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Abstract

Sums. products and compositions with Sierpifiski-Zygmund functions are investigated. More-
over, cardinal invariants connected with those operations are defined and studied. © 1997 Elsevier
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1. Preliminaries

Let us establish some terminology to be used. No distinction is made between a
function and its graph. The family of all functions from a set .X into Y will be denoted
by Y. Symbol card(X) will stand for the cardinality of a set X. The cardinality of the
set R of real numbers is denoted by ¢. Symbol [X]* denotes the family of all subsets Y’
of X with card(Y') = . Similarly we define [X]<* and [X]<*. For a cardinal number &
we will write cf(x) for the cofinality of . Recall that a cardinal number « is regular, if
k = cf(x). For A C R its characteristic function is denoted by X 4. If A4 is a planar set,
we denote its z-projection by dom(A) and y-projection by rng(A). For f,g € R® the
notation [f = g] means the set {x € R: f(x) = g(x)}. Likewise for [f > g]. [f # g].
etc.
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For X' C R we say that a function f: X — R is of Sierpiriski—Zygmund type (shortly,
an SZ-function), if its restriction f[A[ is discontinuous for any set A/ C X with
card(M) = ¢ [15]. The family of all SZ-functions from R to R will be denoted by SZ.
The symbol C will stand for the family of all continuous functions f:R — R, and C¢,
for the family of all continuous functions defined on G-sets X C R with card(X) = ¢.
Recall also that a function f € R® is an SZ-function if and only if card([f = g]) < ¢
for every g € Cg, [15]. We will sometimes abuse this notation by writing f € SZ and
f € C for partial functions f: X — R with X C R.

The following fact can be proved by a slight modification of the original proof of
Sierpiniski and Zygmund [15].

Proposition 1.1. For every family {Yy:x € R} of subsets of R of cardinality ¢ there
exists an SZ-function f:R — R such that f(x) € Y, for every z € R,

In particular, card(SZ) = 2.
For every cardinal « and a partially ordered set (shortly poset) P we shall consider the
following statements. (See [3]. Compare also [7,9.10,16].)

MA, (P) (x-Martin’s Axiom for ). For any family D of dense subsets of P with
card(D) < & there exists a D-generic filter G in P, i.e., such that DN G # @ for
every D € D.

Lus, (P). There exists a sequence {Gn: « < &) of P-filters, called a x-Lusin sequence,
such that card({a < x: G, N D = }) < « for every dense set D C P.

2. Sums

Theorem 2.1. For every family F C R® with card(F) < c there exists an h € R¥ such
that h + f € SZ for each f € F.

Proof. Let {g,: a < ¢} =Cgq,, {ro: @ <c} =R, and {fa: o < ¢} = F. For every
a < ¢ choose h(z,) € R\ {g,(za) — fs(ra): 3.7 < a}. Such a function A satisfies
the following condition:

(VB <) (Vy<e) [h+ fs=yg] C {re: @ <max(8,7)},
so card((h + fs)Ngy) <cforall 3.y <e. O

Corollary 2.2. Every real function f can be expressed as the sum of two SZ-functions.
Proof. Use Theorem 2.1 with F = {0, f}. O

The following cardinal function has been defined in [11] for G C RR. (Compare also
[3.41)
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a(G) =min({card(F): F CR® & ~Fh e REVfe Fh+ feGlu{(297})
=min({card(F): F CR* & Vhe RE3f e Fh+ f ¢ GIU{(297}).
Evidently, there is no h € R such that h + f € SZ for all f € RE. Therefore
Theorem 2.1 yields to the following corollary.

Corollary 2.3. ¢ < a(SZ) < 25

Hence, if ¢T = 2¢, then a(SZ) = 2°. However, it is interesting whether or not anything
more can be said about the cardinal a(S5Z). (The analogous problem for the classes AC
of almost continuous functions and D of Darboux functions is considered in [3].) To
address this question we need the following partially ordered sets (P, <) and (P*, <).

P={peRY: X CR & card(X) < ¢},

i.e., P is the set of all partial functions from R to R of cardinality less than ¢. We put
p < ¢ if and only if p D g, i.e., when p extends ¢ as a partial function.

P*={(p.E): pe P & E CR* & card(E) < c}.
The ordering on P* is defined by

(p.EY< (q,F) iff pDgand EDF
and Vir € dom(p) \ dom{q) Vf € F p(x) # f(x).

The following theorem can be found in [3, Theorem 3.7].

