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ABSTRACT

A function f: R" — R is a connectivity function if the graph of its restriction f|C to any
connected C C R" is connected in R" x R. The main goa of this paper is to prove that every
function f: R" — R is a sum of n+ 1 connectivity functions (Corollary 2.2). We will also show that
if n> 1, then every function g: R" — R which is a sum of n connectivity functions is continuous
on some perfect set (see Theorem 2.5) which implies that the number n+ 1 in our theorem is the
best possible (Corollary 2.6).

To prove the above results, we establish and then apply the following theorems which are of
interest on their own.

For every dense Gs-subset G of R" there are homeomorphisms hy, ..., hn of R" such that
R"=GUhy(G)U... Uh,(G) (Proposition 2.4).

For every n > 1 and any connectivity function f: R" — R, if x€ R" and ¢ > 0 then there exists
an open set U ¢ R" such that x e U c B"(x,¢), flbd(U) is continuous, and | f(x) — f(y)| < ¢ for
every y € bd(U) (Proposition 2.7).

1. Preliminaries

Our basic terminology and notation is standard. (See, for example, [4].) The
terminology and preliminaries from dimension theory and the theory of simplicial
triangulations will be used only in some parts of the paper and will be introduced
on the ‘as needed’ basis.

For a topological space X and U ¢ X we will use the symbols cl(U) and
bd(U) to denote the closure and the boundary of U, respectively. Also, we will
consider the following classes of functions f: X — R (we will use them only
when X c R"):

Conn(X): the set of connectivity functions f: X — R, that is, functions such

that the graph of f|C is connected in X x R for every connected subset C
of X;

PC(X): the set of peripherally continuous functions f: X — R, that is,
functions such that for every x e X and any par U c X and VC R of
open neighbourhoods of x and f(x), respectively, there exists an open
neighbourhood W of x with cl(W) c U and f[bd(W)] C V;

Ext(X): the set of extendable functions f: X — R, that is, functions such that
there exists a connectivity function g: X x [0, 1] — R with f(x) = g(x, 0)
for every x e X.

We will write Conn, PC and Ext in place of Conn(X), PC(X) and Ext(X)

when the space X is clear from the context.
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It is immediate from the definition that Ext(X) c Conn(X) for every connected
space X. In what follows we will use the following theorem. (The inclusion
‘C’ was proved by Hamilton [8] and Stallings [14], and the inclusion ‘>’ by
Hagan [7].)

THEOREM 1.1. If n= 2, then Conn(R") = PC(R").

To place our results within a wider context we need to define two other classes
of real functions. However, the rest of this section will not be used in an essential
way in the proofs of our main results.

D(X): the set of Darboux functions f: X — R, that is, functions such that
f[C] is connected in R for every connected subset C of X;

AC(X): the set of almost continuous functions f: X — R, that is, functions
such that for every open subset U of X x R containing the graph of f, there
is a continuous function g: X — R with g c U.

We will write D and AC in place of D(X) and AC(X) when X is clear from
the context.
For X =R we have the following proper inclusions [1]:

Ext c ACc Connc D c PC. (1)
In the case when X = R" with n= 2 the following relations are known to hold:
Extc PC=Connc DNAC, DNACg¢Conn, D¢ AC, AC¢D.

The equality PC = Conn is a restatement of Theorem 1.1 and the inclusion
Ext C Conn is obvious from the definition. We do not know whether it is proper.
The proof of the inclusion Conn c AC can be found in [14]. The inclusion
Conn c D is clear from the definition. This gives Connc DN AC. A smple
Baire class 1 function in D NAC\ Conn was described in [13, Example 1]. The
examples showing that D ¢ AC and AC ¢ D can be found in [11, Examples 1.1.9
and 1.1.10].

Our investigations in this paper are motivated by the following result of
Natkaniec [11, Proposition 1.7.1].

THEOREM 1.2. For every n> 0, any function f: R" — R is the sum of two
almost continuous functions.

In general, given a class & of functions f: X - R where X C R", let the
repeatability R(%) of % be defined as the minimum integer k such that any
function f: X — R can be expressed as the sum of k functions from %. Since
the class AC(R") is a proper subset of R*", Theorem 1.2 says that

RACR")) = 2, (2

for every n = 1. Since the classes Conn(R), D(R) and PC(R) are proper subsets
of R®, it follows from (2) and (1) that

R (Conn(R)) = R(D(R)) = R(PC(R)) =2.
Moreover, Ciesielski and Rectaw [3] and Rosen [12] independently proved that
REXLR)) = 2.
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In this paper we show that the following general result holds.

THEOREM 1.3. For every n=1,
REXLR")) = R(Conn(R™)) = R(PC(R™)) =n+ 1.

Theorem 1.3 follows from Theorem 2.1 and Corollary 2.6 which are stated and

proved in the next section. We do not know! whether a similar result is true for
either of the classes DNAC or D when n> 1.

2. The main results

In this section we will prove the main theorems of the paper modulo three
groups of technical results, each of which will be proved in one of the sections
that follow.

The following theorem and Theorem 2.5 are the main results of the paper.

THEOREM 2.1. Every function g: R" — R can be represented as a sum
g=0go+ 01+ ... +g, of n+ 1 extendable functions go, ..., gn: R"— R.

Since Ext(R") c Conn(R"), Theorem 2.1 immediately implies the following
corollary.

