SUMS OF CONNECTIVITY FUNCTIONS ON \mathbb{R}^{n}

KRZYSZTOF CIESIELSKI and JERZY WOJCIECHOWSKI

[Received 24 May 1996—Revised 27 January 1997]

Abstract

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a connectivity function if the graph of its restriction $f \mid C$ to any connected $C \subset \mathbb{R}^{n}$ is connected in $\mathbb{R}^{n} \times \mathbb{R}$. The main goal of this paper is to prove that every function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a sum of $n+1$ connectivity functions (Corollary 2.2). We will also show that if $n>1$, then every function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is a sum of n connectivity functions is continuous on some perfect set (see Theorem 2.5) which implies that the number $n+1$ in our theorem is the best possible (Corollary 2.6).

To prove the above results, we establish and then apply the following theorems which are of interest on their own.

For every dense G_{δ}-subset G of \mathbb{R}^{n} there are homeomorphisms h_{1}, \ldots, h_{n} of \mathbb{R}^{n} such that $\mathbb{R}^{n}=G \cup h_{1}(G) \cup \ldots \cup h_{n}(G)$ (Proposition 2.4).

For every $n>1$ and any connectivity function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, if $x \in \mathbb{R}^{n}$ and $\varepsilon>0$ then there exists an open set $U \subset \mathbb{R}^{n}$ such that $x \in U \subset B^{n}(x, \varepsilon), f \mid \operatorname{bd}(U)$ is continuous, and $|f(x)-f(y)|<\varepsilon$ for every $y \in \operatorname{bd}(U)$ (Proposition 2.7).

1. Preliminaries

Our basic terminology and notation is standard. (See, for example, [4].) The terminology and preliminaries from dimension theory and the theory of simplicial triangulations will be used only in some parts of the paper and will be introduced on the 'as needed' basis.

For a topological space X and $U \subset X$ we will use the symbols $\operatorname{cl}(U)$ and $\operatorname{bd}(U)$ to denote the closure and the boundary of U, respectively. Also, we will consider the following classes of functions $f: X \rightarrow \mathbb{R}$ (we will use them only when $X \subset \mathbb{R}^{n}$):
$\operatorname{Conn}(X)$: the set of connectivity functions $f: X \rightarrow \mathbb{R}$, that is, functions such that the graph of $f \mid C$ is connected in $X \times \mathbb{R}$ for every connected subset C of X;
$\mathrm{PC}(X)$: the set of peripherally continuous functions $f: X \rightarrow \mathbb{R}$, that is, functions such that for every $x \in X$ and any pair $U \subset X$ and $V \subset \mathbb{R}$ of open neighbourhoods of x and $f(x)$, respectively, there exists an open neighbourhood W of x with $\operatorname{cl}(W) \subset U$ and $f[\operatorname{bd}(W)] \subset V$;
$\operatorname{Ext}(X)$: the set of extendable functions $f: X \rightarrow \mathbb{R}$, that is, functions such that there exists a connectivity function $g: X \times[0,1] \rightarrow \mathbb{R}$ with $f(x)=g(x, 0)$ for every $x \in X$.
We will write Conn, PC and Ext in place of $\operatorname{Conn}(X), \operatorname{PC}(X)$ and $\operatorname{Ext}(X)$ when the space X is clear from the context.

[^0]It is immediate from the definition that $\operatorname{Ext}(X) \subset \operatorname{Conn}(X)$ for every connected space X. In what follows we will use the following theorem. (The inclusion ' \subset ' was proved by Hamilton [8] and Stallings [14], and the inclusion ' \supset ' by Hagan [7].)

THEOREM 1.1. If $n \geqslant 2$, then $\operatorname{Conn}\left(\mathbb{R}^{n}\right)=\operatorname{PC}\left(\mathbb{R}^{n}\right)$.
To place our results within a wider context we need to define two other classes of real functions. However, the rest of this section will not be used in an essential way in the proofs of our main results.
$\mathrm{D}(X)$: the set of Darboux functions $f: X \rightarrow \mathbb{R}$, that is, functions such that $f[C]$ is connected in \mathbb{R} for every connected subset C of X;
$\mathrm{AC}(X)$: the set of almost continuous functions $f: X \rightarrow \mathbb{R}$, that is, functions such that for every open subset U of $X \times \mathbb{R}$ containing the graph of f, there is a continuous function $g: X \rightarrow \mathbb{R}$ with $g \subset U$.
We will write D and AC in place of $\mathrm{D}(X)$ and $\mathrm{AC}(X)$ when X is clear from the context.

For $X=\mathbb{R}$ we have the following proper inclusions [1]:

$$
\begin{equation*}
\text { Ext } \subset \mathrm{AC} \subset \mathrm{Conn} \subset \mathrm{D} \subset \mathrm{PC} \tag{1}
\end{equation*}
$$

In the case when $X=\mathbb{R}^{n}$ with $n \geqslant 2$ the following relations are known to hold:

$$
\text { Ext } \subset \mathrm{PC}=\mathrm{Conn} \subset \mathrm{D} \cap \mathrm{AC}, \quad \mathrm{D} \cap \mathrm{AC} \not \subset \mathrm{Conn}, \quad \mathrm{D} \not \subset \mathrm{AC}, \quad \mathrm{AC} \not \subset \mathrm{D}
$$

The equality $\mathrm{PC}=\mathrm{Conn}$ is a restatement of Theorem 1.1 and the inclusion Ext \subset Conn is obvious from the definition. We do not know whether it is proper. The proof of the inclusion Conn $\subset A C$ can be found in [14]. The inclusion Conn $\subset \mathrm{D}$ is clear from the definition. This gives Conn $\subset \mathrm{D} \cap \mathrm{AC}$. A simple Baire class 1 function in $\mathrm{D} \cap \mathrm{AC} \backslash$ Conn was described in [13, Example 1]. The examples showing that $\mathrm{D} \not \subset \mathrm{AC}$ and $\mathrm{AC} \not \subset \mathrm{D}$ can be found in [11, Examples 1.1.9 and 1.1.10].

Our investigations in this paper are motivated by the following result of Natkaniec [11, Proposition 1.7.1].

THEOREM 1.2. For every $n>0$, any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the sum of two almost continuous functions.

In general, given a class \mathscr{F} of functions $f: X \rightarrow \mathbb{R}$ where $X \subseteq \mathbb{R}^{n}$, let the repeatability $\mathscr{R}(\mathscr{F})$ of \mathscr{F} be defined as the minimum integer k such that any function $f: X \rightarrow \mathbb{R}$ can be expressed as the sum of k functions from \mathscr{F}. Since the class $\mathrm{AC}\left(\mathbb{R}^{n}\right)$ is a proper subset of $\mathbb{R}^{\mathbb{R}^{n}}$, Theorem 1.2 says that

$$
\begin{equation*}
\mathscr{R}\left(\mathrm{AC}\left(\mathbb{R}^{n}\right)\right)=2 \tag{2}
\end{equation*}
$$

for every $n \geqslant 1$. Since the classes $\operatorname{Conn}(\mathbb{R}), \mathrm{D}(\mathbb{R})$ and $\mathrm{PC}(\mathbb{R})$ are proper subsets of $\mathbb{R}^{\mathbb{R}}$, it follows from (2) and (1) that

$$
\mathscr{R}(\operatorname{Conn}(\mathbb{R}))=\mathscr{R}(\mathrm{D}(\mathbb{R}))=\mathscr{R}(\mathrm{PC}(\mathbb{R}))=2
$$

Moreover, Ciesielski and Recław [3] and Rosen [12] independently proved that

$$
\mathscr{R}(\operatorname{Ext}(\mathbb{R}))=2
$$

In this paper we show that the following general result holds.
Theorem 1.3. For every $n \geqslant 1$,

$$
\mathscr{R}\left(\operatorname{Ext}\left(\mathbb{R}^{n}\right)\right)=\mathscr{R}\left(\operatorname{Conn}\left(\mathbb{R}^{n}\right)\right)=\mathscr{R}\left(\operatorname{PC}\left(\mathbb{R}^{n}\right)\right)=n+1 .
$$

Theorem 1.3 follows from Theorem 2.1 and Corollary 2.6 which are stated and proved in the next section. We do not know ${ }^{\dagger}$ whether a similar result is true for either of the classes $\mathrm{D} \cap \mathrm{AC}$ or D when $n>1$.

2. The main results

In this section we will prove the main theorems of the paper modulo three groups of technical results, each of which will be proved in one of the sections that follow.

The following theorem and Theorem 2.5 are the main results of the paper.
Theorem 2.1. Every function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as a sum $g=g_{0}+g_{1}+\ldots+g_{n}$ of $n+1$ extendable functions $g_{0}, \ldots, g_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Since $\operatorname{Ext}\left(\mathbb{R}^{n}\right) \subset \operatorname{Conn}\left(\mathbb{R}^{n}\right)$, Theorem 2.1 immediately implies the following corollary.

Corollary 2.2. Every function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented as a sum $g=g_{0}+g_{1}+\ldots+g_{n}$ of $n+1$ connectivity functions $g_{0}, \ldots, g_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

For $n=1$, Theorem 2.1 has been proved in [3]. For $n>1$, it follows from the next two propositions, which will be proved in $\S \S 3$ and 4 , respectively.

Proposition 2.3. For every $n>1$, there exist a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a dense G_{δ}-subset G of \mathbb{R}^{n} such that any function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $g(x)=f(x)$ for $x \notin G$ is a connectivity function.

