CA,B′ .

To see this, let f : X → Y . If f ∈ C(X,Y ) ⊆ C(X,Z) = CA,B then
f [A] ∈ B ∩ P(Y ) = B′ for every A ∈ A, i.e., f ∈ CA,B′ . Conversely, if
f ∈ CA,B′ ⊆ CA,B = C(X,Z) then f ∈ C(X,Y ).

Notice that the domain counterpart of Proposition 1.8 strongly fails,
in the sense that the V -property of a pair 〈X,Y 〉 is not necessarily inher-
ited even by closed compact subsets of X. (Compare with Corollaries 1.10
and 1.11.) To see this, let K be a continuum which is a V -space (e.g., a Cook
continuum) and let S be a converging sequence in K together with its limit
point. Then 〈K,K〉 has the V -property. However, by Fact 1.3(v), 〈S,K〉
does not have the V -property since S is non-discrete totally disconnected.

Note also that the pair 〈K,S〉 has the V -property since K is connected
and S is totally disconnected (Corollary 1.5). In particular, the property
“〈X,Y 〉 has the V -property” is not symmetric in the sense that there are
examples of pairs 〈X,Y 〉 with the V -property such that 〈Y, Y 〉 does not
have the V -property. Another example of a “non-symmetric pair” is given
by the pairs 〈R,K〉 and 〈K,R〉. The pair 〈R,K〉 has the V -property again
by Corollary 1.5 (Cook’s continuum K does not contain any arc), while the
second pair does not have the V -property by Theorem 3.1.

Lemma 1.9. If 〈X,Y 〉 has the V -property and f : X → Z is a continuous
quotient map, then 〈Z, Y 〉 has the V -property.

P r o o f. Let C(X,Y ) = CA,B with A ⊆ P(X) and B ⊆ P(Y ). Then
C(Z, Y ) = Cf [A],B with f [A] = {f [A] : A ∈ A}. The inclusion C(Z, Y ) ⊆
Cf [A],B is obvious. The other inclusion follows easily from our assumption
that f is a quotient map.

Note that in this lemma f being just “continuous surjective” does not
suffice. To see this, take any pair 〈Z, Y 〉 that does not have the V -property
and take as X the underlying set of Z equipped with the discrete topology.
Then 〈X,Y 〉 has the V -property and idZ : X → Z is a continuous bijection.

The above lemma gives a partial domain counterpart of Proposition 1.8.

Corollary 1.10. If 〈X,Y 〉 has the V -property and Z is a retract of X,
then also 〈Z, Y 〉 has the V -property. In particular , any retract of a V -space
is again a V -space.

For further use we also give the following particular cases.
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Corollary 1.11. If 〈X,Y 〉 has the V -property and Z is a clopen subset
of X then 〈Z, Y 〉 also has the V -property. In particular , a clopen subset of
a V -space is a V -space.

P r o o f. Every clopen subset of a space is its retract.

Corollary 1.12. If 〈X×Z, Y 〉 has the V -property , then 〈Z, Y 〉 also has
the V -property. In particular , if X×Z is a V -space then so are X and Z.

2. A reduction theorem. The main goal of this section is to prove the
next theorem which partially reduces the question of when the pair 〈X,Y 〉
has the V -property to the case when X is connected. It is a particular case
of Theorem 5.1.

Theorem 2.1. The pair 〈X,Y 〉 has the V -property if and only if there
exists B ⊆ P(Y ) such that for every component C of X,

(a) C is open in X;
(b) there exists AC ⊆ P(C) such that C(C, Y ) = CAC ,B.

In particular , all pairs 〈C, Y 〉 have the V -property.

In the proof we use the following easy fact.

Lemma 2.2. If 〈X,Y 〉 has the V -property then every quasi-component of
X is open and connected.

P r o o f. Let C(X,Y ) = CA,B and Q be a quasi-component of X. Choose
a �= b in Y and consider the characteristic function f : X → {a, b} ⊆ Y
of Q. By Fact 1.3(iii) each A ∈ A is either contained in Q or disjoint from
Q. In either case f [A] is a singleton, so f [A] ∈ B and f ∈ CA,B = C(X,Y ).
This yields that Q is clopen. In particular, Q cannot contain proper clopen
subsets, hence Q is connected.

Proof of Theorem 2.1. Let C(X,Y ) = CA,B. The necessity of (a) follows
from Lemma 2.2. To see (b) let C be a component of X and AC = A∩P(C).
We claim that C(C, Y ) = CAC ,B.

The inclusion C(C, Y ) ⊂ CAC ,B follows from the fact that, by (a), any
continuous f : C → Y can be extended to a continuous function f̃ : X → Y
and any such function sends sets from AC = A∩ P(C) into B.

To see the other inclusion take f : C → Y from CAC ,B and extend it
to f̃ : X → Y assigning a constant value on X \ C. Then, by (a) and
Fact 1.3(iii), any A ∈ A is either in AC or is disjoint from C. In any case
f̃ [A] ∈ B, i.e., f̃ ∈ CA,B = C(X,Y ). So f ∈ C(C, Y ).

To see that the conditions (a) and (b) are sufficient, for every component
C of X let AC ⊂ P(C) be such that C(C, Y ) = CAC ,B and define A as the
union of all families AC . We claim that C(X,Y ) = CA,B.
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Let f ∈ C(X,Y ) and A ∈ A. Then there exists a component C of X such
that A ∈ AC . So, f [A] = f |C [A] ∈ B, since f |C ∈ C(C, Y ) = CAC ,B. Thus,
f ∈ CA,B.