Theorem 2.4. Let \ > r > w» be cardinals such that cf(\) > w; and k is regular. Then
it is relatively consistent with ZFC + CH that 2° = X\ and Lus, (IP*) holds.

We will prove the following theorem.
Theorem 2.5. If k > ¢ is a regular cardinal then Lus, (P*) implies that a(SZ) = k.
This and Theorem 2.4 will immediately imply the following corollary.

Corollary 2.6. Let A 2 « = w; be cardinals such that cf()\) > w and Kk is regular.
Then it is relatively consistent with ZFC + CH that 2° = A and a(SZ) = «.

The proof of Theorem 2.5 will be split into three lemmas.
Lemma 2.7.
(i) Lus,(IP*) = Lus.(P).

(ii) For any regular k we have Lus, (P*) = MA.(P*).

Proof. The proof is implicitly contained in the proof of [3, Lemma 3.6]. Let (Go: o < k)
be a ~-Lusin sequence for P*.
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(i) follows from the fact that in some sense P is “living inside” of P*. To see it, let
r:R — R be a map with of card(r~'(y)) = ¢ for every y € R. Define 7:P* — P by

m(p, F') =rop.

Notice that if (p, E') < {(¢. F') then n(p, E') < w(q. F'). This implies that [G] is a P-filter
for any P*-filter G. Furthermore, we claim that if D C IP is dense, then 7= () is dense
in P*. To see this, let (p. F") € P* be arbitrary. Since D is dense, there exists ¢ < 7(p, F)
with ¢ € D. Now, find s € P extending p such that ros = ¢ 2 rop and s(x) # f(x)
for every x € dom(s) \ dom(p)} and f € F. This can be done by choosing

s(x) e r™! (@) \{f(x): feF}

for every = € dom(q) \ dom(p). Then. (s, F) < {p. F) and (s, F) € 7= (¢q) C 7=~ '(D).
Now, (7[Gs]: « < &) is a n-Lusin sequence for PP since for every dense D C P,

{o <k 7lGa]lND =0} ={a <r: 7[G|Nr[r"(D)] =0}
C{a<w: Gonr™ (D) =0}.
To see (ii) take a family D of dense subsets of P* of cardinality less than «. By the

regularity of «, there exists a < # such that G, meets every element of D. O

Lemma 2.8. Assume that « is a regular cardinal and k > c. Then Lus,(P) implies that
a(SZ) < k.

Proof. Let (G,: o < k) be a x-Lusin sequence of P-filters and let
fa = U Ga-

Then f, is a partial function from R into R. Let
D, ={peP: xedom(p)}.

It is easy to see that each D, is dense in P. Hence, since ¢ < x and x is regular, we
may assume that each f,, is a total function.
Now, let {z¢: € < ¢} = R. For each £ < ¢, g € Cg,. and h € RF define

De(g.h) = {p € B: (3n 2 €)(a, € dom(p) Ndom(g) & (h +p)(xy) = glary)) }.
Note that D¢(g.h) is dense in P, since for any p € P there is 1 > £ with

x, € dom(g) \ dom(p).
Then

pU{(xn. g(x,) = h(xy))} € Delg.h)

extends p. By the regularity of #, for any h € RF there exists & < s such that G,

intersects every set D¢(g, k) with { < ¢ and g € Cg,. and so, card((h + fo) N g)=c.

~ Thus, for every h € RE there exists « < w such that h + f, ¢ SZ, i.e., the family
F = {fa: a <k} shows that a(SZ) <  as was to be shown. O
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Lemma 2.9. If & > ¢ then MA(P*) implies that a(5Z) > k.

Proof. Let F C RE be such that card(F) < «. We will find o € RX such that b+ f € SZ
for every f € F.
Notice that for any x € R the set

D, = {(p.E) €P": r € dom(p)}

is dense in P*. Indeed, let {g, F') be an arbitrary element of P* and suppose it is not
already an element of D,. The set @@ = {f(x): f € F} has cardinality less than ¢, so
there exists y € R\ Q. Let p = ¢ U {{x,y}}. Then (p,F) < (¢, F) and (p,F) € D,.
Therefore h = [J{p: (3E) ({p, E) € G)} is a function from R into R for any P*-filter
G intersecting all sets D,.