CoROLLARY 2.2. Every function g: R" — R can be represented as a sum
g=0go+ 01+ ... +9n of n+ 1 connectivity functions go, ..., gn: R" > R.

For n=1, Theorem 2.1 has been proved in [3]. For n > 1, it follows from the
next two propositions, which will be proved in §§3 and 4, respectively.

PropPosiTION 2.3. For every n > 1, there exist a function f: R" — R and a
dense G;-subset G of R" such that any function g: R" — R with g(x) = f(x) for
x ¢ G is a connectivity function.

PropPosiTION 2.4. If GC R" is a dense Gs-set, then there are homeomor phisms
hj: R" — R" for j € {1, ..., n} such that
n
Gu hJ(G) =R"
=1

Proof of Theorem 2.1. Let g: R" — R be an arbitrary function and let
f: R"x R — R and a dense Gs-subset G of R" x R be as in Proposition 2.3. By
the Kuratowski—Ulam theorem (a category analogue of the Fubini theorem) there
exists y € R such that a Gs-set G = {x € R": (x,y) € G} is dense in R".

Notice that if f: R" — R is defined by f(x) = f(x, y) for every x € R", then

g: R" — R is extendable provided g(x) = f(x) for every x ¢ G. (3)

t1t has been settled recently by Francis Jordan (private communication) who proved that for every
n > 1 there exists a Baire 1 class function f: R" — R which is not a sum of n Darboux functions.
This clearly implies that % (D(R")) = n+ 1, while the other inequality follows from Theorem 1.3.
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Let hj: R" — R" for je{1,...,n} be the homeomorphisms from Proposi-
tion 2.4, and let hg: R" — R" be the identity homeomorphism. Notice that for
every jef{l,...,n},

g;: R"— R is extendable 4

provided gj(x) = (f ohj)(x) for every x ¢ h;(G).
Indeed, if g; satisfies the hypothesis of (4), then g; =go h;l where g is defined
by
_J@johpx if xeG,
g(x)—{ f(x) if x¢ G.

But, by (3), g is extendable and so is g; as a composition of a homeomorphism
and an extendable function.
Let Go=G, and for every j=1,2,...,n put

j—1
Gj=hjG)\[Jn(G).
i=0

Then the sets Gy, Gy, ..., G, form a partition of R". For each i =0,1, ...,n, let
gi: R" — R be defined by

o 90 =Yoo (Fehfhx) if xe G,
G0 = { (f o h-1)(x) : if x ¢ G.

Then
(Go+ ... +9n)(X) =9g(x)

for every x e R". Since gi(x) = (fo h(l)(x) for every i =0,1,...,n, and every
x ¢ hi(G), it follows from (4) that the functions go, 91, ..., g, are extendable.

Next, we will turn to the proof of our second main result.

THEOREM 2.5. If n> 1 and g1, 0o, ..., 0n: R" — R are connectivity functions
then there exists a perfect set P C R" such that the restriction of g; to P is
continuous for every j € {1,2,...,n}.

Notice that Theorem 2.5 immediately implies the following corollary. In
particular, the number n+ 1 in Theorem 2.1 is the best possible.

COROLLARY 2.6. For every n > 0 there exists a function f: R" — R which is
not a sum of n peripherally continuous functions.

Proof. For n=1, the statement follows from the fact that there exists a function
f: R — R which is not peripheraly continuous. (For example, the characteristic
function of a singleton.)

For n> 1, let f: R"— R be the characteristic function of a Bernstein set, that
is, aset BC R" such that BN P # @ and B\ P # ¢ for every perfect set P C R".
Then the restriction of f to any perfect subset of R" is discontinuous. It follows
from Theorem 2.5 that f is not a sum of n connectivity functions.
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The proof of Theorem 2.5 is based on the next two propositions, whose proofs
are postponed till §5.

ProrPosITION 2.7. Let n> 0 and let f: R" — R be a peripherally continuous
function. Then for any xg € R" and any open set W in R" containing xo, there
exists an open set U C W such that xo € U and the restriction of f to bdU
is continuous. Moreover, given any ¢ > 0, the set U can be chosen so that
| f(Xo) — f(y)| < ¢ for every y € bdU.

ProrPosITION 2.8. Let n> 1 and g: R" — R be peripherally continuous. If X
is a connected perfect subset of R", then there exists a perfect subset P of X
such that the restriction of g to P is continuous.

For X =10, 1]", Proposition 2.8 has been proved earlier by Gibson, Rosen and
Roush [5].

Given X CR" and U C R", we will write bdy U to denote the boundary of
U N X in X. For the proof of Theorem 2.5 we need to recal the definition of the
inductive dimension of subsets X of R" (see, for example, [4]):

(i) indX =-1if and only if X =@;
(if) ind X = m if for any pe X and any open neighbourhood W of p there
exists an open neighbourhood U € W of p such that indbdy U <m—1;

(@iii) ind X =m if ind X < m and it is not true that ind X <m— 1.
Recall that indR" = n.

Proof of Theorem 2.5. We will define a sequence Dg, Dy, ..., D,_; of compact
subsets of R" such that ind D; = n—i and the restriction of g; to D; is continuous
for every j<i <n.

First note that this will complete the proof, since then we can choose a
component X of D,_; (which is perfect and connected) and apply Proposition 2.8
to X and the function gp.