To see the other inclusion take f ∈ CA,B. Then for every component C
of X we have f ∈ CAC ,B and f |C ∈ CAC ,B = C(C, Y ). But all sets C are
clopen. So, f is continuous.

Note that according to Theorem 2.1(a), for every connected space C and
every space Y the pair 〈Q × C, Y 〉 fails to have the V -property. (Here, as
elsewhere in the paper, we assume that Y is not indiscrete and Q denotes
the rationals.)

Theorem 2.1 also gives a new proof of Corollary 1.11: if 〈X,Y 〉 has the V -
property and Z is a clopen subset of X then 〈Z, Y 〉 also has the V -property.
Indeed, let B ⊂ P(Y ) be a family satisfying (a) and (b) of Theorem 2.1 for
〈X,Y 〉. Then B and the same families AC satisfy (a) and (b) for 〈Z, Y 〉 since
Z is clopen in X.

3. When the pair 〈X,R〉 has the V -property. The main goal of this
section is to prove the following generalization of Velleman’s theorem.

Theorem 3.1. Let X be a topological space. The pair 〈X,R〉 has the
V -property if and only if for every component C of X,

(i) C is open in X; and
(ii) C(C,R) = Const.

Before we prove it, let us notice the following corollaries.

Corollary 3.2. Let X be a topological space for which there exists a
component C of X such that either C is not open or C(C,R) �= Const. If Y
contains an arc then 〈X,Y 〉 does not have the V -property.

P r o o f. Follows from Theorem 3.1 and Proposition 1.8.

Corollary 3.3. Let C be a connected topological space. Then the pair
〈C,R〉 has the V -property if and only if C(C,R) = Const.

Before we give further corollaries let us see that one can have regular
connected topological spaces with the property (ii).

Example 3.4. There exists a regular topological space X with C(X,R) =
Const. (See [4, Sect. 1.5 and Exerc. 2.R] or [5].) In particular, such an X is
connected and 〈X,R〉 has the V -property.

A topological space X is functionally Hausdorff if the functions f ∈
C(X,R) separate the points of X. Note that every completely regular space
is functionally Hausdorff.
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Corollary 3.5. Let X be a non-discrete functionally Hausdorff space.
If Y contains an arc then 〈X,Y 〉 does not have the V -property.

Corollary 3.6. Let X be a functionally Hausdorff space. The pair
〈X,R〉 has the V -property if and only if X is discrete.

We split the proof of Theorem 3.1 into a sequence of steps. The first one,
based on the reduction theorem, reduces the proof to the case of a connected
space, i.e., to Corollary 3.3.

Proof of Theorem 3.1. Assume that (i) and (ii) are fulfilled. Then C(C,R)
= CP(C),[R]1 for every component C of X. So, by Theorem 2.1, the pair 〈X,R〉
has the V -property.

On the other hand, assume that 〈X,R〉 has the V -property. By The-
orem 2.1 every component C of X is open in X, and 〈C,R〉 has the V -
property. So, Corollary 3.3 yields C(C,R) = Const.

The proof of Corollary 3.3 is split into the following two steps.

Proposition 3.7. If X is a topological space for which there exists a
continuous function h : X → R such that

(2) h−1(S) is not closed in X for some nowhere dense S ⊆ R

then 〈X,R〉 does not have the V -property.

The next lemma ensures the validity of (2) for connected topological
spaces with non-constant continuous real-valued functions. The proof of
Proposition 3.7 will be given later in this section.

Lemma 3.8. Let X be a connected topological space with C(X,R) �=
Const. Then there exists a function as in (2).

P r o o f. Let f : X → R be a non-constant continuous function. We prove
first that

there exists T ⊆ R such that f−1(T ) is not closed in X.

Assume otherwise. Since f is non-constant there exists a ∈ R such that
both T = [a,∞) and R \ T intersect f [X]. This produces a non-trivial
partition f−1(T ) ∪ f−1(R \ T ) of X into closed sets, a contradiction. This
proves our claim.

Now fix a T ⊆ R such that f−1(T ) is not closed in X. Pick an x ∈
cl(f−1(T ))\f−1(T ) and define T+ = T∩[f(x),∞) and T− = T∩(−∞, f(x)].
Since obviously at least one of the two possibilities

x ∈ cl(f−1(T+)) \ f−1(T+) or x ∈ cl(f−1(T−)) \ f−1(T−)
occurs, we can assume without loss of generality that T = T−. Since f(x) �∈
T , we have T = T− ⊆ (−∞, f(x)). Next we note that it is not restrictive to
assume T = (−∞, f(x)) as x ∈ cl(f−1(−∞, f(x))) \ f−1(−∞, f(x)).
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Now fix a strictly increasing sequence {an}∞n=1 in R converging to f(x)
and set

A =
∞⋃
n=0

f−1(a2n, a2n+1], B =
∞⋃
n=0

f−1(a2n+1, a2n+2]

with a0 = −∞. Clearly f−1(T ) = f−1(A ∪ B), so either x ∈ cl(f−1(A)) or
x ∈ cl(f−1(B)). Since the proof is similar in both cases assume the first of
these. Now define a continuous map j : R → R such that j(f(x)) = 0 and
j[(a2n, a2n+1]] = 1/(n + 1). Consider the continuous map h = j ◦ f and let
S be the set {1/n : n ∈ ω}. Note that h−1(S) contains f−1(A) which has x
in its closure but x �∈ h−1(S) since h(x) = j(f(x)) = 0. So, h and S satisfy
(2).