Proposition 2.4. If $G \subseteq \mathbb{R}^{n}$ is a dense G_{δ}-set, then there are homeomorphisms $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $j \in\{1, \ldots, n\}$ such that

$$
G \cup \bigcup_{j=1}^{n} h_{j}(G)=\mathbb{R}^{n} .
$$

Proof of Theorem 2.1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary function and let $\hat{f}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ and a dense G_{δ}-subset \hat{G} of $\mathbb{R}^{n} \times \mathbb{R}$ be as in Proposition 2.3. By the Kuratowski-Ulam theorem (a category analogue of the Fubini theorem) there exists $y \in \mathbb{R}$ such that a G_{δ}-set $G=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \in \hat{G}\right\}$ is dense in \mathbb{R}^{n}.

Notice that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $f(x)=\hat{f}(x, y)$ for every $x \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
g: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { is extendable provided } g(x)=f(x) \text { for every } x \notin G . \tag{3}
\end{equation*}
$$

[^1]Let $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $j \in\{1, \ldots, n\}$ be the homeomorphisms from Proposition 2.4 , and let $h_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the identity homeomorphism. Notice that for every $j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { is extendable } \tag{4}
\end{equation*}
$$

provided $g_{j}(x)=\left(f \circ h_{j}^{-1}\right)(x)$ for every $x \notin h_{j}(G)$.
Indeed, if g_{j} satisfies the hypothesis of (4), then $g_{j}=g \circ h_{j}^{-1}$ where g is defined by

$$
g(x)= \begin{cases}\left(g_{j} \circ h_{j}\right)(x) & \text { if } x \in G \\ f(x) & \text { if } x \notin G\end{cases}
$$

But, by (3), g is extendable and so is g_{j} as a composition of a homeomorphism and an extendable function.

Let $G_{0}=G$, and for every $j=1,2, \ldots, n$ put

$$
G_{j}=h_{j}(G) \backslash \bigcup_{i=0}^{j-1} h_{i}(G)
$$

Then the sets $G_{0}, G_{1}, \ldots, G_{n}$ form a partition of \mathbb{R}^{n}. For each $i=0,1, \ldots, n$, let $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
g_{i}(x)= \begin{cases}g(x)-\sum_{j \in\{0, \ldots, n\} \backslash\{i\}}\left(f \circ h_{j}^{-1}\right)(x) & \text { if } x \in G_{i}, \\ \left(f \circ h_{i}^{-1}\right)(x) & \text { if } x \notin G_{i} .\end{cases}
$$

Then

$$
\left(g_{0}+\ldots+g_{n}\right)(x)=g(x)
$$

for every $x \in \mathbb{R}^{n}$. Since $g_{i}(x)=\left(f \circ h_{i}^{-1}\right)(x)$ for every $i=0,1, \ldots, n$, and every $x \notin h_{i}(G)$, it follows from (4) that the functions $g_{0}, g_{1}, \ldots, g_{n}$ are extendable.

Next, we will turn to the proof of our second main result.

THEOREM 2.5. If $n>1$ and $g_{1}, g_{2}, \ldots, g_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are connectivity functions then there exists a perfect set $P \subseteq \mathbb{R}^{n}$ such that the restriction of g_{j} to P is continuous for every $j \in\{1,2, \ldots, n\}$.

Notice that Theorem 2.5 immediately implies the following corollary. In particular, the number $n+1$ in Theorem 2.1 is the best possible.

Corollary 2.6. For every $n>0$ there exists a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is not a sum of n peripherally continuous functions.

Proof. For $n=1$, the statement follows from the fact that there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not peripherally continuous. (For example, the characteristic function of a singleton.)

For $n>1$, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the characteristic function of a Bernstein set, that is, a set $B \subseteq \mathbb{R}^{n}$ such that $B \cap P \neq \emptyset$ and $B \backslash P \neq \emptyset$ for every perfect set $P \subseteq \mathbb{R}^{n}$. Then the restriction of f to any perfect subset of \mathbb{R}^{n} is discontinuous. It follows from Theorem 2.5 that f is not a sum of n connectivity functions.

The proof of Theorem 2.5 is based on the next two propositions, whose proofs are postponed till $\S 5$.

Proposition 2.7. Let $n>0$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a peripherally continuous function. Then for any $x_{0} \in \mathbb{R}^{n}$ and any open set W in \mathbb{R}^{n} containing x_{0}, there exists an open set $U \subseteq W$ such that $x_{0} \in U$ and the restriction of f to $\operatorname{bd} U$ is continuous. Moreover, given any $\varepsilon>0$, the set U can be chosen so that $\left|f\left(x_{0}\right)-f(y)\right|<\varepsilon$ for every $y \in \operatorname{bd} U$.

Proposition 2.8. Let $n>1$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be peripherally continuous. If X is a connected perfect subset of \mathbb{R}^{n}, then there exists a perfect subset P of X such that the restriction of g to P is continuous.

For $X=[0,1]^{n}$, Proposition 2.8 has been proved earlier by Gibson, Rosen and Roush [5].

Given $X \subseteq \mathbb{R}^{n}$ and $U \subseteq \mathbb{R}^{n}$, we will write $\mathrm{bd}_{X} U$ to denote the boundary of $U \cap X$ in X. For the proof of Theorem 2.5 we need to recall the definition of the inductive dimension of subsets X of \mathbb{R}^{n} (see, for example, [4]):
(i) ind $X=-1$ if and only if $X=\emptyset$;
(ii) ind $X \leqslant m$ if for any $p \in X$ and any open neighbourhood W of p there exists an open neighbourhood $U \subseteq W$ of p such that $\operatorname{ind}^{2} U \leqslant m-1$;
(iii) ind $X=m$ if ind $X \leqslant m$ and it is not true that ind $X \leqslant m-1$.

Recall that ind $\mathbb{R}^{n}=n$.
Proof of Theorem 2.5. We will define a sequence $D_{0}, D_{1}, \ldots, D_{n-1}$ of compact subsets of \mathbb{R}^{n} such that ind $D_{i} \geqslant n-i$ and the restriction of g_{j} to D_{i} is continuous for every $j \leqslant i<n$.

First note that this will complete the proof, since then we can choose a component X of D_{n-1} (which is perfect and connected) and apply Proposition 2.8 to X and the function g_{n}.

To construct such a sequence let $D_{0}=\mathbb{R}^{n}$ and assume that D_{i-1} has been defined for some $i \in\{1,2, \ldots, n-1\}$. Since ind $D_{i-1} \geqslant n-i+1$, there exist $p \in D_{i-1}$ and an open neighbourhood $W \subset \mathbb{R}^{n}$ of p such that ind $\operatorname{bd}_{D_{i-1}} U \geqslant n-i$ for every open neighbourhood $U \subset W$ of p. Since g_{i} is peripherally continuous, it follows from Proposition 2.7 that there is an open neighbourhood $U \subseteq W$ of p such that the restriction of g_{i} to bd U is continuous. Let

$$
D_{i}=\operatorname{bd}_{D_{i-1}} U \subseteq \operatorname{bd} U \cap D_{i-1} .
$$

Then ind $D_{i} \geqslant n-i$ and the restriction of g_{j} to D_{i} is continuous for every j with $1 \leqslant j \leqslant i$. Therefore the proof is complete.

3. Proof of Proposition 2.3

The proof presented here is analogous to the technique used in [3]. However, instead of equilateral triangulations of \mathbb{R}^{2} we will use a more general concept of a simplicial triangulation of \mathbb{R}^{n}. An introduction to simplicial triangulations of \mathbb{R}^{n} can be found, for example, in [9]. For completeness, we will give basic definitions and results.

Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ be a set of $m+1$ points in \mathbb{R}^{n}. The points of X are in general position if the vectors $x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{m}-x_{0}$ are linearly independent. An m-dimensional simplex $\Delta=\Delta(X)$ in \mathbb{R}^{n} is the subset of \mathbb{R}^{n} of the form

$$
\Delta=\left\{\sum_{x \in X} \beta_{x} x:(\forall x \in X)\left(\beta_{x}>0\right) \& \sum_{x \in X} \beta_{x}=1\right\}
$$

where X is a set of points in general position. The elements of X are called the vertices of Δ. Any simplex $\Delta(Y)$ with $\emptyset \neq Y \subseteq X$ is a face of $\Delta(X)$. A face $\Delta(Y)$ of $\Delta(X)$ is proper if $Y \neq X$. The closure cl Δ of the simplex $\Delta=\Delta(X)$ is the union of all faces of Δ, that is,

$$
\operatorname{cl} \Delta=\left\{\sum_{x \in X} \beta_{x} x:(\forall x \in X)\left(\beta_{x} \geqslant 0\right) \& \sum_{x \in X} \beta_{x}=1\right\} .
$$

The boundary bd Δ of the simplex Δ is the union of all proper faces of Δ. Note that if Δ is an n-dimensional simplex in \mathbb{R}^{n}, then $\mathrm{cl} \Delta$ is the topological closure and bd Δ is the topological boundary of Δ.

A simplicial complex \mathscr{K} is a set of disjoint simplices in \mathbb{R}^{n} such that:
(i) if $\Delta \in \mathscr{K}$ and Δ^{\prime} is a face of Δ, then Δ^{\prime} is also in \mathscr{K}; and
(ii) any bounded subset of \mathbb{R}^{n} intersects only finitely many simplices of \mathscr{K}.

A vertex of a simplicial complex \mathscr{K} is a vertex of one of its simplices and the boundary bd \mathscr{K} of \mathscr{K} is the union of the boundaries of the simplices of \mathscr{K}. If Δ is a simplex, then the symbol \mathscr{K}_{Δ} will denote the simplicial complex consisting of all faces of Δ. If \mathscr{K} is a simplicial complex and X is the union of the simplices of \mathscr{K}, then we say that \mathscr{K} is a triangulation of X.