To construct such a sequence let Dy = R" and assume that Dj_; has been
defined for some i €{1,2,...,n—1}. Since indDj_1 = n—i+ 1, there exist
p € D;_; and an open neighbourhood W C R" of p such that indbdp,_, U =n—i
for every open neighbourhood U ¢ W of p. Since g; is peripherally continuous,
it follows from Proposition 2.7 that there is an open neighbourhood U € W of p
such that the restriction of g; to bdU is continuous. Let

D = bdDF1 UChdUnD_;.

Then ind D; = n—i and the restriction of g; to D; is continuous for every j with
1< j =<i. Therefore the proof is complete.

3. Proof of Proposition 2.3

The proof presented here is analogous to the technique used in [3]. However,
instead of equilateral triangulations of R? we will use a more general concept
of a simplicia triangulation of R". An introduction to simplicia triangulations
of R" can be found, for example, in [9]. For completeness, we will give basic
definitions and results.
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Let X ={Xo, X1,...,X%m} be a set of m+ 1 points in R". The points of X
are in general position if the vectors X; — Xg, Xo — X, ..., Xm — Xo are linearly
independent. An m-dimensional simplex A = A(X) in R" is the subset of R" of
the form

A= {Zﬁxx: (VX X)(Bx > 0) & ) fx= 1},
xeX xeX

where X is a set of points in general position. The elements of X are called the

vertices of A. Any simplex A(Y) with ##Y C X is a face of A(X). A face

A(Y) of A(X) is proper if Y # X. The closure cl A of the simplex A = A(X) is

the union of al faces of A, that is,

cIA:{ZﬁXx: (Vx € X) (Bx = 0) & Zﬂle}.
xeX xeX
The boundary bd A of the simplex A is the union of al proper faces of A. Note
that if A is an n-dimensional simplex in R", then cl A is the topological closure
and bd A is the topological boundary of A.

A simplicial complex ¥ is a set of digoint simplices in R" such that:

(i) if AeJ and A’ is aface of A, then A’ is aso in J; and
(if) any bounded subset of R" intersects only finitely many simplices of .

A vertex of a simplicial complex ¥ is a vertex of one of its simplices and the
boundary bd 3 of I is the union of the boundaries of the simplices of J. If A is
a simplex, then the symbol 3, will denote the simplicial complex consisting of
al faces of A. If I is a simplicial complex and X is the union of the simplices
of ¥, then we say that I is a triangulation of X.

Given an m-dimensional simplex A = A(Y), the barycentre c, of A is defined

by
1

Ca = — V.

A ; ma1 y
Let X be a simplicid complex. The barycentric subdivision B(H) of I is
the simplicial complex consisting of al simplices A({Cy,,Cp,.....Ca.}) Where
AjeJl for every i =1,2,...,s, and A; is a proper face of Aj;; for every
j=12,...,s—1. For a non-negative integer k, the kth barycentric subdivision
BKI) of I is defined inductively by BOF) = I and BHL(H) = B(BKIK)).

Lt XCR"and f: X— R. Then f islinear on X if thereare ag, a1, ..., a, € R

such that

n
FOQ, 0 %) =80+ Y aX;,

i=1
for every (Xq,...,X,) € X. If ¥ is a triangulation of X and f: X - R is a
function that is linear on cl A for every A € ¥, then we say that f is H-linear. If
X is compact and f: X — R is continuous, then the variation of f on X is the
difference between the maximal and minima values of f on X. The following
lemmas are well known and easy to prove.

LemmA 3.1. If A is an n-dimensional simplex, then there exists an n-dimen-
sional simplex A’ € B2(I ) such that cl A’ C A.
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LeEmmA 3.2. For all positive integers n and m there is an integer k such that
if A isan n-dimensional simplex, then there is a set sl € BX(¥ ) of cardinality
m consisting of n-dimensional simplices such that

cA"CA,

for any A’ € of and
cdA'Nc A" =0,

for any distinct A’, A” € A.

Proof. Choose an | such that for some n-dimensional simplex A the subdivision
B (K ) contains m distinct n-dimensional simplices. Note that this is also true
for any other n-dimensional simplex. Then, by Lemma 3.1, B'*2(¥,) contains
the simplices as desired. So, k =1 + 2 satisfies the lemma.

LEMMA 3.3. Let I be a triangulation of R" and A, A" € [y, BX). If the
simplex A is n-dimensional and a vertex of A’ belongs to A then A’ C A.

Proof. For k € w let sy denote the family of al n-dimensional simplices from
BEI) and let k,| € w be such that A € o, and A’ € B'(K). Notice that k < I,
since otherwise the vertex from A’ could not belong to (Jsdx D A. So, either
A C A or AN A=, since simplices from %' (X) form a partition of R" which
is finer than that formed by elements of %BK(¥). But A’N A =@ contradicts the
assumption that A contains a vertex of A’. So, A’ C A.

LeEmmA 3.4. [9] If A isan n-dimensional simplex and d is the diameter of A,
then the diameter of any n-dimensional simplex in #B(¥ ) is at most (n/(n+ 1))d.

From Lemma 3.4 we immediately obtain the following corollary.

CoROLLARY 3.5. Let A be an n-dimensional simplex, f be a linear function
on cl A, and a be the variation of f on clA. If A" € B(H,), then the variation
of f onclA’isat most (n/(n+1))a.

LeEmmA 3.6. If I is a triangulation of X, and V is the set of all vertices of
X, then any function f: V — R can be uniquely extended to a ¥-linear function
on X.

Proof of Proposition 2.3. Fix n > 1, let

2m
be the set of al dyadic rationals and let
—4 441 4 .
Di:{?’ > ""’E}QD for every i € w.