In the proof of Proposition 3.7 we will use the following lemma. (The
“moreover” part will also be used in the next section.)

Lemma 3.9. Let X, h and S be as in Proposition 3.7, [R]1 ⊆ B ⊆ P(X),
B ∈ B be infinite, and A ⊆ P(X) be such that

(3) cl(h[A]) is an interval for every A ∈ A.

Assume that there exists a family J of pairwise disjoint closed subsets of
R \ cl(S) with the property that for every x < y,

(4) either [x, y] ⊆ J for some J ∈ J or |{J ∈ J : J ⊂ (x, y)}| ≥ |B|
and

(5) h[A] ∩ J �= ∅ for every A ∈ A and J ∈ J with J ⊂ cl(h[A]).

Then there exists g : R → B such that f = g◦h ∈ CA,B \C(X,R). Moreover ,
if cl(S) has positive Lebesgue measure, then g can be chosen non-measurable.

P r o o f. Let I be the family of all non-empty open intervals with rational
endpoints and let 〈〈Iξ , bξ〉 : ξ < |B|〉 be an enumeration of I × B. By
induction on ξ < |B| choose a one-to-one sequence 〈Jξ ∈ J : ξ < |B|〉 such
that

(6) Jξ ⊆ Iξ provided |{J ∈ J : J ⊂ Iξ}| ≥ |B|.
Fix distinct a, c ∈ B and define g : R → B by

g(x) =

{
bξ if x ∈ Jξ for some ξ < |B|,
a if x ∈ S,
c otherwise.

To see that f = g ◦ h belongs to CA,B take A ∈ A. We now show that
f [A] = g[h[A]] ∈ [R]1 ∪ {B} ⊆ B.

If cl(h[A]) is a singleton, then so are h[A] and f [A] = g[h[A]]. In partic-
ular, f [A] ∈ [R]1 ⊆ B. So, assume that cl(h[A]) is not a singleton. Then, by
(3), there are x < y such that (x, y) ⊆ cl(h[A]) ⊆ [x, y]. Consider two cases.
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Case 1: There exists I ∈ I such that I ⊆ (x, y) and |{J ∈ J : J ⊂ I}| ≥
|B|. Take b ∈ B. Then there exists ξ < |B| such that 〈I, b〉 = 〈Iξ , bξ〉 and,
by (6), Jξ ⊆ Iξ = I ⊆ (x, y) ⊆ cl(h[A]). In particular, by (5), h[A] ∩ Jξ �= ∅
and so ∅ �= g[h[A]∩ Jξ ] ⊆ g[Jξ ] = {bξ} = {b}. Thus, b ∈ g[h[A]]. Since b ∈ B
was arbitrary, we conclude that B ⊆ g[h[A]]. So, g[h[A]] = B ∈ B.

Case 2: For every I ∈ I if I ⊆ (x, y) then |{J ∈ J : J ⊂ I}| < |B|.
Then, by (4), for every I ∈ I with I ⊆ (x, y) there exists JI ∈ J such
that I ⊆ JI . Since elements of J are pairwise disjoint, all JI must be
equal to the same J0 ∈ J and (x, y) =

⋃
{I ∈ I : I ⊆ (x, y)} ⊆ J0. So,

h[A] ⊆ [x, y] ⊆ cl(J0) = J0. But g is constant on every J ∈ J . Thus, g[J0]
is a singleton, implying that g[h[A]] ∈ [R]1 ⊆ B.

To see that f �∈ C(X,R) let V = h−1(S) and x ∈ cl(V ) \ V , existing by
(2). Then h(x) ∈ h[cl(V )] ⊆ cl(h[V ]) ⊂ cl(S), while x �∈ V = h−1(S), i.e.,
h(x) ∈ cl(S) \ S. So,

c = g(h(x)) = f(x) ∈ f [cl(V )]

while c �∈ {a} = cl(g[S]) = cl(g[h[V ]]) = cl(f [V ]), proving that f is discon-
tinuous.

To prove the “moreover” part, take a non-measurable set E ⊆ cl(S), fix
distinct a, a′, c, c′ ∈ B and redefine g : R→ B by

g(x) =


bξ if x ∈ Jξ for some ξ < |B|,
a if x ∈ S ∩E,
a′ if x ∈ S \E,
c if x ∈ E \ S,
c′ otherwise.

Then g−1({a, c}) = E is non-measurable, so g is not measurable. It is easy
to see that for this modification of our original g we still have f = g ◦ h ∈
CA,B \ C(X,R).

Proof of Proposition 3.7. By way of contradiction assume that there exist
A ⊆ P(X) \ {∅} and B ⊆ P(R) such that C(X,R) = CA,B.

Note that, by (2), X is not discrete. So, by Fact 1.3, B contains all
singletons and does not contain any doubleton. Moreover, we can assume
that

B = A∗ = {f [A] : A ∈ A & f ∈ C(X,R)}.
Next notice that

(7) cl(f [A]) is an interval for every A ∈ A and f ∈ C(X,R).

Indeed, otherwise cl(f [A]) is disconnected, so there are two disjoint non-
empty closed subsets F0 and F1 of cl(f [A]). Then, by normality of R, there
exists a continuous function g : R → [0, 1] with g[F0] = {0} and g[F1] = {1}.
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Therefore f̄ = g ◦ f ∈ C(X,R) = CA,B and {0, 1} = f̄ [A] ∈ B, contradicting
B ∩ [R]2 = ∅.

Now, B �⊆ [R]1, since h ∈ C(X,R) = CA,B is not constant. Hence, by (7),

(8) B contains an infinite set.