Given an m-dimensional simplex $\Delta=\Delta(Y)$, the barycentre c_{Δ} of Δ is defined by

$$
c_{\Delta}=\sum_{y \in Y} \frac{1}{m+1} y
$$

Let \mathscr{K} be a simplicial complex. The barycentric subdivision $\mathscr{B}(\mathscr{K})$ of \mathscr{K} is the simplicial complex consisting of all simplices $\Delta\left(\left\{c_{\Delta_{1}}, c_{\Delta_{2}}, \ldots, c_{\Delta_{s}}\right\}\right)$ where $\Delta_{i} \in \mathscr{K}$ for every $i=1,2, \ldots, s$, and Δ_{j} is a proper face of Δ_{j+1} for every $j=1,2, \ldots, s-1$. For a non-negative integer k, the $k t h$ barycentric subdivision $\mathscr{B}^{k}(\mathscr{K})$ of \mathscr{K} is defined inductively by $\mathscr{B}^{0}(\mathscr{K})=\mathscr{K}$ and $\mathscr{B}^{k+1}(\mathscr{K})=\mathscr{B}\left(\mathscr{B}^{k}(\mathscr{K})\right)$.

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$. Then f is linear on X if there are $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}
$$

for every $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in X$. If \mathscr{K} is a triangulation of X and $f: X \rightarrow \mathbb{R}$ is a function that is linear on $\mathrm{cl} \Delta$ for every $\Delta \in \mathscr{K}$, then we say that f is \mathscr{K}-linear. If X is compact and $f: X \rightarrow \mathbb{R}$ is continuous, then the variation of f on X is the difference between the maximal and minimal values of f on X. The following lemmas are well known and easy to prove.

Lemma 3.1. If Δ is an n-dimensional simplex, then there exists an n-dimensional simplex $\Delta^{\prime} \in \mathscr{B}^{2}\left(\mathscr{K}_{\Delta}\right)$ such that $\mathrm{cl} \Delta^{\prime} \subseteq \Delta$.

Lemma 3.2. For all positive integers n and m there is an integer k such that if Δ is an n-dimensional simplex, then there is a set $\mathscr{A} \subseteq \mathscr{B}^{k}\left(\mathscr{K}_{\Delta}\right)$ of cardinality m consisting of n-dimensional simplices such that

$$
\mathrm{cl} \Delta^{\prime} \subseteq \Delta,
$$

for any $\Delta^{\prime} \in \mathscr{A}$ and

$$
\mathrm{cl} \Delta^{\prime} \cap \mathrm{cl} \Delta^{\prime \prime}=\emptyset,
$$

for any distinct $\Delta^{\prime}, \Delta^{\prime \prime} \in \mathscr{A}$.
Proof. Choose an l such that for some n-dimensional simplex Δ the subdivision $\mathscr{B}^{l}\left(\mathscr{K}_{\Delta}\right)$ contains m distinct n-dimensional simplices. Note that this is also true for any other n-dimensional simplex. Then, by Lemma 3.1, $\mathscr{B}^{l+2}\left(\mathscr{K}_{\Delta}\right)$ contains the simplices as desired. So, $k=l+2$ satisfies the lemma.

Lemma 3.3. Let \mathscr{K} be a triangulation of \mathbb{R}^{n} and $\Delta, \Delta^{\prime} \in \bigcup_{k \in \omega} \mathscr{B}^{k}(\mathscr{K})$. If the simplex Δ is n-dimensional and a vertex of Δ^{\prime} belongs to Δ then $\Delta^{\prime} \subseteq \Delta$.

Proof. For $k \in \omega$ let \mathscr{A}_{k} denote the family of all n-dimensional simplices from $\mathscr{B}^{k}(\mathscr{H})$ and let $k, l \in \omega$ be such that $\Delta \in \mathscr{A}_{k}$ and $\Delta^{\prime} \in \mathscr{B}^{l}(\mathscr{K})$. Notice that $k<l$, since otherwise the vertex from Δ^{\prime} could not belong to $\bigcup \mathscr{A}_{k} \supset \Delta$. So, either $\Delta^{\prime} \subseteq \Delta$ or $\Delta^{\prime} \cap \Delta=\emptyset$, since simplices from $\mathscr{B}^{l}(\mathscr{K})$ form a partition of \mathbb{R}^{n} which is finer than that formed by elements of $\mathscr{B}^{k}(\mathscr{K})$. But $\Delta^{\prime} \cap \Delta=\emptyset$ contradicts the assumption that Δ contains a vertex of Δ^{\prime}. So, $\Delta^{\prime} \subseteq \Delta$.

Lemma 3.4. [9] If Δ is an n-dimensional simplex and d is the diameter of Δ, then the diameter of any n-dimensional simplex in $\mathscr{B}\left(\mathscr{K}_{\Delta}\right)$ is at most $(n /(n+1)) d$.

From Lemma 3.4 we immediately obtain the following corollary.
Corollary 3.5. Let Δ be an n-dimensional simplex, f be a linear function on $\mathrm{cl} \Delta$, and a be the variation of f on $\mathrm{cl} \Delta$. If $\Delta^{\prime} \in \mathscr{B}\left(\mathscr{K}_{\Delta}\right)$, then the variation of f on $\mathrm{cl} \Delta^{\prime}$ is at most $(n /(n+1))$ a.

Lemma 3.6. If \mathscr{K} is a triangulation of X, and V is the set of all vertices of \mathscr{K}, then any function $f: V \rightarrow \mathbb{R}$ can be uniquely extended to a \mathscr{K}-linear function on X.

Proof of Proposition 2.3. Fix $n>1$, let

$$
\mathbb{D}=\left\{\frac{s}{2^{m}}: s \in \mathbb{Z}, m \in \mathbb{N}\right\}
$$

be the set of all dyadic rationals and let

$$
\mathbb{D}_{i}=\left\{\frac{-4^{i}}{2^{i}}, \frac{-4^{i}+1}{2^{i}}, \ldots, \frac{4^{i}}{2^{i}}\right\} \subseteq \mathbb{D} \quad \text { for every } i \in \omega
$$

Let \mathscr{K} be any triangulation of \mathbb{R}^{n}. For each $i \in \omega$, we define integers k_{i}, r_{i} and ℓ_{i}, triangulations \mathscr{K}_{i} and \mathscr{K}_{i}^{\prime} of \mathbb{R}^{n}, a function ψ_{i} on the set \mathscr{A}_{i} of
n-dimensional simplices of \mathscr{K}_{i}, and a function ξ_{i} on $\mathscr{A}_{i} \times \mathbb{D}_{i}$ such that ψ_{i} and ξ_{i} take n-dimensional simplices in \mathbb{R}^{n} as values. Let $k_{0}=0$.

Assume that $i \in \omega$ and that k_{i} has been defined. Let $\mathscr{K}_{i}=\mathscr{B}^{k_{i}}(\mathscr{K})$. By Lemma 3.1, for each $\Delta \in \mathscr{A}_{i}$ there exists an n-dimensional simplex $\psi_{i}(\Delta) \in \mathscr{B}^{2}\left(\mathscr{K}_{\Delta}\right)$ such that $\operatorname{cl} \psi_{i}(\Delta) \subseteq \Delta$. By Lemma 3.2, there is an integer r_{i} such that for every $\Delta \in \mathscr{A}_{i}$ and every $j \in \mathbb{D}_{i}$ there is an n-dimensional simplex $\xi_{i}(\Delta, j) \in \mathscr{P}_{3}^{r_{i}}\left(\mathscr{K}_{\psi(\Delta)}\right)$ with

$$
\operatorname{cl} \xi_{i}(\Delta, j) \subseteq \psi_{i}(\Delta)
$$

such that

$$
\operatorname{cl} \xi_{i}(\Delta, j) \cap \operatorname{cl} \xi_{i}\left(\Delta, j^{\prime}\right)=\emptyset
$$

for any distinct $j, j^{\prime} \in \mathbb{D}_{i}$. Let

$$
\mathscr{K}_{i}^{\prime}=\mathscr{B}^{2+r_{i}}\left(\mathscr{K}_{i}\right),
$$

let ℓ_{i} be an integer such that

$$
\begin{equation*}
\left(\frac{n}{n+1}\right)^{\ell_{i}} \cdot 4^{i} \leqslant 2^{-i} \tag{5}
\end{equation*}
$$

and put $k_{i+1}=k_{i}+2+r_{i}+\ell_{i}$. This finishes the inductive construction.
Note that

$$
\mathscr{K}_{i+1}=\mathscr{B}^{\ell_{i}}\left(\mathscr{K}_{i}^{\prime}\right) \quad \text { and } \quad \xi_{i}(\Delta, j) \in \mathscr{K}_{i}^{\prime}
$$

for every $i \in \omega, \Delta \in \mathscr{A}_{i}$ and $j \in \mathbb{D}_{i}$.
For the next step of our construction we will need the following additional notation. For each $i \in \omega$, let V_{i} be the set of vertices of \mathscr{K}_{i}, let V_{i}^{\prime} be the set of vertices of \mathscr{K}_{i}^{\prime}, and put

$$
\bar{V}_{i}=V_{i}^{\prime} \cap \bigcup_{\Delta \in \mathscr{A}_{i}} \operatorname{bd} \psi_{i}(\Delta)
$$

Moreover, for every $i \in \omega$ and every $j \in \mathbb{D}_{i}$, we define

$$
V_{i}^{j}=\bigcup_{\Delta \in \mathscr{A}_{i}} V_{i}^{\Delta, j}
$$

where $V_{i}^{\Delta, j} \subseteq V_{i}^{\prime}$ is the set of vertices of $\xi_{i}(\Delta, j)$. Also, for every $i \in \omega$ and $x \in \mathbb{R}^{n}$ let $\Delta_{x, i}^{\prime} \in \mathscr{H}_{i}^{\prime}$ be such that $x \in \Delta_{x, i}^{\prime}$, and for $q \in \omega$ put

$$
Y_{q}=\mathbb{R}^{n} \backslash \bigcup_{t>q} \bigcup_{\Delta \in \mathscr{A}_{t}} \psi_{t}(\Delta)
$$

Note that for every $i, q \in \omega$ with $i>q$, the following condition holds:

$$
\begin{equation*}
\text { if } x \in Y_{q} \text {, then every vertex of } \Delta_{x, i}^{\prime} \text { is in } Y_{q} \tag{6}
\end{equation*}
$$

Indeed, suppose that some vertex v of $\Delta_{x, i}^{\prime}$ does not belong to Y_{q}. Then there are $t>q$ and $\Delta \in \mathscr{A}_{t}$ such that $v \in \psi_{t}(\Delta)$. Then, by Lemma 3.3, $\Delta_{x, i}^{\prime} \subseteq \psi_{t}(\Delta)$, which contradicts the fact that $x \in Y_{q}$.