Let X be any triangulation of R". For each i € w, we define integers k;,
ri and ¢;, triangulations J; and J{; of R", a function v; on the set of; of

D:{EﬁselmeN}
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n-dimensional simplices of ¥;, and a function & on «; x D; such that v; and &
take n-dimensional simplices in R" as values. Let ky = 0.

Assume that i € w and that k; has been defined. Let 9; = B4 (). By Lemma 3.1,
for each A e o; there exists an n-dimensional simplex v (A) € B?(H ) such that
clyi(A) C A. By Lemma 3.2, there is an integer r; such that for every A e &
and every j € Dy there is an n-dimensional simplex & (A, j) € B" (I ya)) with

cl& (A, ]) S ¥i(A)
such that

dé&(A, Hndé&, j)=9
for any distinct |, j’ € Dj. Let
H = B> (),

let ¢; be an integer such that

(%1) <2, )

and put ki1 = ki +24r; + ¢;. This finishes the inductive construction.
Note that

Hipa =B and &(A,]) eI

for every i e w, A e o and j € D).

For the next step of our construction we will need the following additional
notation. For each i € w, let V; be the set of vertices of J{;, let V/ be the set of
vertices of i, and put

Vi=V/n [ bdyi(a).

Ae&ﬂi

Moreover, for every i € w and every j € D, we define

W= v

AGS&i

xe R" let Al ; € X be such that x e A} ;, and for g € w put

X,i?

Yo=R"\[J U w(a).

t>q Aed,

where ViA’j C V/ is the set of vertices of & (A, j). Also, for every i € w and

Note that for every i,q € w with i > g, the following condition holds:

if X €Yy, then every vertex of A}, isinYj. (6)

X, i

Indeed, suppose that some vertex v of Al; does not belong to Yy. Then there
aet>qand A € s such that v e Y (A). Then, by Lemma 3.3, A}; C yi(A),
which contradicts the fact that x € Y.
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Now, we define recursively a sequence of functions gg, g1, ... such that the
following conditions hold for every i € w:

(@ gi: R"— [—2-1, 271 is ¥;-linear,

(b) if x € bd ¥, then gi11(X) = gi(X),

(c) if xebdy;(A) for some A e #;, then giy1(X) =0,

(d) if xebd& (A, j) for some A € &f; and j € Dy, then g 1(X) = |,
(e) if there is q € w such that x € Y, then g;(x) e [—-29, 29],

(f) for every A € J; the variation of g; on cl A is at most 27/,

Let go(x) =0 for every x € R". Suppose that i € w and that the function
g: R" — [-21 271 satisfies conditions (8)f). Let gi;1 be the unique ¥;-
linear extension of the function h: V| — [-2', 2'] defined by

0 if veV,
h(v)=1j if ve V] for some j e D,
gi(v) otherwise.

It is obvious that the function gj,, satisfies conditions (a)—(d). To see that
condition (e) holds, note that if g <i and x € Yy, then every vertex v of A}

is outside U D, V.J implying that either gi.1(v) = gi(v) or giy1(v) =0. Now
it follows from (6) and the inductive hypothesis that g 1(v) € [—29,29] for
any vertex v of Al;, implying that gi,1(x) € [-29,29]. Findly, it foIIows from
Corollary 3.5 and inequality (5) that the function g;., satisfies condition (f).

For each i € w, let f; be the restriction of g; to bd ¥;. If follows from condition
(b) that fi,; is an extension of f; for every i € w. Let

X=|Jbd %,
lew
and let
f={Jfi: X>R
lew

We are going to extend the function f to a function on R". Let x € R"\ X.
If there is an integer q = 0 such that x € Yy, then it follows from condition
(e) that gij(x) € [—29,29] for every i € w. Then let f(x) be the limit of some
convergent subsequence of the sequence (g;(X)){2,. If such g does not exist, then
let f(x) =0. This completes the definition of the function f.

We will show first that f is peripherally continuous.

Denote by X’ the set of points x € R"\ X for which the integer q as above
exigts; that is, let

X'=@®"\X)n|JYa
Jew
and put X" = (R"\ X)\ X'. Note that f(x) =0 for x e X".

To see that f is peripherally continuous choose x € R"\ X and, for each i € w,
let A,; be the simplex of «; containing x. Since the sequence ko, ki, ... is
strictly increasing, it follows from Lemma 3.4 that the diameters of A,; converge
to 0 asi — oo. If xe X/, then the peripheral continuity of f at x follows from
condition (f). If x € X", then there are infinitely many integers i such that x
belongs to v (A) for some A € #;. Since f(x) =0, the peripheral continuity of
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f at x follows from condition (c). If x € X, then for each i € w, let €,; be the
set of simplices A € &f; such that x e ¢l A and

Zx,i = U cl A.

Ae(ngi

Since the diameter of Z,; is at most twice as large as the maximal diameter of a
simplex in €y, it follows from Lemma 3.4 that the diameters of Z,; converge to
0 asi — oo. Thus it follows from condition (f) that f is peripheraly continuous
a x.

By Theorem 1.1, it remains to define the subset G of R" which is a dense
Gs-set and is such that any function h: R" — R with h(x) = f(x) for x¢ G is
peripheraly continuous.

So, for each j € D define

6= J Usaw. .

ielk:jeDy} Aedd;
and notice that G; is an open and dense subset of R". This implies that

G=()G;
jeD

is a dense Gs-subset of R". We will show that G has the desired property.