Next note that

(9) B does not contain any infinite countable set.

We apply Lemma 3.9 to show this. So, by way of contradiction assume
that there exists a countable infinite B ∈ B. Note that (7) implies (3). Let
J be a family of non-trivial pairwise disjoint closed subintervals of R\ cl(S)
with the property that between any two distinct intervals from J there is
another interval J ∈ J , and

⋃
J is dense in R. It is easy to see that such

a J satisfies (4) and (5). So, Lemma 3.9 leads to a contradiction with our
assumption that C(X,R) = CA,B.

Next note that for every A ∈ A,

(10) h[A] ∩ P �= ∅ for every perfect set P ⊂ cl(h[A]).

Indeed, otherwise there is a continuous “Cantor-like” function g from R

onto [0, 1] with g[cl(h[A]) \ P ] being countable infinite. Now g ◦ h : X → R

is continuous and (g ◦ h)[A] ⊆ g[cl(h[A]) \ P ] is infinite countable, contra-
dicting (9).

To finish the proof, take an arbitrary infinite B ∈ B, which exists by
(8), and let J be a family of pairwise disjoint perfect subsets of R \ cl(S)
such that continuum many of them lie inside any non-degenerate subinterval
of R. Then conditions (3)–(5) of Lemma 3.9 are satisfied, implying that
C(X,R) �= CA,B.

4. Families of real functions. Notice that there are non-trivial classes
of real functions that are equal to CA,A for some A ⊆ P(R). For example
the class D of all Darboux functions is defined as the class of functions for
which the images of connected sets are connected. Thus, D = CA,A, where
A is the family of all connected subsets of R.

The next theorem is a generalization of Theorem 3.1 in the case X = R

and it implies that many classes of real functions cannot be represented as
CA,B.
Theorem 4.1. If A,B ⊆ P(R) are such that C(R,R) ⊆ CA,B then there

is a non-measurable function f ∈ CA,B.
P r o o f. The proof is very similar to that of Theorem 3.1. We will use

here the identity function id as an h for which any non-closed nowhere dense
S ⊆ R will satisfy (2). We will choose such an S with cl(S) having positive
Lebesgue measure.



FUNCTIONS CHARACTERIZED BY IMAGES 223

Take A,B ⊆ P(R) \ {∅} such that C(R,R) ⊆ CA,B. By Fact 1.2(ii) the
family B contains all singletons. Also, by Fact 1.2(iv), if B contains a dou-
bleton B then CA,B contains the characteristic function h : R → B of a
non-measurable set, i.e., a non-measurable function. So, without loss of gen-
erality we can assume that B does not contain any doubleton. By Fact 1.2(i)
we can also assume that

B = A∗ = {f [A] : A ∈ A & f ∈ C(R,R)}.
Next note that

(11) cl(f [A]) is an interval for every A ∈ A and f ∈ C(R,R),

the argument being identical to that for the condition (7) of Theorem 3.1.
Now, B �⊆ [R]1, since id ∈ C(R,R) ⊆ CA,B. Hence, by (11),

(12) B contains an infinite set.

If B contains a countable infinite set B then we can apply Lemma 3.9
to the family J of intervals used to prove the condition (9) of Theorem 3.1,
and conclude that there exists a non-measurable function in CA,B. So assume
that B does not contain a countable infinite subset. Then, as in the case of
the proof of condition (10) of Theorem 3.1, we see that

A ∩ P �= ∅ for every A ∈ A and every perfect set P ⊂ cl(A).

To finish the proof, it is enough to apply Lemma 3.9 to the family J of
pairwise disjoint perfect subsets of R \ cl(S) such that continuum many of
them lie inside any non-degenerate subinterval of R.

Corollary 4.2. Neither of the following classes of functions from R to
R can be represented as CA,B for any A,B ⊆ P(R):

• the class of upper or lower semicontinuous functions;
• the class of derivatives;
• the class of approximately continuous functions;
• the class of Baire class 1 functions;
• the class of Borel functions;
• the class of measurable functions.

P r o o f. If F is any of the above classes then C(R,R) ⊆ F and every
function in F is measurable.

Problem 4.3. Can the class of all functions f : R → R with the Baire
property be represented as CA,B?

As far as smaller classes of functions are concerned we have the following
questions.

Problem 4.4. Can any of the following classes of real functions be rep-
resented as CA,B?
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• The class of all linear functions f(x) = ax + b.
• The class of all polynomials.
• The class of all real-analytic functions.
• The class C∞ of infinitely many times differentiable functions.
• The class Dn of n-times differentiable functions, with 1 ≤ n < ω.

5. Further remarks and examples

5.1. Second reduction theorem. The next theorem can be considered as
a generalization of Theorem 2.1.

Theorem 5.1. Let X =
⋃
α∈I Cα and Y =

⋃
γ∈J Kγ be the partitions

of the topological spaces X and Y into connected components. Then 〈X,Y 〉
has the V -property if and only if

(A) each Cα is clopen in X; and
(B) for every α ∈ I and γ ∈ J there exist families Aα ⊆ P(Cα) and

Bγ ⊆ P(Kγ) with the property that

C(Cα,Kγ) = CAα,Bγ for every α ∈ I and γ ∈ J .

P r o o f. Assume first that C(X,Y ) = CA,B with B = A∗. Then condition
(A) follows from Lemma 2.2.