Now, we define recursively a sequence of functions g_{0}, g_{1}, \ldots such that the following conditions hold for every $i \in \omega$:
(a) $g_{i}: \mathbb{R}^{n} \rightarrow\left[-2^{i-1}, 2^{i-1}\right]$ is \mathscr{K}_{i}-linear,
(b) if $x \in \operatorname{bd} \mathscr{K}_{i}$, then $g_{i+1}(x)=g_{i}(x)$,
(c) if $x \in \mathrm{bd} \psi_{i}(\Delta)$ for some $\Delta \in \mathscr{A}_{i}$, then $g_{i+1}(x)=0$,
(d) if $x \in \operatorname{bd} \xi_{i}(\Delta, j)$ for some $\Delta \in \mathscr{A}_{i}$ and $j \in \mathbb{D}_{i}$, then $g_{i+1}(x)=j$,
(e) if there is $q \in \omega$ such that $x \in Y_{q}$, then $g_{i}(x) \in\left[-2^{q}, 2^{q}\right]$,
(f) for every $\Delta \in \mathscr{K}_{i}$ the variation of g_{i} on $\mathrm{cl} \Delta$ is at most 2^{-i}.

Let $g_{0}(x)=0$ for every $x \in \mathbb{R}^{n}$. Suppose that $i \in \omega$ and that the function $g_{i}: \mathbb{R}^{n} \rightarrow\left[-2^{i-1}, 2^{i-1}\right]$ satisfies conditions (a)-(f). Let g_{i+1} be the unique $\mathscr{K}_{i}^{\prime}-$ linear extension of the function $h: V_{i}^{\prime} \rightarrow\left[-2^{i}, 2^{i}\right]$ defined by

$$
h(v)= \begin{cases}0 & \text { if } v \in \bar{V}_{i}, \\ j & \text { if } v \in V_{i}^{j} \text { for some } j \in \mathbb{D}_{i}, \\ g_{i}(v) & \text { otherwise. }\end{cases}
$$

It is obvious that the function g_{i+1} satisfies conditions (a)-(d). To see that condition (e) holds, note that if $q<i$ and $x \in Y_{q}$, then every vertex v of $\Delta_{x, i}^{\prime}$ is outside $\bigcup_{j \in \mathbb{D}_{i}} V_{i}^{j}$ implying that either $g_{i+1}(v)=g_{i}(v)$ or $g_{i+1}(v)=0$. Now it follows from (6) and the inductive hypothesis that $g_{i+1}(v) \in\left[-2^{q}, 2^{q}\right]$ for any vertex v of $\Delta_{x, i}^{\prime}$, implying that $g_{i+1}(x) \in\left[-2^{q}, 2^{q}\right]$. Finally, it follows from Corollary 3.5 and inequality (5) that the function g_{i+1} satisfies condition (f).

For each $i \in \omega$, let f_{i} be the restriction of g_{i} to bd \mathscr{K}_{i}. If follows from condition (b) that f_{i+1} is an extension of f_{i} for every $i \in \omega$. Let

$$
X=\bigcup_{i \in \omega} \mathrm{bd} \mathscr{K}_{i},
$$

and let

$$
f=\bigcup_{i \in \omega} f_{i}: X \rightarrow \mathbb{R} .
$$

We are going to extend the function f to a function on \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n} \backslash X$. If there is an integer $q \geqslant 0$ such that $x \in Y_{q}$, then it follows from condition (e) that $g_{i}(x) \in\left[-2^{q}, 2^{q}\right]$ for every $i \in \omega$. Then let $f(x)$ be the limit of some convergent subsequence of the sequence $\left\langle g_{i}(x)\right\rangle_{i=0}^{\infty}$. If such q does not exist, then let $f(x)=0$. This completes the definition of the function f.

We will show first that f is peripherally continuous.
Denote by X^{\prime} the set of points $x \in \mathbb{R}^{n} \backslash X$ for which the integer q as above exists; that is, let

$$
X^{\prime}=\left(\mathbb{R}^{n} \backslash X\right) \cap \bigcup_{q \in \omega} Y_{q},
$$

and put $X^{\prime \prime}=\left(\mathbb{R}^{n} \backslash X\right) \backslash X^{\prime}$. Note that $f(x)=0$ for $x \in X^{\prime \prime}$.
To see that f is peripherally continuous choose $x \in \mathbb{R}^{n} \backslash X$ and, for each $i \in \omega$, let $\Delta_{x, i}$ be the simplex of \mathscr{A}_{i} containing x. Since the sequence k_{0}, k_{1}, \ldots is strictly increasing, it follows from Lemma 3.4 that the diameters of $\Delta_{x, i}$ converge to 0 as $i \rightarrow \infty$. If $x \in X^{\prime}$, then the peripheral continuity of f at x follows from condition (f). If $x \in X^{\prime \prime}$, then there are infinitely many integers i such that x belongs to $\psi_{i}(\Delta)$ for some $\Delta \in \mathscr{A}_{i}$. Since $f(x)=0$, the peripheral continuity of
f at x follows from condition (c). If $x \in X$, then for each $i \in \omega$, let $\mathscr{E}_{x, i}$ be the set of simplices $\Delta \in \mathscr{A}_{i}$ such that $x \in \operatorname{cl} \Delta$ and

$$
Z_{x, i}=\bigcup_{\Delta \in \mathscr{C}_{x, i}} \operatorname{cl} \Delta
$$

Since the diameter of $Z_{x, i}$ is at most twice as large as the maximal diameter of a simplex in $\mathscr{E}_{x, i}$, it follows from Lemma 3.4 that the diameters of $Z_{x, i}$ converge to 0 as $i \rightarrow \infty$. Thus it follows from condition (f) that f is peripherally continuous at x.

By Theorem 1.1, it remains to define the subset G of \mathbb{R}^{n} which is a dense G_{δ}-set and is such that any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $h(x)=f(x)$ for $x \notin G$ is peripherally continuous.

So, for each $j \in \mathbb{D}$ define

$$
G_{j}=\bigcup_{i \in\left\{k: j \in \mathbb{D}_{k}\right\}} \bigcup_{\Delta \in \mathscr{A}_{i}} \xi_{i}(\Delta, j)
$$

and notice that G_{j} is an open and dense subset of \mathbb{R}^{n}. This implies that

$$
G=\bigcap_{j \in \mathbb{D}} G_{j}
$$

is a dense G_{δ}-subset of \mathbb{R}^{n}. We will show that G has the desired property.
So, let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any function with $h(x)=f(x)$ for $x \notin G$. The function h is peripherally continuous at any $x \notin G$, for the same reason that f is. If $x \in G$, then for any $j \in \mathbb{D}$ there is an arbitrarily large $i \in \omega$ such that $x \in \xi_{i}(\Delta, j)$ for some $\Delta \in \mathscr{A}_{i}$. Thus it follows from condition (d) that h is peripherally continuous at x. The proof is complete.

4. Proof of Proposition 2.4

In what follows we will identify a natural number n with the set of its predecessors, that is, $n=\{0, \ldots, n-1\}$. Let $A \subseteq \mathbb{R}$. We say that A is a thick meagre set if A is a countable union of nowhere-dense perfect sets and A is dense in \mathbb{R}. If $\left\langle A_{i}: i \in n\right\rangle$ is a family of sets then

$$
\prod_{i \in n} A_{i}=A_{0} \times \ldots \times A_{n-1}
$$

Lemma 4.1. If G is a dense G_{δ}-set in \mathbb{R}^{n}, then for each $i \in n$ there are a countable dense set $B_{i} \subseteq \mathbb{R}$ and a thick meagre set $Y_{i} \subseteq \mathbb{R}$ such that $B_{i} \cap Y_{i}=\emptyset$ and

$$
\prod_{i \in n}\left(B_{i} \cup Y_{i}\right) \subset G
$$

Proof. Let G be a dense G_{δ}-set in \mathbb{R}^{n}. First note that it is enough to prove that for each $i \in n$ there is a thick meagre set $Y_{i} \subseteq \mathbb{R}$ such that

$$
\begin{equation*}
\prod_{i \in n} Y_{i} \subset G \tag{7}
\end{equation*}
$$

since then for every $i \in n$ there exists a countable dense $B_{i} \subset Y_{i}$ and a thick meagre set $Y_{i}^{\prime} \subset Y_{i}$ such that $B_{i} \cap Y_{i}^{\prime}=\emptyset$.

We prove (7) by induction on n. If $n=1$, then it is clear that (7) holds. Assume that $n \geqslant 2$ and that (7) holds for smaller values of n. We claim that
(\dagger) there are a thick meagre set $Y \subseteq \mathbb{R}$, and a dense G_{δ}-set G^{\prime} in \mathbb{R}^{n-1}, such that $Y \times G^{\prime} \subseteq G$.
It is obvious that (\dagger) and the induction hypothesis imply that the lemma holds.
To prove (\dagger) we will first show that
(\star) for every $p<q$ there exist a nowhere-dense perfect set $Y_{p, q} \subseteq(p, q)$ and a dense G_{δ}-set $G_{p, q} \subseteq \mathbb{R}^{n-1}$ such that $Y_{p, q} \times G_{p, q} \subseteq G$.
Clearly (\star) implies (\dagger), since for $\mathscr{A}=\left\{\langle p, q\rangle \in \mathbb{Q}^{2}: p<q\right\}$ the sets $Y=$ $\bigcup_{\langle p, q\rangle \in \mathscr{A}} Y_{p, q}$ and $G^{\prime}=\bigcap_{\langle p, q\rangle \in \mathscr{A}} G_{p, q}$, satisfy (\dagger).