So, let h: R" — R be any function with h(x) = f(x) for x ¢ G. The function
h is peripherally continuous at any x ¢ G, for the same reason that f is. If x e G,
then for any j € D there is an arbitrarily large i € w such that x € & (A, j) for
some A € #;. Thus it follows from condition (d) that h is peripherally continuous
at x. The proof is complete.

4. Proof of Proposition 2.4

In what follows we will identify a natural number n with the set of its
predecessors, that is, n=1{0,...,n—1}. Let ACR. We say that A is a thick
meagre set if A is a countable union of nowhere-dense perfect sets and A is
dense in R. If (Ai: i en) is afamily of sets then

HAionx... x An_1.

ien

LEmMMA 4.1. If G is a dense G;-set in R", then for each i € n there are a
countable dense set B; C R and a thick meagre set Y; C R such that BiNY; =¢
and

[[BuY)cG.

ien

Proof. Let G be a dense Gs-set in R". First note that it is enough to prove
that for each i € n there is a thick meagre set Y; C R such that

[TYcaG (7)
ien
since then for every i € n there exists a countable dense B; C Y; and a thick
meagre set Y/ C Y; such that B NY, =¢.
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We prove (7) by induction on n. If n=1, then it is clear that (7) holds.
Assume that n = 2 and that (7) holds for smaller values of n. We claim that
(T) there are a thick meagre set Y C R, and a dense Gs-set G’ in R"1, such
that Y x G’ C G.

It is obvious that (1) and the induction hypothesis imply that the lemma holds.
To prove (1) we will first show that

(») for every p < q there exist a nowhere-dense perfect set Y, 4 € (p,q) and a
dense Gs-set Gp q € R"! such that Ypq x Gpq € G.
Clearly (») implies (1), since for o6 = {(p,q) € Q%: p < q} the sets Y =
Uipgrest Yeg @d G = (1 g e Gpg» Sisfy (1).
Now we show that (x) holds. Assume that

G:ﬂum,

mew

where Uy, is an open dense set in R" for every me w, and let p < q. Let Jo,
Ji, ... be an enumeration of some countable basis of the topology of R"%, and
let (to, Ug), (t1,uq), ... be an enumeration of w x w. Let T; be the set of al
zero-one sequences g: | — 2 of length i, and for ge Ty and je2let g j € Tiyq
be the concatenation of g and |, that is,

g* J = <507Sla <oy Sno1, J)a
where g = (Sq, Sy, ..., Sh—1). For each i € w we define, by induction on i, an open
set Vi € R and a family {Wy: g€ T} of non-empty open subsets of (p,q),
such that the following conditions hold for every i € w:
(i) VinJ, #9;

(“) (UgeTi cl Wg) x Vi C Uui;

(i) diamW, < 27" for every g€ T;;

(iv) ¢l Wy.0Ncl Wy,q =9 for every g e Ti_1 provided i > 0,

(V) ¢l Wgso U €l Wy,.q € Wy for every g e Ti_; provided i > 0.

For i = 0 choose arbitrary W; C (p, g), T being an empty sequence, and V, C J,
such that cl W, x Vo € U,,. Such a choice can be made, since U, is dense in R".
It is clear that with such a choice conditions (i)—«v) are satisfied.

To make the inductive step choose i < w, | > 0, such that V;_; and Wy for
each g € Ti_y satisfying (i)«v) are already defined. Since U, is dense open in
R", there are non-empty open sets V; C J; and, for every g e Ti_;, a non-empty
open set Wé C Wy such that

( U cIWé) x Vi CU,.

geTi1

For each g € Ti_; choose non-empty open sets Wg.o, We.1 © Wy satisfying (iii)~(v).
This completes our construction.
To prove that (x) holds, it suffices to take

Yoa=[1JcWy and Gpq=()Hm

iew geT; mew
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where
He = Vi u =m).

Then it is clear that Y,  is a nowhere-dense perfect subset of (p, ) and that G 4
is a Gs-subset of R"!. To see that Gp 4 is dense in R""2, it is enough to note
that for every me o the set Hy, intersects every element of the basis {J;: i € w}
of R"1. It remains to verify that

Yp.q X Gpq € G

So, choose arbitrary x € Yp g, Y € Gpq and me . Then y € Hy, and there exists
i € w such that u; =m and y € V;, which implies that

(&We(UdWOngUm:wm

geTi

Therefore (X, y) € (e, Um = G and so the proof is complete.

LEMMA 4.2. If BC R is a countable dense set, Y CR is a thick meagre
set, and Z C R is a meagre set such that BNY = BN Z = ¢, then there is an
increasing homeomorphism g: R — R such that Z € g(Y) and g(B) = B.

Proof. It is clear that we can assume that the set Z is thick meagre. Let
z=\Jz.
icw
where {Z;: i € w} is a family of mutually digoint nowhere-dense perfect sets.
Let (bi: i € w) be an enumeration of B and (lj: i € w) be an enumeration of all
non-empty open intervals (p, q) with rational endpoints p, q € R. We construct,
by induction on i € w, two dtrictly increasing sequences (n € w: i € w) and
(m € w: | € w), and a sequence (fi: i € w) of functions such that the following
conditions hold for every k € w:

(i) fxi Uiz Zn U{bm: i<k} — YUB is a dtrictly increasing continuous
function extending (_J;_, fi such that

mﬂjalgv and  fy[{bm: i <k}] C B;
i<k

(i) if k=4j, then J;<; Z < dom fy;

(iii) if k=4j+1, then fi[Ui< Zn1N 1 #0,

(iv) if k=4j+2, then {b;: i < j} C dom fy;

(v) if k=4j+ 3, then {b;: i < j} C range fy.