To see (B) define Aα = A ∩ P(Cα) and Bγ = B ∩ P(Kγ). First notice
that A =

⋃
α∈I Aα follows from Fact 1.3(iv). Also B =

⋃
γ∈J Bγ since con-

tinuous functions send connected sets to connected sets. In order to prove
that C(Cα,Kγ) = CAα,Bγ take a continuous map f : Cα → Kγ . Extend f

to a continuous map f̃ : X → Y by choosing an arbitrary point b ∈ Y and
assigning value b to any x ∈ X \ Cα. Then f̃ ∈ C(X,Y ) = CA,B. Hence
for every A ∈ Aα we have f [A] = f̃ [A] ∈ B and f [A] ∈ Bγ as f [A] ⊆ Kγ .
Thus f ∈ CAα,Bγ . The proof of the other inclusion is similar to that for
Theorem 2.1.

To prove the other implication first notice that it is true for Y being
discrete since we can take A = {Cα : α ∈ I} and B = [Y ]1. Thus we assume
that Y is not discrete.

Define A =
⋃
α∈I Aα and B =

⋃
γ∈J Bγ . We now prove that C(X,Y ) =

CA,B.
First note that each function f : X → Y which is either continuous or

in CA,B defines a map θ : I → J such that

(13) f [Cα] ⊆ Kθ(α).

For continuous f this is obvious. So, let f ∈ CA,B and fix α ∈ I and x ∈
Cα. Let Stω(x,A) =

⋃
n Stn(x,A), where Stn(x,A) denotes the nth iterated

star of the point x with respect to the cover A of X. (See (1).) It is easy to see
that Stω(x,A) ⊆ Cα, and f [Stω(x,A)] is a subset of precisely one Kγ . Thus,
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it is enough to show that Stω(x,A) = Cα. To this end take a component
Kγ of Y with more than one point and consider the characteristic function
f : Cα → Kγ of Stω(x,A). It belongs to CAα,Bγ = C(Cα,Kγ), so f is
continuous. Hence Stω(x,A) is clopen in Cα. As Cα is connected we conclude
Stω(x,A) = Cα.

Now to prove C(X,Y ) ⊆ CA,B notice that if f : X → Y is continuous and
θ is as in (13) then f [A] ∈ Bθ(α) for every α ∈ I and A ∈ Aα. So, f ∈ CA,B.

To see the other inclusion let f ∈ CA,B and let θ be as in (13). Since
the components of X are clopen, it suffices to prove that each restriction
fα = f |Cα is continuous. By the formula (13) we can factorize fα as the com-
position of gα : Cα → Kθ(α) and the inclusion Kθ(α) ↪→ Y , so that the con-
tinuity of fα follows from the continuity of gα ∈ CAα,Bθ(α) = C(Cα,Kθ(α)).
Corollary 5.2. Let X =

⊕
αXα be the topological direct sum of the

spaces Xα. Then 〈X,Y 〉 has the V -property if and only if all pairs 〈Xα, Y 〉
have the V -property witnessed by the same B ⊆ P(Y ).

Corollary 5.3. Let X =
⋃
α∈I Cα be the partition of X into connected

components. Then X is a V -space if and only if

(A) each Cα is clopen in X; and
(B) for each α ∈ I there exists a family Aα ⊆ P(Cα) such that C(Cα, Cγ)

= CAα,Aγ for every α, γ ∈ I.

P r o o f. From the formulation of Theorem 5.1 it follows immediately that
for each α ∈ I there exist families Aα,Bα ⊆ P(Cα) such that C(Cα, Cγ) =
CAα,Bγ for every α, γ ∈ I. To see that the families Aα and Bα can be chosen
equal it is enough to notice that for a V -space X we can choose B = A, and
then check the definition of Aα and Bγ in the proof of Theorem 5.1.

Corollary 5.4. Let D be a discrete space. Then 〈X,D〉 has the V -
property if and only if each connected component of X is clopen in X.

Corollary 5.5. Let D be a discrete space. Then X ×D is a V -space if
and only if X is a V -space.

P r o o f. The product X × D is a topological direct sum of |D|-many
copies of the space X.

Corollary 5.6. If K is a Cook’s continuum and D is a discrete space
then X ×D is a V -space.

A family (possibly a proper class) {Xα}α of spaces is strongly rigid if
the only non-constant maps Xα → Xβ are the identities Xα → Xα. A space
X is strongly rigid if the family {X} is strongly rigid. (See [1], [6], [7] for
the existence of strongly rigid spaces and families.) Obviously every strongly
rigid pair {X,Y } of distinct spaces gives rise to two pairs 〈X,Y 〉 and 〈Y,X〉
having the V -property.
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Proposition 5.7. Let {Cα}α∈I be a strongly rigid family of continua.
Then the topological direct sum X =

⊕
α∈I Cα is a V -space.

P r o o f. For every α ∈ I let Aα be the family of closed subsets of Cα
which are not doubletons. Set A =

⋃
α∈I Aα. We prove that C(X,X) = CA,A

by using Corollary 5.3. To this end we must check that C(Cα, Cβ) = CAα,Aβ
for every α, β ∈ I.

The case α = β was already established in Proposition 1.6. So, assume
that α �= β. Then C(Cα, Cβ) has only constant maps. Suppose f ∈ CAα,Aβ
is non-constant. By the choice of Aα and Aβ the map f is injective. Since
Cα ∈ Aα, it follows that Z = f [Cα] is a closed, hence compact, subset of Cβ .
Moreover, every closed subset of Cα is mapped onto a closed subset of Z.
Therefore f :Cα→Cβ is a non-constant continuous map, a contradiction.