Now we show that (\star) holds. Assume that

$$
G=\bigcap_{m \in \omega} U_{m}
$$

where U_{m} is an open dense set in \mathbb{R}^{n} for every $m \in \omega$, and let $p<q$. Let J_{0}, J_{1}, \ldots be an enumeration of some countable basis of the topology of \mathbb{R}^{n-1}, and let $\left\langle t_{0}, u_{0}\right\rangle,\left\langle t_{1}, u_{1}\right\rangle, \ldots$ be an enumeration of $\omega \times \omega$. Let T_{i} be the set of all zero-one sequences $g: i \rightarrow 2$ of length i, and for $g \in T_{i}$ and $j \in 2$ let $g * j \in T_{i+1}$ be the concatenation of g and j, that is,

$$
g * j=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, j\right\rangle
$$

where $g=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$. For each $i \in \omega$ we define, by induction on i, an open set $V_{i} \subseteq \mathbb{R}^{n-1}$ and a family $\left\{W_{g}: g \in T_{i}\right\}$ of non-empty open subsets of (p, q), such that the following conditions hold for every $i \in \omega$:
(i) $V_{i} \cap J_{t_{i}} \neq \emptyset$;
(ii) $\left(\bigcup_{g \in T_{i}} \mathrm{cl} W_{g}\right) \times V_{i} \subseteq U_{u_{i}}$;
(iii) $\operatorname{diam} W_{g} \leqslant 2^{-i}$ for every $g \in T_{i}$;
(iv) $\mathrm{cl} W_{g * 0} \cap \mathrm{cl} W_{g * 1}=\emptyset$ for every $g \in T_{i-1}$ provided $i>0$;
(v) $\mathrm{cl} W_{g * 0} \cup \mathrm{cl} W_{g * 1} \subseteq W_{g}$ for every $g \in T_{i-1}$ provided $i>0$.

For $i=0$ choose arbitrary $W_{\tau} \subset(p, q), \tau$ being an empty sequence, and $V_{0} \subset J_{t_{0}}$ such that $\mathrm{cl} W_{\tau} \times V_{0} \subseteq U_{u_{0}}$. Such a choice can be made, since $U_{u_{0}}$ is dense in \mathbb{R}^{n}. It is clear that with such a choice conditions (i)-(v) are satisfied.

To make the inductive step choose $i<\omega, i>0$, such that V_{i-1} and W_{g} for each $g \in T_{i-1}$ satisfying (i)-(v) are already defined. Since $U_{u_{i}}$ is dense open in \mathbb{R}^{n}, there are non-empty open sets $V_{i} \subseteq J_{t_{i}}$ and, for every $g \in T_{i-1}$, a non-empty open set $W_{g}^{\prime} \subseteq W_{g}$ such that

$$
\left(\bigcup_{g \in T_{i-1}} \operatorname{cl} W_{g}^{\prime}\right) \times V_{i} \subseteq U_{u_{i}}
$$

For each $g \in T_{i-1}$ choose non-empty open sets $W_{g * 0}, W_{g * 1} \subseteq W_{g}^{\prime}$ satisfying (iii)-(v). This completes our construction.

To prove that (\star) holds, it suffices to take

$$
Y_{p, q}=\bigcap_{i \in \omega} \bigcup_{g \in T_{i}} \mathrm{cl} W_{g} \quad \text { and } \quad G_{p, q}=\bigcap_{m \in \omega} H_{m},
$$

where

$$
H_{m}=\bigcup\left\{V_{i}: u_{i}=m\right\}
$$

Then it is clear that $Y_{p, q}$ is a nowhere-dense perfect subset of (p, q) and that $G_{p, q}$ is a G_{δ}-subset of \mathbb{R}^{n-1}. To see that $G_{p, q}$ is dense in \mathbb{R}^{n-1}, it is enough to note that for every $m \in \omega$ the set H_{m} intersects every element of the basis $\left\{J_{i}: i \in \omega\right\}$ of \mathbb{R}^{n-1}. It remains to verify that

$$
Y_{p, q} \times G_{p, q} \subseteq G
$$

So, choose arbitrary $x \in Y_{p, q}, y \in G_{p, q}$ and $m \in \omega$. Then $y \in H_{m}$ and there exists $i \in \omega$ such that $u_{i}=m$ and $y \in V_{i}$, which implies that

$$
\langle x, y\rangle \in\left(\bigcup_{g \in T_{i}} \mathrm{cl} W_{g}\right) \times V_{i} \subseteq U_{u_{i}}=U_{m}
$$

Therefore $\langle x, y\rangle \in \bigcap_{m \in \omega} U_{m}=G$ and so the proof is complete.

Lemma 4.2. If $B \subseteq \mathbb{R}$ is a countable dense set, $Y \subseteq \mathbb{R}$ is a thick meagre set, and $Z \subseteq \mathbb{R}$ is a meagre set such that $B \cap Y=B \cap Z=\emptyset$, then there is an increasing homeomorphism $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $Z \subseteq g(Y)$ and $g(B)=B$.

Proof. It is clear that we can assume that the set Z is thick meagre. Let

$$
Z=\bigcup_{i \in \omega} Z_{i}
$$

where $\left\{Z_{i}: i \in \omega\right\}$ is a family of mutually disjoint nowhere-dense perfect sets. Let $\left\langle b_{i}: i \in \omega\right\rangle$ be an enumeration of B and $\left\langle I_{i}: i \in \omega\right\rangle$ be an enumeration of all non-empty open intervals (p, q) with rational endpoints $p, q \in \mathbb{R}$. We construct, by induction on $i \in \omega$, two strictly increasing sequences $\left\langle n_{i} \in \omega: i \in \omega\right\rangle$ and $\left\langle m_{i} \in \omega: i \in \omega\right\rangle$, and a sequence $\left\langle f_{i}: i \in \omega\right\rangle$ of functions such that the following conditions hold for every $k \in \omega$:
(i) $f_{k}: \bigcup_{i \leqslant k} Z_{n_{i}} \cup\left\{b_{m_{i}}: i \leqslant k\right\} \rightarrow Y \cup B$ is a strictly increasing continuous function extending $\bigcup_{i<k} f_{i}$ such that

$$
f_{k}\left[\bigcup_{i \leqslant k} Z_{n_{i}}\right] \subseteq Y \quad \text { and } \quad f_{k}\left[\left\{b_{m_{i}}: i \leqslant k\right\}\right] \subseteq B
$$

(ii) if $k=4 j$, then $\bigcup_{i \leqslant j} Z_{i} \subseteq \operatorname{dom} f_{k}$;
(iii) if $k=4 j+1$, then $f_{k}\left[\bigcup_{i \leqslant k} Z_{n_{i}}\right] \cap I_{j} \neq \emptyset$;
(iv) if $k=4 j+2$, then $\left\{b_{i}: i \leqslant j\right\} \subseteq \operatorname{dom} f_{k}$;
(v) if $k=4 j+3$, then $\left\{b_{i}: i \leqslant j\right\} \subseteq$ range f_{k}.

Then the function

$$
f=\bigcup_{i \in \omega} f_{i}: Z \cup B \rightarrow Y \cup B
$$

is strictly increasing, $f[Z] \subseteq Y$ is dense in \mathbb{R}, and $f[B]=B$. Thus f can be extended to a homeomorphism h from \mathbb{R} to \mathbb{R} and $g=h^{-1}$ satisfies the requirements. This completes the proof.

In the remainder of this section we will use the following non-standard notation. If $\left\langle A_{i}: i \in n\right\rangle$ is a family of sets, C is a set and $j \in n$, then let

$$
A_{i} \vee_{j} C= \begin{cases}C & \text { if } i=j \\ A_{i} & \text { if } i \neq j\end{cases}
$$

If moreover $\left\langle B_{i}: i \in n\right\rangle$ is a family of sets and f is a function from n into $2=\{0,1\}$, then define

$$
A_{i} \vee_{f} B_{i}= \begin{cases}A_{i} & \text { if } f(i)=0 \\ B_{i} & \text { if } f(i)=1\end{cases}
$$

We will also use the notation $A_{i} \vee_{f} B_{i} \vee_{j} C$ to denote the set $D_{i} \vee_{j} C$ where $D_{i}=A_{i} \vee_{f} B_{i}$, that is,

$$
A_{i} \vee_{f} B_{i} \vee_{j} C= \begin{cases}C & \text { if } i=j \\ B_{i} & \text { if } i \neq j \text { and } f(i)=1 \\ A_{i} & \text { if } i \neq j \text { and } f(i)=0\end{cases}
$$

Lemma 4.3. Let $G \subseteq \mathbb{R}^{n}$ be a G_{δ}-set. If $f: n \rightarrow 2$ is a function, $i \in n$ and $\left\langle b_{0}, \ldots, b_{n-1}\right\rangle \in \mathbb{R}^{n}$, then the set

$$
\left\{x \in \mathbb{R}: \prod_{t \in n}\left(\left\{b_{t}\right\} \vee_{f} \mathbb{R} \vee_{i}\{x\}\right) \subseteq G\right\}
$$

is a G_{δ}-subset of \mathbb{R}.
Proof. Assume that

$$
G=\bigcap_{k \in \omega} U_{k},
$$

with $U_{k} \subseteq \mathbb{R}^{n}$ being open for every $k \in \omega$. Let

$$
D_{x}^{r}=\prod_{t \in n}\left(\left\{b_{t}\right\} \vee_{f}[-r, r] \vee_{i}\{x\}\right) \subseteq \mathbb{R}^{n}
$$

for every $x \in \mathbb{R}$ and $r \in \omega$, and let

$$
V_{k}^{r}=\left\{x \in \mathbb{R}: D_{x}^{r} \subseteq U_{k}\right\}
$$

for every $k, r \in \omega$. Then

$$
\left\{x \in \mathbb{R}: \prod_{t \in n}\left(\left\{b_{t}\right\} \vee_{f} \mathbb{R} \vee_{i}\{x\}\right) \subseteq G\right\}=\bigcap_{k \in \omega} \bigcap_{r \in \omega} V_{k}^{r}
$$

To complete the proof it remains to show that the set V_{k}^{r} is open in \mathbb{R} for every $k, r \in \omega$.