Then the function

f=(Jf:zuB—>YUB
icw

is strictly increasing, f[Z] CY is dense in R, and f[B] = B. Thus f can

be extended to a homeomorphism h from R to R and g= h! satisfies the
requirements. This completes the proof.
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In the remainder of this section we will use the following non-standard notation.
If (Ai:ien)isafamily of sets, C isaset and j € n, then let
c ifi=j,
A ifi#]
If moreover (Bj: i en) is a family of sets and f is a function from n into
2 =10, 1}, then define

Ai\/jCZ{

A, if f(i)=0,

B if f(i)=1

We will aso use the notation A v Bj v;C to denote the set D; v;C where
D; = A Vv B, that is,

Ai\/fBi:{

c ifi=|
Ai\/fBi\/J’C: Bi |f|;éjand f(|)=1,
A ifijand f(i)=0.

LEMMA 4.3. Let GC R" be a Gs-set. If f: n— 2 is a function, i e n and
(bo, ceey bnfl> € R", then the set

{xer: Tubavervim < of

ten

is a Gs-subset of R.

Proof. Assume that
G:ﬂub

with Uy € R" being open for every k € w. Let
=T Tdbd vil-r.rlvix) SR,
ten

for every xe R and r € w, and let
Vp = {xeR: D} C Uy,

for every k,r € w. Then

{xe[R: H({bt}vf[Rv,{ )CG} ﬂﬂvk

ten kewrew

To complete the proof it remains to show that the set V; is open in R for every
K.r € w.

Suppose that x € V. Then Dj € Uy, and since Uy is open, it follows that for
every y e D} there is an open neighbourhood Wy, of y in R" with Wy, € Uy. Since
D} is compact, there is a finite subfamily of {W,: y e D} that covers D}, which
|mpI|es that there is an open neighbourhood A C R of x such that

H({bt} Vi [=r,r]vi A) € Uy

ten

So A €V, which implies that V; is open and hence completes the proof.
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Proof of Proposition 2.4. Assume that G C R" is a dense Gs-set. By Lemma 4.1,
for each i € n there are a countable dense set B C R and a thick meagre set
Y, CR such that BiNY; =% and

[[BuUY)cG.
ien
We will define homeomorphisms g‘j: R— Rforeveryienand je{l,2,...,n}
such that if
hj=g'x...xgl™" R"—> R",

then

k

[[BviRycGul Jhj©) ®
ien j=1

for every ke n+1 and every function f: n— 2 such that | f~1(1)] = k. (Here

|X| stands for the cardinality of the set X.) The construction will be done by

induction with respect to k.

Note that for k=0, the equation (8) is aready satisfied for the constant
function f =0, the only f: n— 2 with |f~1(1)] = 0. This gives the starting
point for our induction. Notice aso that if k= n, then the equation (8) with the
constant function f =1 implies that

n
Gu hJ(G) =R"
j=1
Thus it remains to perform the inductive step.

Assume that k € n and that the homeomorphisms g': R — R have been defined
for every ien and je{l1,...,k} in such a way that (8) is satisfied for every
f: n— 2 with | f~1(1)| = k. We are going to define 9L+1 for every i e n so that
the equation (8) with k replaced by k+ 1 is satisfied for every f: n— 2 with
1D =k+ 1.

For every i e n, let F be the set of al functions f: n— 2 such that

[f1(1) =k and f(i)=0.
Fix i € n. It follows from Lemma 4.3 that for every
b= (bg,...,bh_1) € Bgx ... x By_1,
and every f € F; there is a Gy-set K''® C R such that

k

[Jdbd viR ViK™ cGU| Jhj(G).

ten j=1
Notice also that, by (8), Bi € K,"°. So, K" is a dense G;-set. Thus, the set
Ki=[ )K" feFRadbeByx...x By

is a dense G;-set with B; C K; and
k

[]BviRviK) < GU| Jhj(G) (9)

ten j=1
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for every f e F. In particular, Z = R\ K; is a meagre set with BN Z; = @. By
Lemma 4.2, there is a homeomorphism g, ,: R — R such that z; € g, ,(Y;) and
Ok 1(Bi) = Bi.
Let hypr =09, 1 X ... x gg 1. We claim that
k+1

[IB ViR cGU| Jhi©G)

ien j=1
for every f: n— 2 with |f~2(1)| = k+ 1. Indeed, let f: n— 2 be any function
satisfying | f~1(1)| = k+ 1 and pick
Xe H(B, V¢ R)
ien
We will show that
k+1

xe GU| Jhj©G).
j=1

If there isi e f~1(1) such that
X € H(Bt ViR Vi Ki),

ten

then it follows from (9) that

k
xe GU| Jh;©G).
=1

S0 we can assume that, for every i € f~1(1), we have
X ¢ H(Bt ViRV Kp).

ten

Then
xe [[®Biviz) ] Vi g

ien ien
Since g}, ,(Bi) = B; and
H(Bi ViY) CG
ien

for every i € n, it follows that

[1®B Vi (Y) = hk+l<H(Bi Ve Yi)) € N1 (G).

ien ien

Therefore x € hy1(G) and so the proof is complete.