Example 5.8. (I) In analogy with our main result in Section 3 we discuss
here when the pair 〈X,S〉 has the V -property, where S denotes the Sierpiński
dyad. It is easy to see (using Fact 1.2) that for a T0-space X the pair 〈X,S〉
has the V -property if and only if X is discrete. Further, using this fact
and Proposition 1.8 one can conclude that for T0-spaces X and Y with
C(X,Y ) �= Y X (i.e., Y is not indiscrete and X is not discrete) the pair
〈X,Y 〉 may have the V -property only if Y is T1. Consequently, a finite
T0-space is a V -space if and only if it is discrete.

(II) Now we give examples of V -spaces of arbitrary infinite cardinality
which need not be locally compact. (Note that all examples given above were
locally compact.) These are non-Hausdorff T1-spaces. Let X be a set and
α ≤ |X| be a regular cardinal. Consider the co-α topology τα on X (having
as closed sets: X and all subsets Y ⊆ X with |Y | < α). It is easy to see
that f ∈ C(X,X) \Const if and only if f has small fibers (i.e., |f−1(x)| < α
for every x ∈ X). Now with A = [X]1 ∪ [X]≥α we have C(X,X) = CA,A, so
that X is a V -space. Note that X is always connected, while τα is (locally)
compact precisely for α = ω.

5.2. Behavior under products. Next we examine when the V -property of
a pair 〈X,Y 〉 is preserved under product operations.

Now we prove the counterpart of Corollary 5.2 in the case of products.

Proposition 5.9. Let X be a space, let {Yα}α∈I be a family of spaces
and let Y =

∏
α∈I Yα. Then 〈X,Y 〉 has the V -property if and only if all

pairs 〈X,Yα〉 have the V -property witnessed by the same family A ⊆ P(X).

P r o o f. The necessity follows from Proposition 1.8. Now assume that all
pairs 〈X,Yα〉 have the V -property witnessed by the same family A ⊆ P(X).
According to Fact 1.3(vi),

C(X,Yα) = CA,Bα for all α ∈ I,
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where Bα = {fα[A] : A ∈ A & fα ∈ C(X,Yα)}. For a family {fα : X →
Yα}α∈I of functions, we denote by 〈fα〉 the diagonal map X → Y . We
will use the fact that every continuous function f : X → Y has the form
f = 〈fα〉, where each fα : X → Yα is continuous. Let B = {〈fα〉[A] : A ∈
A & 〈fα〉 ∈ C(X,Y )}. We now show that C(X,Y ) = CA,B.

So, let f = 〈fα〉 ∈ CA,B. To prove that f ∈ C(X,Y ) it is enough to
show that fα ∈ CA,Bα = C(X,Yα) for every α ∈ I. So, take A ∈ A. Then
f [A] ∈ B, i.e., f [A] = g[A′] for some g ∈ C(X,Y ) and A′ ∈ A. Applying
the canonical projection pα : Y → Yα to both sides of this equality we get
fα[A] = gα[A′] ∈ Bα. So, f [A] ∈ CA,Bα .

The inclusion C(X,Y ) ⊆ CA,B is a trivial consequence of the definition
of B.

Corollary 5.10. Let {Yα}α∈I be a family of spaces. Then Y =
∏
α∈I Yα

is a V -space if and only if all pairs 〈Y, Yα〉 have the V -property witnessed
by the same family A ⊆ P(Y ).

In particular, according to Corollary 1.12 every Yα is a V -space when∏
α∈I Yα is a V -space.

Corollary 5.11. Let X be a topological space and let α be a cardinal.

(i) X is a V -space if and only if 〈X,Xα〉 has the V -property.
(ii) 〈Xα,X〉 has the V -property if and only if Xα is a V -space.

Note that by Corollary 1.12 if Xα is a V -space then X is a V -space.

Corollary 5.12. Let K be a Cook continuum and let n > 0 be a natural
number. Then Kn is a V -space.

P r o o f. According to the above corollary it suffices to check that 〈Kn,K〉
has the V -property.

Let pk : Kn → K, 1 ≤ k ≤ n, denote the kth projection. We prove by
induction on n the following claim:

(I) every non-constant continuous map f : Kn → K coincides with some
projection pk.

The case n = 1 is trivial. Assume that n > 1 and that the statement is
true for n − 1. Fix a ∈ Kn−1 and consider a continuous function f : Kn =
K ×Kn−1 → K. Then the function ha : K → X defined by ha(x) = f(x, a)
is continuous. Hence, either ha = idK , or ha ∈ Const. Let g(a) ∈ K be the
value of that constant function in the second case. Put F = {a ∈ Kn−1 :
ha ≡ g(a)} and G = {a ∈ Kn−1 : ha = idK}. These are disjoint closed
subsets of Kn−1 with Kn−1 = F ∪ G. By the connectedness of Kn−1 we
have either F = Kn−1, or Kn−1 = G.

In the first case we have ha ≡ g(a) for all a ∈ Kn−1. The function
g : Kn−1 → K obtained in this way is continuous. So, by our inductive
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hypothesis, g is a projection. (Note that g cannot be constant since f is
non-constant and each ha is constant.) In the second case ha = idK for
every a, hence f = p1 is again a projection. This proves our claim.

For a non-empty subset D ⊆ F = {1, . . . , n} denote by ∆D : K → KD

the diagonal map defined by ∆D(x) = 〈x, . . . , x〉 ∈ KD. Then it is easy to
see that for every continuous map ϕ : K → Kn, ϕ �= ∆F , there exists a
subset D ⊂ F = {1, . . . , n} and an element a ∈ KF\D such that ϕ : K →
Kn = KD ×KF\D coincides with the map 〈∆D, ga〉, where ga ∈ Const is
the constant map with value a. Since ϕ is completely determined by the pair
〈D,a〉 ∈ P(F ) ×KF\D, we denote this map by ϕD,a.