Suppose that $x \in V_{k}^{r}$. Then $D_{x}^{r} \subseteq U_{k}$ and since U_{k} is open, it follows that for every $y \in D_{x}^{r}$ there is an open neighbourhood W_{y} of y in \mathbb{R}^{n} with $W_{y} \subseteq U_{k}$. Since D_{x}^{r} is compact, there is a finite subfamily of $\left\{W_{y}: y \in D_{x}^{r}\right\}$ that covers D_{x}^{r}, which implies that there is an open neighbourhood $A \subseteq \mathbb{R}$ of x such that

$$
\prod_{t \in n}\left(\left\{b_{t}\right\} \vee_{f}[-r, r] \vee_{i} A\right) \subseteq U_{k}
$$

So $A \subseteq V_{k}^{r}$, which implies that V_{k}^{r} is open and hence completes the proof.

Proof of Proposition 2.4. Assume that $G \subseteq \mathbb{R}^{n}$ is a dense G_{δ}-set. By Lemma 4.1, for each $i \in n$ there are a countable dense set $B_{i} \subseteq \mathbb{R}$ and a thick meagre set $Y_{i} \subseteq \mathbb{R}$ such that $B_{i} \cap Y_{i}=\emptyset$ and

$$
\prod_{i \in n}\left(B_{i} \cup Y_{i}\right) \subseteq G
$$

We will define homeomorphisms $g_{j}^{i}: \mathbb{R} \rightarrow \mathbb{R}$ for every $i \in n$ and $j \in\{1,2, \ldots, n\}$ such that if

$$
h_{j}=g_{j}^{0} \times \ldots \times g_{j}^{n-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

then

$$
\begin{equation*}
\prod_{i \in n}\left(B_{i} \vee_{f} \mathbb{R}\right) \subseteq G \cup \bigcup_{j=1}^{k} h_{j}(G) \tag{8}
\end{equation*}
$$

for every $k \in n+1$ and every function $f: n \rightarrow 2$ such that $\left|f^{-1}(1)\right|=k$. (Here $|X|$ stands for the cardinality of the set X.) The construction will be done by induction with respect to k.

Note that for $k=0$, the equation (8) is already satisfied for the constant function $f \equiv 0$, the only $f: n \rightarrow 2$ with $\left|f^{-1}(1)\right|=0$. This gives the starting point for our induction. Notice also that if $k=n$, then the equation (8) with the constant function $f \equiv 1$ implies that

$$
G \cup \bigcup_{j=1}^{n} h_{j}(G)=\mathbb{R}^{n}
$$

Thus it remains to perform the inductive step.
Assume that $k \in n$ and that the homeomorphisms $g_{j}^{i}: \mathbb{R} \rightarrow \mathbb{R}$ have been defined for every $i \in n$ and $j \in\{1, \ldots, k\}$ in such a way that (8) is satisfied for every $f: n \rightarrow 2$ with $\left|f^{-1}(1)\right|=k$. We are going to define g_{k+1}^{i} for every $i \in n$ so that the equation (8) with k replaced by $k+1$ is satisfied for every $f: n \rightarrow 2$ with $\left|f^{-1}(1)\right|=k+1$.

For every $i \in n$, let F_{i} be the set of all functions $f: n \rightarrow 2$ such that

$$
\left|f^{-1}(1)\right|=k \quad \text { and } \quad f(i)=0
$$

Fix $i \in n$. It follows from Lemma 4.3 that for every

$$
b=\left\langle b_{0}, \ldots, b_{n-1}\right\rangle \in B_{0} \times \ldots \times B_{n-1},
$$

and every $f \in F_{i}$ there is a G_{δ}-set $K_{i}^{f, b} \subseteq \mathbb{R}$ such that

$$
\prod_{t \in n}\left(\left\{b_{t}\right\} \vee_{f} \mathbb{R} \vee_{i} K_{i}^{f, b}\right) \subseteq G \cup \bigcup_{j=1}^{k} h_{j}(G)
$$

Notice also that, by (8), $B_{i} \subseteq K_{i}^{f, b}$. So, $K_{i}^{f, b}$ is a dense G_{δ}-set. Thus, the set

$$
K_{i}=\bigcap\left\{K_{i}^{f, b}: f \in F_{i} \text { and } b \in B_{0} \times \ldots \times B_{n-1}\right\}
$$

is a dense G_{δ}-set with $B_{i} \subseteq K_{i}$ and

$$
\begin{equation*}
\prod_{t \in n}\left(B_{t} \vee_{f} \mathbb{R} \vee_{i} K_{i}\right) \subseteq G \cup \bigcup_{j=1}^{k} h_{j}(G) \tag{9}
\end{equation*}
$$

for every $f \in F_{i}$. In particular, $Z_{i}=\mathbb{R} \backslash K_{i}$ is a meagre set with $B_{i} \cap Z_{i}=\emptyset$. By Lemma 4.2, there is a homeomorphism $g_{k+1}^{i}: \mathbb{R} \rightarrow \mathbb{R}$ such that $Z_{i} \subseteq g_{k+1}^{i}\left(Y_{i}\right)$ and $g_{k+1}^{i}\left(B_{i}\right)=B_{i}$.

Let $h_{k+1}=g_{k+1}^{0} \times \ldots \times g_{k+1}^{n-1}$. We claim that

$$
\prod_{i \in n}\left(B_{i} \vee_{f} \mathbb{R}\right) \subseteq G \cup \bigcup_{j=1}^{k+1} h_{j}(G)
$$

for every $f: n \rightarrow 2$ with $\left|f^{-1}(1)\right|=k+1$. Indeed, let $f: n \rightarrow 2$ be any function satisfying $\left|f^{-1}(1)\right|=k+1$ and pick

$$
x \in \prod_{i \in n}\left(B_{i} \vee_{f} \mathbb{R}\right)
$$

We will show that

$$
x \in G \cup \bigcup_{j=1}^{k+1} h_{j}(G)
$$

If there is $i \in f^{-1}(1)$ such that

$$
x \in \prod_{t \in n}\left(B_{t} \vee_{f} \mathbb{R} \vee_{i} K_{i}\right)
$$

then it follows from (9) that

$$
x \in G \cup \bigcup_{j=1}^{k} h_{j}(G)
$$

so we can assume that, for every $i \in f^{-1}(1)$, we have

$$
x \notin \prod_{t \in n}\left(B_{t} \vee_{f} \mathbb{R} \vee_{i} K_{i}\right) .
$$

Then

$$
x \in \prod_{i \in n}\left(B_{i} \vee_{f} Z_{i}\right) \subseteq \prod_{i \in n}\left(B_{i} \vee_{f} g_{k+1}^{i}\left(Y_{i}\right)\right)
$$

Since $g_{k+1}^{i}\left(B_{i}\right)=B_{i}$ and

$$
\prod_{i \in n}\left(B_{i} \vee_{f} Y_{i}\right) \subseteq G
$$

for every $i \in n$, it follows that

$$
\prod_{i \in n}\left(B_{i} \vee_{f} g_{k+1}^{i}\left(Y_{i}\right)\right)=h_{k+1}\left(\prod_{i \in n}\left(B_{i} \vee_{f} Y_{i}\right)\right) \subseteq h_{k+1}(G)
$$

Therefore $x \in h_{k+1}(G)$ and so the proof is complete.

5. Proofs of Propositions 2.7 and 2.8

In the proof that follows we will need some additional definitions and results from dimension theory. (See, for example, [10].)

Given $X \subseteq \mathbb{R}^{n}$ and an integer $m \geqslant 1$, we say that X is an m-dimensional Cantor manifold if X is compact, ind $X=m$, and for every $Y \subseteq X$ with ind $Y \leqslant m-2$,
the set $X \backslash Y$ is connected. Note that an m-dimensional Cantor manifold X is connected and for every $p \in X$,

$$
\operatorname{ind}_{p} X=m
$$

that is, there exists an open neighbourhood W of p such that ind $\operatorname{bd}_{X} U=m-1$ for any open neighbourhood $U \subseteq W$ of p.

Given $X \subseteq \mathbb{R}^{n}$ and $p, q \in \mathbb{R}^{n} \backslash X$, we say that X separates p and q if they are in distinct components of $\mathbb{R}^{n} \backslash X$.

The following lemmas are proved in [10].
Lemma 5.1. For any compact $Y \subseteq \mathbb{R}^{n}$ with ind $Y \geqslant m$ there exists an m dimensional Cantor manifold $X \subseteq Y$.

Lemma 5.2. If $X \subseteq \mathbb{R}^{n}$ is a compact set that separates p and q, and no proper closed subset of X does so, then X is an $(n-1)$-dimensional Cantor manifold.

Using Zorn's Lemma one can easily prove the following lemma.
Lemma 5.3. If $X \subseteq \mathbb{R}^{n}$ is a compact set that separates p and q, then there is a compact $X^{\prime} \subseteq X$ that separates p and q and no proper closed subset of X^{\prime} does so.