5. Proofs of Propositions 2.7 and 2.8

In the proof that follows we will need some additional definitions and results
from dimension theory. (See, for example, [10].)

Given X CR" and an integer m= 1, we say that X is an m-dimensional Cantor
manifold if X is compact, ind X = m, and for every Y C X with indY < m -2,
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the set X \Y is connected. Note that an m-dimensional Cantor manifold X is
connected and for every p € X,

ind, X =m,

that is, there exists an open neighbourhood W of p such that indbdy U =m—1
for any open neighbourhood U C W of p.

Given X CR" and p,qe R"\ X, we say that X separates p and q if they are
in distinct components of R"\ X.

The following lemmas are proved in [10].

LEmMMA 5.1. For any compact Y C R" with indY = m there exists an m-
dimensional Cantor manifold X C Y.

LEmMA 5.2. If X CR" is a compact set that separates p and g, and no proper
closed subset of X does so, then X is an (n — 1)-dimensional Cantor manifold.

Using Zorn’s Lemma one can easily prove the following lemma.

LEMMA 5.3. If X CR" is a compact set that separates p and g, then there
is a compact X' C X that separates p and q and no proper closed subset of X’
does so.

Given a subset U of R", we say that U is a quasiball if U is a bounded and
connected open set, and bdU is an (n— 1)-dimensional Cantor manifold. The
open ball in R" with centre x e R" and radius ¢ > 0 will be denoted by B"(x, ¢).

LEmMMA 5.4, If V is an open set and
xeV C B"(x,8)

for some x € R" and & > O, then there is a quasiball U € B"(x, ) containing X
with bdU C bd V.

Proof. Let y be an element of the unbounded component of R"\ clV. Since
V is bounded, bdV is compact, so it follows from Lemmas 5.3 and 5.2 that
there is an (n — 1)-dimensional Cantor manifold X € bdV that separates x from
y. Let U be the component of R"\ X containing x. It is clear that U satisfies the
requirements.

CoroLLARY 5.5. Let f: R" — R be a peripherally continuous function. Then
for any x e R", any ¢ > 0 and any open set W in R" containing X, there is a
quasiball U € W containing x such that | f(x) — f(y)| <& for any ye bdU.

Proof. Let § > 0 be such that B"(x,8) C W. Since f is peripherally continuous,
there is an open neighbourhood V c bdV < B"(x,8) of x such that |f(x) —
f(y)] <e for any ye bdU. Then U from Lemma 5.4 satisfies the requirements.

Given open sets U and W in R", we say that U and W are independent if al
the intersections U NW, U NWE¢, U°N'W, and U°N W€ are non-empty, where U€
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and W° are the complements of the closures of U and W, respectively. Given
x € R", a half-line starting at x is a set A of the form

A={X+az: a =0}

for some non-zero z e R".
LEmMA 5.6. If U and W are independent quasiballs, then bd U nbd W #£ @.

Proof. Let U® and W° be the complements of the closures of U and W
respectively. Since WNU and WNU® are non-empty and W is connected, it
follows that WNbdU is non-empty. Similarly, U nbd W is non-empty.

Since U is bounded, any half-line starting at a point in U intersects bdU. The
analogous statement holds for W. Let x e U NW and A be a half-line starting at
X. Since bd U Ubd W is compact, there is

ye AN (bdU Ubd W)

such that the half-line B starting at y that is a subset of A does not intersect
bdU UbdW except at y. Without loss of generdity, we can assume that
y e bdU\ bd W. Then B does not intersect bd W, which implies that BN'W = .
Therefore

ye WenhbdU,

which implies that W nbdU is non-empty. Since WNbdU is aso non-empty
and bd U is connected, we conclude that bd U Nnbd W is non-empty.

For ne w let o" be the set of al sequences of elements of w of length n, and

let
w<? = U o".

new

Note that ° = {#J}. For se w=“ and j € w let sx j be the concatenation of s and
j, that is,

S* J = (a)vsl’ "'73’1717 J>7
where s= (S, Sy, ..., S—1)- Given T C w~? and n € w, let
T,=TNao".

Given se T, and t € T, 1 such that there is j € w with t =sx j, we say that s is
the father of t and that t is a son of s. A non-empty subset T of w=® is a tree if
for every se T\ {#} the father of s belongs to T and every element of T has at
least one son in T. We say that the tree T is finitely branching if T, is finite for
every ne€ w.

Let T be afinitely branching tree and f: R™ — R be a peripherally continuous
function. A family

U = {Ug: seT)

of quasiballs in R™ will be called a good T-family of quasiballs for f if there
are a function n: T — R™ and two sequences (g,: h € w) and (r,: N € w) of
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positive real numbers such that the series Y -0, and Y o ,rn converge and the
following conditions are satisfied for any n e w, se T, and any son t of s:

(i) n(s) € Us,
(i) the distance from n(s) to any element of Ug is a most gp;
@ii) 1fx) — f(n(s))| <r, for any x € bd Ug;
(iv) n(t) € bdUg;
(v) the quasiballs Ug and U, are independent.
For any y € w® let y, be the initial segment of y of length n. Assume that
U=1{Us: seT} is a good T-family of quasibals for f and that n: T — R™,
(On: N€ w) and (r,: n € w) satisfy conditions (i)—(v). Define
T ={yew’ yneT}.
Given y e T*, we say that x e R™ is a y-limit of AU if for every open
neighbourhood V of x in R™ there is k € w with
U, NV =09
for every n= k. It follows from condition (ii) that for every y € T* there is
exactly one y-limit x, of 4. Define
Ly =1{x, e R™ yeT"}
to be the set of al limit points of 4.