Now fix A to be the family of all closed subsets of K which are not
doubletons. It follows from the proof of Proposition 1.6 that CA,A = CK,K =
Const ∪ {idK}. Set B = {ϕ[A] : ϕ ∈ C(K,Kn) & A ∈ A}.

We show that C(Kn,K) = CB,A. The inclusion C(Kn,K) ⊆ CB,A is
obvious. Assume f ∈ CB,A. Note that for every a ∈ K the composition

(14) ha = f ◦ ϕ{1,...,n−1},a
belongs to CA,A, hence

(15) ha ∈ Const or ha = idK

by virtue of the equation CA,A = CK,K and (I). Consider the restriction
dn = f ◦∆F of f to the diagonal of Kn, i.e., dn(x) = f(x, . . . , x). The proof
of the corollary follows immediately from the next claim which we prove by
induction on n.

Claim. (1n) If dn ∈ Const then f ∈ Const.
(2n) If dn = idK then f = pi for some i ∈ {1, . . . , n}.
P r o o f. The case n = 1 trivially follows from the equalities ∆F = idK

and dn = f , which are valid for n = 1. Assume that n > 1 and that the
claim is true for n− 1.

Case 1: Let dn(x) = b ∈ K for every x ∈ K. Fix an arbitrary a ∈ K \{b}
and consider ha as in (14). Then ha(a) �= idK since ha(a) = b �= a. Now (15)
yields ha ∈ Const. Consider the function fa : Kn−1 → K defined by

(16) fa(x1, . . . , xn−1) = f(x1, . . . , xn−1, a).

Then fa ◦∆{1,...,n−1} = ha ∈ Const, so that the inductive hypothesis (1n−1)
holds for fa. Hence f(x1, . . . , xn−1, a) = b for every 〈x1, . . . , xn−1〉 ∈ Kn−1

and a ∈ K\{b}. Assume f �∈ Const. Then there exists 〈c1, . . . , cn−1〉 ∈ Kn−1

such that f(c1, . . . , cn−1, b) �= b. Now B = {〈c1, . . . , cn−1〉} × K ∈ B and
|f [B]| = 2, so that f [B] �∈ A, a contradiction. This proves that f ∈ Const.

Case 2: Let dn = idK . For a ∈ K consider the functions ha : K → K as
in (14). According to (15) we have two cases.
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Case 2.1: There exists a ∈ K such that ha ∈ Const. From ha(a) =
dn(a) = idK(a) = a we get ha(x) = a for every x ∈ K. For the function
fa defined as in (16) we have fa ◦ ∆{1,...,n−1} = ha ∈ Const, so that the
inductive hypothesis (1n−1) holds for fa. Hence fa ∈ Const. This yields
f = pn.

Case 2.2: ha = idK for all a ∈ K. Now for every a ∈ K the function
fa defined as in (16) satisfies the inductive hypothesis (2n−1), hence there
exists ia ∈ {1, . . . , n − 1} such that fa = pia . The proof will be finished
if we show that the function K → {1, . . . , n − 1} defined by a !→ ia is
constant. Assume the contrary. Then ia �= ia′ for some a �= a′ from K.
Fix 〈x1, . . . , xn−1〉 ∈ Kn−1 such that xia �= xia′ and xk ∈ {xia , xia′} for
k ∈ {1, . . . , n − 1}. (This is possible since our assumption entails n > 2.)
Then for the set B = {〈x1, . . . , xn−1〉} ×K ∈ B we have |f [B]| = 2, so that
f [B] �∈ A, a contradiction.

We do not know if this result can be extended to all V -spaces:

Problem 5.13. Are finite powers of V -spaces again V -spaces?

In particular, we do not know whether finite powers of the V -spaces de-
fined in Example 5.8(II) are V -spaces. On the other hand, note that infinite
powers of a V -space need not be V -spaces. (For example, take any finite
discrete non-singleton space.)

In analogy with Proposition 5.7, one could try to extend the validity of
Corollary 5.12 to the product of any (finite) strongly rigid family of continua.
We offer a partial result here.

Proposition 5.14. Let {Xα}α∈I be a strongly rigid family of continua.
Then all pairs 〈

∏
β∈I Xβ ,Xα〉 have the V -property.

P r o o f. Let X =
∏
β∈I Xβ . We prove first that C(X,Xα) = Const∪{pα}

where pα : X → Xα is the canonical projection for α ∈ I.
Fix α ∈ I and let X ′ =

∏
{Xβ : β ∈ I, β �= α}. We identify X with

Xα ×X ′.
We show first that C(X ′,Xα) = Const. Fix y = 〈yβ〉 ∈ X ′ and let

X ′′ = {x = 〈xβ〉 ∈ X ′ : xβ �= yβ for only finitely many β ∈ I}.
Now fix f ∈ C(X ′,Xα) and set b = f(y). It is easy to see that f takes
constant value b on X ′′. (For x = 〈xβ〉 ∈ X ′′ argue by induction on the
number of β ∈ I with xβ �= yβ .) Since Xα is Hausdorff and X ′′ is dense in
X ′ we conclude that f is constant on X ′.