Given a subset U of \mathbb{R}^{n}, we say that U is a quasiball if U is a bounded and connected open set, and bd U is an $(n-1)$-dimensional Cantor manifold. The open ball in \mathbb{R}^{n} with centre $x \in \mathbb{R}^{n}$ and radius $\varepsilon>0$ will be denoted by $B^{n}(x, \varepsilon)$.

Lemma 5.4. If V is an open set and

$$
x \in V \subseteq B^{n}(x, \delta)
$$

for some $x \in \mathbb{R}^{n}$ and $\delta>0$, then there is a quasiball $U \subseteq B^{n}(x, \delta)$ containing x with $\mathrm{bd} U \subseteq \mathrm{bd} V$.

Proof. Let y be an element of the unbounded component of $\mathbb{R}^{n} \backslash \mathrm{cl} V$. Since V is bounded, bd V is compact, so it follows from Lemmas 5.3 and 5.2 that there is an $(n-1)$-dimensional Cantor manifold $X \subseteq$ bd V that separates x from y. Let U be the component of $\mathbb{R}^{n} \backslash X$ containing x. It is clear that U satisfies the requirements.

Corollary 5.5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a peripherally continuous function. Then for any $x \in \mathbb{R}^{n}$, any $\varepsilon>0$ and any open set W in \mathbb{R}^{n} containing x, there is a quasiball $U \subseteq W$ containing x such that $|f(x)-f(y)|<\varepsilon$ for any $y \in \operatorname{bd} U$.

Proof. Let $\delta>0$ be such that $B^{n}(x, \delta) \subset W$. Since f is peripherally continuous, there is an open neighbourhood $V \subset$ bd $V \subset B^{n}(x, \delta)$ of x such that $\mid f(x)-$ $f(y) \mid<\varepsilon$ for any $y \in \operatorname{bd} U$. Then U from Lemma 5.4 satisfies the requirements.

Given open sets U and W in \mathbb{R}^{n}, we say that U and W are independent if all the intersections $U \cap W, U \cap W^{c}, U^{c} \cap W$, and $U^{c} \cap W^{c}$ are non-empty, where U^{c}
and W^{c} are the complements of the closures of U and W, respectively. Given $x \in \mathbb{R}^{n}$, a half-line starting at x is a set A of the form

$$
A=\{x+\alpha z: \alpha \geqslant 0\}
$$

for some non-zero $z \in \mathbb{R}^{n}$.
Lemma 5.6. If U and W are independent quasiballs, then $\operatorname{bd} U \cap \operatorname{bd} W \neq \emptyset$.
Proof. Let U^{c} and W^{c} be the complements of the closures of U and W respectively. Since $W \cap U$ and $W \cap U^{c}$ are non-empty and W is connected, it follows that $W \cap \mathrm{bd} U$ is non-empty. Similarly, $U \cap \mathrm{bd} W$ is non-empty.

Since U is bounded, any half-line starting at a point in U intersects bd U. The analogous statement holds for W. Let $x \in U \cap W$ and A be a half-line starting at x. Since bd $U \cup \mathrm{bd} W$ is compact, there is

$$
y \in A \cap(\mathrm{bd} U \cup \mathrm{bd} W)
$$

such that the half-line B starting at y that is a subset of A does not intersect $\mathrm{bd} U \cup \mathrm{bd} W$ except at y. Without loss of generality, we can assume that $y \in \mathrm{bd} U \backslash \mathrm{bd} W$. Then B does not intersect bd W, which implies that $B \cap W=\emptyset$. Therefore

$$
y \in W^{c} \cap \mathrm{bd} U,
$$

which implies that $W^{c} \cap \mathrm{bd} U$ is non-empty. Since $W \cap \operatorname{bd} U$ is also non-empty and $\mathrm{bd} U$ is connected, we conclude that $\mathrm{bd} U \cap \mathrm{bd} W$ is non-empty.

For $n \in \omega$ let ω^{n} be the set of all sequences of elements of ω of length n, and let

$$
\omega^{<\omega}=\bigcup_{n \in \omega} \omega^{n} .
$$

Note that $\omega^{0}=\{\emptyset\}$. For $s \in \omega^{<\omega}$ and $j \in \omega$ let $s * j$ be the concatenation of s and j, that is,

$$
s * j=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, j\right\rangle,
$$

where $s=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$. Given $T \subseteq \omega^{<\omega}$ and $n \in \omega$, let

$$
T_{n}=T \cap \omega^{n} .
$$

Given $s \in T_{n}$ and $t \in T_{n+1}$ such that there is $j \in \omega$ with $t=s * j$, we say that s is the father of t and that t is a son of s. A non-empty subset T of $\omega^{<\omega}$ is a tree if for every $s \in T \backslash\{\emptyset\}$ the father of s belongs to T and every element of T has at least one son in T. We say that the tree T is finitely branching if T_{n} is finite for every $n \in \omega$.
Let T be a finitely branching tree and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a peripherally continuous function. A family

$$
\mathscr{U}=\left\{U_{s}: s \in T\right\}
$$

of quasiballs in \mathbb{R}^{m} will be called a good T-family of quasiballs for f if there are a function $\eta: T \rightarrow \mathbb{R}^{m}$ and two sequences $\left\langle q_{n}: n \in \omega\right\rangle$ and $\left\langle r_{n}: n \in \omega\right\rangle$ of
positive real numbers such that the series $\sum_{n=0}^{\infty} q_{n}$ and $\sum_{n=0}^{\infty} r_{n}$ converge and the following conditions are satisfied for any $n \in \omega, s \in T_{n}$ and any son t of s :
(i) $\eta(s) \in U_{s}$;
(ii) the distance from $\eta(s)$ to any element of U_{s} is at most q_{n};
(iii) $|f(x)-f(\eta(s))| \leqslant r_{n}$ for any $x \in \operatorname{bd} U_{s}$;
(iv) $\eta(t) \in \mathrm{bd} U_{s}$;
(v) the quasiballs U_{s} and U_{t} are independent.

For any $\gamma \in \omega^{\omega}$ let γ_{n} be the initial segment of γ of length n. Assume that $\mathscr{U}=\left\{U_{s}: s \in T\right\}$ is a good T-family of quasiballs for f and that $\eta: T \rightarrow \mathbb{R}^{m}$, $\left\langle q_{n}: n \in \omega\right\rangle$ and $\left\langle r_{n}: n \in \omega\right\rangle$ satisfy conditions (i)-(v). Define

$$
T^{*}=\left\{\gamma \in \omega^{\omega}: \gamma_{n} \in T\right\}
$$

Given $\gamma \in T^{*}$, we say that $x \in \mathbb{R}^{m}$ is a γ-limit of \mathscr{U} if for every open neighbourhood V of x in \mathbb{R}^{m} there is $k \in \omega$ with

$$
U_{\gamma_{n}} \cap V \neq \emptyset
$$

for every $n \geqslant k$. It follows from condition (ii) that for every $\gamma \in T^{*}$ there is exactly one γ-limit x_{γ} of \mathscr{U}. Define

$$
L_{\mathscr{U}}=\left\{x_{\gamma} \in \mathbb{R}^{m}: \gamma \in T^{*}\right\}
$$

to be the set of all limit points of \because.
Lemma 5.7. Let T be a finitely branching tree and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a peripherally continuous function. If $\mathscr{U}=\left\{U_{s}: s \in T\right\}$ is a good T-family of quasiballs for f, then the restriction of f to $L_{\mathscr{U}}$ is continuous.

Proof. Let $\eta: T \rightarrow \mathbb{R}^{m},\left\langle q_{n}: n \in \omega\right\rangle$ and $\left\langle r_{n}: n \in \omega\right\rangle$ satisfy conditions (i)-(v). Given $\gamma \in T^{*}$ and $t \in \omega$, let

$$
B_{\gamma, t}=\bigcup_{n=t}^{\infty} \operatorname{bd} U_{\gamma_{n}}
$$

Let $t \in \omega$. It follows from condition (v) and Lemma 5.6 that the set $B_{\gamma, t}$ is connected. Since the γ-limit x_{γ} of \mathscr{U} belongs to $\mathrm{cl} B_{\gamma, t}$, the union $B_{\gamma, t} \cup\left\{x_{\gamma}\right\}$ is connected. Since f is a peripherally continuous function, it is also a Darboux function, which implies that the set $f\left(B_{\gamma, t} \cup\left\{x_{\gamma}\right\}\right)$ is connected, and so $f\left(x_{\gamma}\right) \in \operatorname{cl} f\left(B_{\gamma, t}\right)$. Since
$\left|f\left(x_{\gamma}\right)-f\left(\eta\left(\gamma_{t}\right)\right)\right| \leqslant\left|f\left(\eta\left(\gamma_{t}\right)\right)-f\left(\eta\left(\gamma_{t+1}\right)\right)\right|+\left|f\left(\eta\left(\gamma_{t+1}\right)\right)-f\left(\eta\left(\gamma_{t+2}\right)\right)\right|+\ldots$,
it follows from (iii) that

$$
\begin{equation*}
\left|f\left(x_{\gamma}\right)-f\left(\eta\left(\gamma_{t}\right)\right)\right| \leqslant \sum_{n=t}^{\infty} r_{n} \tag{10}
\end{equation*}
$$

for every $\gamma \in T^{*}$ and $t \in \omega$.
Now let $x \in L_{\mathscr{U}}$ and $\varepsilon>0$. Since the series $\sum_{n=0}^{\infty} r_{n}$ converges, there exists $t \in \omega$ such that

$$
\begin{equation*}
\sum_{n=t}^{\infty} r_{n}<\frac{1}{2} \varepsilon \tag{11}
\end{equation*}
$$