LEMMAG.7. Let T be a finitely branching tree and f: R™ — R be a
peripherally continuous function. If U = {Us: se€ T} is a good T-family of
quasiballs for f, then the restriction of f to Lg, is continuous.

Proof. Let n: T— R™, (gy: h€ w) and (r,: n € w) satisfy conditions (i)—(v).
Given yeT*and t € w, let

B, = O bdU,,.

n=t
Let t € . It follows from condition (v) and Lemma 5.6 that the set B, is
connected. Since the y-limit x, of % belongs to cl B,;, the union B, U {X,}
is connected. Since f is a peripherally continuous function, it is aso a
Darboux function, which implies that the set f(B, ;U {x,}) is connected, and so
f(x,) ed f(B,;). Since

%) — )l < [T() — T + 1T (1) — T G2+ -0
it follows from (iii) that

1F05) = Faal <D rn, (10)
n=t
for every y e T* and t € w.

Now let x € Ly, and ¢ > 0. Since the series ) .~ r, converges, there exists
t €  such that

Zrn < %‘8. (12)
n=t
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For each se T; let
Bs={x,: n=s}

It is clear that Bs is closed in R" for every se T;. Since the set T, is finite, there
is an open neighbourhood V of x such that

VNBs=4,
for every se T; with x ¢ Bs. It follows that for every y € VN Ly there exists
se T; with X, y € Bs, which implies by (10) and (11) that
[T = fWI< 1T = FmENI+1f(y) — F(s)] <e.
Therefore f is continuous at x and so the proof is complete.

Proof of Proposition 2.7. Let x9, W and ¢ be as in the proposition. Let
(g: 1 €w) and {rj: i € w) be any sequences of positive real numbers such that

< (12
i=0
and
#'(0 Y0 ) cw e
i=0

We will define inductively a finitely branching tree T, a good T-family
U ={Us: se T} of quashbals for f, and a function n: T — R" such that
conditions (i)—(v) are satisfied, and moreover,

bd(LmJUUS) c |J ue (14)

i=0seT; tETm_H_

Let To = {#} and n(¥) = Xo. Since f is peripherally continuous, it follows from
Corollary 5.5 that there is a Uy such that conditions (i)—(iii) are satisfied. Suppose
that m e w, and that T; and Us have been defined for every i < mand se |, Ti-

Let
C= bd(LmJUUS). (15)

i=0seT;
Since the set T, is finite, we have

cgw(UUuS)u | bd U,

i<mseT, se€Tm
and condition (14) of the inductive hypothesis implies that

bd(U UUS) cJu.

i<mseT; s€Tm
Therefore
cc | Jhbdus.
seTm

Let {Cs: se T} be a partition of C such that Cs € bdUs for every se Ty, Since
f is peripheraly continuous, it follows from Corollary 5.5 that for every ye C
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there is a quasiball By containing y such that the distance from y to any element
of By isa most g, and | f(x) — f(y)| =r, for any x € bd By. Moreover By can
be chosen so that B, and Us are independent if y € Cs. Since C is compact, there
is a finite subset Y of C such that

ccl/Js,.

yeY
Let
Ys=CsNY.
Then {Ys: se Ty} is a partition of Y. Define
Tpr={s*j: seThand je{0,1,...,|Ys] —1}}.
For t € Ty 1 let n(t) be such that if se Ty, then
{n): tisason of s} =Y,

and let
This completes the definition of T, n and %U. Let

U:UUS.

seT
Then
bdU C Lg,

and so Lemma 5.7 implies that f is continuous on bd U. Condition (13) implies
that U € W and condition (12) implies that | f (xg) — f(y)| < ¢; thus the proof is
complete.

Proof of Proposition 2.8. Let T be the tree consisting of al finite zero-one
sequences. We are going to define a good T-family U = {Us: se T} of quasiballs
for g. Let {rj: i € w) be a sequence of positive real numbers such that the series
Y 2ori converges. We shall define a sequence (q;: i € w) of positive real numbers
with >° 0 < oo and a function n: T — R" such that conditions (i)<(v) are
satisfied. We will aso define an auxiliary function n’: T — X. The construction
will be done by induction on i < w in such a way that the following additional
conditions hold:

(& n(®) € X is arbitrary and g, = g < 5 diam(X);

(b) n(sx0)=n(sx1)=n'(s) ebdUsN X for any se T;

(©) g = Fmingr , [n'(sx0) —n'(sx 1)| for i > I;

(d) clUg1 CUgo for any seT,.

To see that the construction can be made, notice that the choice of each Ug
satisfying (i)—iii), (v) and (d) can be guaranteed by Corollary 5.5. We can choose
n'(s) e bdUsN X, since bd UsN X is non-empty as X is connected and Ug has
the diameter smaller than X. So, (b) implies (iv). Also, g > 0, since the points
n'(sx0) and n'(s* 1) are different by (d). This completes the construction.

Let P=Lg. It is clear that P is a closed subset of X, and it follows from
(c) that x, # xs for distinct y,8 € T*. This implies that P is a perfect set. We
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conclude from Lemma 5.7 that the restriction of g to P is continuous, which
completes the proof.

7.
8.
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