Now take f ∈ C(X,Xα) and for every x ∈ Xα consider the restriction of
f on Z = {x} ×X ′. By the above claim f has a constant value f̃(x) ∈ Xα
on Z. The mapping x !→ f̃(x) is a continuous function from Xα into Xα.
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Hence it is either constant or the identity. Thus f is either constant or equal
to pα.

Let B be the family of all closed subsets of Xα that are not doubletons
and let A = {B ×D ⊆ X : B ∈ B & D ∈ [X ′]2}. Then C(X,Xα) = CA,B.

We do not know if it is possible to find a single A witnessing the prop-
erty V for all pairs 〈

∏
β∈I Xβ ,Xα〉 simultaneously. If this were true, then

applying Corollary 5.10 we could conclude that X =
∏
α∈I Xα is a V -space.

The above results also leave open the following question regarding sub-
spaces of products. Putting the comment following Corollary 5.11 in negative
form we get: if X is not a V -space, then none of the powers Xα is a V -space.
Hence, by Corollary 5.11, the pair 〈Xα,X〉 does not have the V -property.

Problem 5.15. Suppose X is not a V -space. Is it true that no pair 〈Y,X〉
has the V -property where Y is a non-discrete subspace of Xα for some α?

This is true for X equal to R, the Sierpiński dyad S, and the discrete
doubleton {0, 1}. Actually, in these cases the V -property fails for all pairs
〈Y,X〉 where Y belongs to the larger class S(X) of spaces that admit a
continuous injection into a power of X. (See Corollary 3.5, Example 5.8(I),
and Fact 1.3(v). Note that S(R) are the functionally Hausdorff spaces, S(S)
are the T0-spaces and S({0, 1}) are the totally disconnected spaces.) We
propose the question also in its stronger form:

Problem 5.16. Suppose X is not a V -space. Is it true that for a space
Y ∈ S(X) the pair 〈Y,X〉 has the V -property if and only if Y is discrete?

In the semigroup C(X,X) the largest subgroup H(X) of all autohomeo-
morphisms of X has as its smallest natural extension the subsemigroup
H(X) ∪ Const. Most of the examples of Hausdorff connected V -spaces we
have seen till this point have the property C(X,X) = H(X) ∪ Const. This
suggests the question: does there exist a Hausdorff connected V -space X
such that C(X,X) has non-constant non-injective maps? The powers of
Cook’s continuum have this property by Corollary 5.12. Here is another
example of a V -space with this property.

Example 5.17. Let K be a strongly rigid continuum and a ∈ K. Then
a is not a cut point of C [6, Theorem 2.2.1]. Let X = K ∨a K be the
adjunction space obtained by gluing two copies of K along the set {a}. Let
ji : K ↪→ X, i = 1, 2, be the canonical embeddings of K into X. Then every
point of X has the form ji(x) for some x ∈ K and i = 1, 2. The canonical
projection p : X → K is defined by p ◦ j1 = p ◦ j2 = idK . The symmetry
s : X → X is defined by s ◦ j1 = j2 and s ◦ j2 = j1. We also have the
map h1 : X → X with h1 ◦ j1 = idK and h1 ◦ j2 : K → K the constant
function with value a. The map h2 is defined analogously. It is easy to see
that C(X,X) = Const ∪ {1X , s, h1, h2}.
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Let A be the family of closed subsets of K which are not doubletons
and Ã = {ji[A] : A ∈ A, i = 1, 2}. Then C(X,X) = CÃ,Ã. The inclusion
C(X,X) ⊆ CÃ,Ã is obvious. If f ∈ CÃ,Ã, then for i = 1, 2 the restriction of f
on ji[K] is continuous, so that f is continuous as well since j1[K] and j2[K]
are closed in X.

An alternative proof that X = K ∨a K is a V -space is given in the
following remark.

Remark 5.18. The above example hides several more general facts which
we isolate now. For a space Y and a subspace M of Y the adjunction space
X = Y ∨M Y is obtained as above by gluing two copies of Y along M . The
maps ji : Y ↪→ X, i = 1, 2, s : X → X and p : X → Y are defined as above.
A family A ⊆ P(X) is symmetric if s(A) ∈ A for every A ∈ A.

(a) If 〈Y,Z〉 has the V -property, then also 〈X,Z〉 has the V -property
witnessed by a symmetric family A ⊆ P(X). In particular, if Y is a V -space,
then 〈X,Y 〉 has the V -property. (If C(Y,Z) = CA,B, then Ã defined as in
Example 5.17 is symmetric and C(X,Z) = CÃ,B.)

(b) If 〈X,Z〉 has the V -property, then it can be witnessed by a symmetric
family A ⊆ P(X). (Exploit the symmetry s of X.)

(c) If 〈X,Z〉 has the V -property witnessed by a symmetric family A ⊆
P(X) then also 〈Y,Z〉 has the V -property. In particular, Y is a V -space if
and only if 〈X,Y 〉 has the V -property. (Note that Y can be considered as a
retract of X via the embeddings ji.)

(d) If Y is a strongly rigid V -space and M does not cut Y (i.e., Y \M is
connected), then X is also a V -space. (It suffices to see that 〈Y,X〉 has the V -
property. If C(Y, Y ) = CA,A define Ã as before. To see that C(Y,X) ⊆ CA,Ã
it suffices to note that every f ∈ C(X,Z) factorizes either through j1 or
through j2. For the inverse inclusion one has to prove first that C(Y, Y ) =
CA,A yields that for the family A and every x ∈ Y , Y = Stω(x,A) as in the
proof of Theorem 5.1. This forces the functions of CA,Ã to factorize through
either j1 or j2.)
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