For each $s \in T_{t}$ let

$$
B_{s}=\left\{x_{\gamma}: \gamma_{t}=s\right\}
$$

It is clear that B_{s} is closed in \mathbb{R}^{n} for every $s \in T_{t}$. Since the set T_{t} is finite, there is an open neighbourhood V of x such that

$$
V \cap B_{s}=\emptyset
$$

for every $s \in T_{t}$ with $x \notin B_{s}$. It follows that for every $y \in V \cap L_{u}$ there exists $s \in T_{t}$ with $x, y \in B_{s}$, which implies by (10) and (11) that

$$
|f(x)-f(y)| \leqslant|f(x)-f(\eta(s))|+|f(y)-f(\eta(s))|<\varepsilon
$$

Therefore f is continuous at x and so the proof is complete.
Proof of Proposition 2.7. Let x_{0}, W and ε be as in the proposition. Let $\left\langle q_{i}: i \in \omega\right\rangle$ and $\left\langle r_{i}: i \in \omega\right\rangle$ be any sequences of positive real numbers such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} r_{i}<\varepsilon \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
B^{n}\left(x_{0}, \sum_{i=0}^{\infty} q_{i}\right) \subseteq W \tag{13}
\end{equation*}
$$

We will define inductively a finitely branching tree T, a good T-family $U=\left\{U_{s}: s \in T\right\}$ of quasiballs for f, and a function $\eta: T \rightarrow \mathbb{R}^{n}$ such that conditions (i)-(v) are satisfied, and moreover,

$$
\begin{equation*}
\operatorname{bd}\left(\bigcup_{i=0}^{m} \bigcup_{s \in T_{i}} U_{s}\right) \subseteq \bigcup_{t \in T_{m+1}} U_{t} \tag{14}
\end{equation*}
$$

Let $T_{0}=\{\emptyset\}$ and $\eta(\emptyset)=x_{0}$. Since f is peripherally continuous, it follows from Corollary 5.5 that there is a U_{\emptyset} such that conditions (i)-(iii) are satisfied. Suppose that $m \in \omega$, and that T_{i} and U_{s} have been defined for every $i \leqslant m$ and $s \in \bigcup_{i \leqslant m} T_{i}$. Let

$$
\begin{equation*}
C=\operatorname{bd}\left(\bigcup_{i=0}^{m} \bigcup_{s \in T_{i}} U_{s}\right) \tag{15}
\end{equation*}
$$

Since the set T_{m} is finite, we have

$$
C \subseteq \operatorname{bd}\left(\bigcup_{i<m} \bigcup_{s \in T_{i}} U_{s}\right) \cup \bigcup_{s \in T_{m}} \operatorname{bd} U_{s}
$$

and condition (14) of the inductive hypothesis implies that

$$
\operatorname{bd}\left(\bigcup_{i<m} \bigcup_{s \in T_{i}} U_{s}\right) \subseteq \bigcup_{s \in T_{m}} U_{s}
$$

Therefore

$$
C \subseteq \bigcup_{s \in T_{m}} \operatorname{bd} U_{s}
$$

Let $\left\{C_{s}: s \in T_{m}\right\}$ be a partition of C such that $C_{s} \subseteq$ bd U_{s} for every $s \in T_{m}$. Since f is peripherally continuous, it follows from Corollary 5.5 that for every $y \in C$
there is a quasiball B_{y} containing y such that the distance from y to any element of B_{y} is at most q_{n} and $|f(x)-f(y)| \leqslant r_{n}$ for any $x \in \operatorname{bd} B_{y}$. Moreover B_{y} can be chosen so that B_{y} and U_{s} are independent if $y \in C_{s}$. Since C is compact, there is a finite subset Y of C such that

$$
C \subseteq \bigcup_{y \in Y} B_{y}
$$

Let

$$
Y_{s}=C_{s} \cap Y
$$

Then $\left\{Y_{s}: s \in T_{m}\right\}$ is a partition of Y. Define

$$
T_{m+1}=\left\{s * j: s \in T_{m} \text { and } j \in\left\{0,1, \ldots,\left|Y_{s}\right|-1\right\}\right\}
$$

For $t \in T_{m+1}$ let $\eta(t)$ be such that if $s \in T_{m}$, then

$$
\{\eta(t): t \text { is a son of } s\}=Y_{s},
$$

and let

$$
U_{t}=B_{\eta(t)}
$$

This completes the definition of T, η and \mathscr{U}. Let

$$
U=\bigcup_{s \in T} U_{s}
$$

Then

$$
\operatorname{bd} U \subseteq L_{थ},
$$

and so Lemma 5.7 implies that f is continuous on bd U. Condition (13) implies that $U \subseteq W$ and condition (12) implies that $\left|f\left(x_{0}\right)-f(y)\right|<\varepsilon$; thus the proof is complete.

Proof of Proposition 2.8. Let T be the tree consisting of all finite zero-one sequences. We are going to define a good T-family $\mathscr{U}=\left\{U_{s}: s \in T\right\}$ of quasiballs for g. Let $\left\langle r_{i}: i \in \omega\right\rangle$ be a sequence of positive real numbers such that the series $\sum_{i=0}^{\infty} r_{i}$ converges. We shall define a sequence $\left\langle q_{i}: i \in \omega\right\rangle$ of positive real numbers with $\sum_{i=0}^{\infty} q_{i}<\infty$ and a function $\eta: T \rightarrow \mathbb{R}^{n}$ such that conditions (i)-(v) are satisfied. We will also define an auxiliary function $\eta^{\prime}: T \rightarrow X$. The construction will be done by induction on $i<\omega$ in such a way that the following additional conditions hold:
(a) $\eta(\emptyset) \in X$ is arbitrary and $q_{1}=q_{0}<\frac{1}{2} \operatorname{diam}(X)$;
(b) $\eta(s * 0)=\eta(s * 1)=\eta^{\prime}(s) \in \mathrm{bd} U_{s} \cap X$ for any $s \in T_{i}$;
(c) $q_{i}=\frac{1}{4} \min _{s \in T_{i-2}}\left|\eta^{\prime}(s * 0)-\eta^{\prime}(s * 1)\right|$ for $i>1$;
(d) $\mathrm{cl} U_{s * 1} \subseteq U_{s * 0}$ for any $s \in T_{i}$.

To see that the construction can be made, notice that the choice of each U_{s} satisfying (i)-(iii), (v) and (d) can be guaranteed by Corollary 5.5. We can choose $\eta^{\prime}(s) \in \operatorname{bd} U_{s} \cap X$, since bd $U_{s} \cap X$ is non-empty as X is connected and U_{s} has the diameter smaller than X. So, (b) implies (iv). Also, $q_{i}>0$, since the points $\eta^{\prime}(s * 0)$ and $\eta^{\prime}(s * 1)$ are different by (d). This completes the construction.

Let $P=L_{U}$. It is clear that P is a closed subset of X, and it follows from (c) that $x_{\gamma} \neq x_{\delta}$ for distinct $\gamma, \delta \in T^{*}$. This implies that P is a perfect set. We
conclude from Lemma 5.7 that the restriction of g to P is continuous, which completes the proof.

References

1. J. B. Brown, P. Humke, and M. Laczkovich, 'Measurable Darboux functions', Proc. Amer. Math. Soc. 102 (1988) 603-609.
2. K. Ciesielski and A. W. Miller, 'Cardinal invariants concerning functions, whose sum is almost continuous', Real Anal. Exchange 20 (1994-95) 657-673.
3. K. Ciesielski and I. Receaw, 'Cardinal invariants concerning extendable and peripherally continuous functions', Real Anal. Exchange 21 (1995-96) 459-472.
4. R. Engelking, General topology, revised and completed edition, Sigma Series in Pure Mathematics 6 (Heldermann, Berlin, 1989).
5. R. G. Gibson, H. Rosen, and F. Roush, ‘Compositions and continuous restrictions of connectivity functions', Topology Proc. 13 (1988) 83-91.
6. R. G. GIbson and F. Roush, 'Concerning the extension of connectivity functions', Topology Proc. 10 (1985) 75-82.
7. M. HAGAN, 'Equivalence of connectivity maps and peripherally continuous transformations', Proc. Amer. Math. Soc. 17 (1966) 175-177.
8. O. H. Hamilton, 'Fixed points for certain noncontinuous transformations', Proc. Amer. Math. Soc. 8 (1957) 750-756.
9. J. G. Hocking and G. S. Young, Topology (Addison-Wesley, Reading, Mass., 1961).
10. W. Hurewicz and H. Wallman, Dimension theory (Princeton University Press, 1948).
11. T. NatKaniec, ‘Almost continuity’, Real Anal. Exchange 17 (1991-92) 462-520.
12. H. Rosen, 'Every real function is the sum of two extendable connectivity functions', Real Anal. Exchange 21 (1995-96) 299-303.
13. H. Rosen, R. G. Gibson, and F. Roush, 'Extendable functions and almost continuous functions with a perfect road', Real Anal. Exchange 17 (1991-92) 248-257.
14. J. R. Stallings, 'Fixed point theorems for connectivity maps', Fund. Math. 47 (1959) 249-263.

Department of Mathematics
West Virginia University
P.O. Box 6310

Morgantown
West Virginia 26506-6310
U.S.A.

E-mail: kcies@vaxa.wvnet.edu
jerzy@math.wvu.edu

[^0]: This work was partially supported by NSF Cooperative Research Grant INT-9600548. 1991 Mathematics Subject Classification: 26B40, 54C30, 54F45.

 Proc. London Math. Soc. (3) 76 (1998) 406-426.

[^1]: \dagger It has been settled recently by Francis Jordan (private communication) who proved that for every $n>1$ there exists a Baire 1 class function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is not a sum of n Darboux functions. This clearly implies that $\mathscr{R}\left(\mathrm{D}\left(\mathbb{R}^{n}\right)\right) \geqslant n+1$, while the other inequality follows from Theorem 1.3.