Note also, that for f € R® the set

E;={(p.E)e P feE}

is dense in P* since {p. E U {f}) € E; extends (p, E).
Let

D={D,: teR}U{E;_;: f€F & geCq,}.

where g € R¥ extends g € Cg, by associating 0 at all undefined places. Then, D is a
family of less than » many dense subsets of P*. Let G be a D-generic filter in P* and
let h = U{p: 3E)({p.E) € G)}. We have to show that h + f € SZ for every f € F.

So, let f € F and ¢ € Cg,. Then there exists (p, E) € GNFE4_ ;. So, by the definition
of order on PP it is easy to see that

{zeR: (f+R)(z)=g(x)} C{reR: h(x)=g(z) - f(z)} C dom(p).
Thus, h+ f € SZ forevery f € F. O

Application of Lemmas 2.7, 2.8 and 2.9 finishes the proof of Theorem 2.5.
In [3] it has been proved that a(D) = a(AC) = e, and that this number has cofinality
greater than continuum ¢, where

ex = min{card(F): F C k" & Vh € k" 3f € F card(f Nh) < x}.

Next, we will compare a(SZ) with a(D), and give a characterization of a(SZ) similar
to that of e.. We will also address an issue of the cofinality of a(SZ).

Since for a regular x > ¢ an axiom Lus, (PP*) implies a(D) = x [3, Section 3] we can
conclude the following fact.

Corollary 2.10. Let A > k = w; be cardinals such that ¢f()\) > w, and & is regular.
Then it is relatively consistent with ZFC + CH that 2° = A and a(D) = a(SZ) = &.

Note also the following strengthening of [3, Theorem 3.3].
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Theorem 2.11. Let A\ > wy be a cardinal such that cf(\) > wi. Then it is relatively
consistent with ZFC + CH that 2° = A and Lus,(P) holds for every regular x > «,
K <2

Proof. The proof is identical to that of [3, Theorem 3.3]. O

Now, recall also that Lus, (P) implies «(D) > « for every regular x > ¢ {3]. Thus,
in a model of Theorem 2.11 we have «(D) = 2° = A. On the other hand in this model
we have Lusc+ (PP). So, by Lemma 2.8 and Corollary 2.3, a(SZ) = ¢™*. In particular, we
obtain the following corollary.

Corollary 2.12. Let A > w; be a cardinal such that cf(X) > w,. Then it is relatively
consistent with ZFC + CH that 2 = X is true, and u(SZ) = ¢ < 2¢ = (D).

The following remains an open problem.
Problem 2.13. Is it consistent that «(SZ) > «(D)?

For an infinite cardinal s define
d. = min{card(F): F C " & Vh € #" 3f € F card(f Nh) = x}.

Notice that d,. > k.
Theorem 2.14. a(SZ) = d..

Proof. To see that d. < a(SZ) choose F ¢ RF with card(F) < d. and define
F={g—-f feF&gela}.
where § € RF extends g by associating O at all undefined places. Then,
card(F) < card(F) - ¢ < d.
So, there exists an k& € RE such that card(h N f) < ¢ for every f € F. Hence, for every
f€Fandge€Cq,
card((h + f) Ng) < card((h + f)Ng) =card(hN(g— f)) <c

since g— f € F.So, h+ f € SZ every f € F., and d. < a(SZ).

To see that a(SZ) < d. choose F C R¥ with card(F) < a(SZ) and let —F =
{—f: f € F}. Using the definition of a(SZ) to —F we can find h € RE such that
h— f € SZ for every f € F. In particular, for go = 0 we have

card(h N f) = card(h N (f + go)) = card((h — f) N go) < ¢

for every f € F. So,a(5Z) < d.. O

To address the problem of cofinality of a(5Z) we need the following theorem, where
/<" is the supremum of all cardinals £* with A < &.
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Theorem 2.15. If x > w is a cardinal number such that k<" = k then cf(d.) > k.

Proof. Let T be the set of all functions from some £ < x into &, i.e., T' = g, x. Thus,
by our assumption, card(T") = . Let (F¢ C T": € < k) be an increasing sequence such
that card(F¢) < d, for every £ < . We shall show that the cardinality of I’ = (J, . F¢
is less than d,. by finding h € T such that card(h N f) < k for every f € F. This will
finish the proof.

For ¢ < « define

Fe={f e (x%)": (3f € F)(Va < %) (f(a) = f() 7€)},
where [£() ["€(¢) = f(@)(C) if ¢ € dom(f(a)) and [f(a)]*€}(C) = O otherwise.
Thus, card(F'¢) < card(Fy) < dy for every € < k.

By induction on & < k we will define a sequence (he € (k%)": £ < k) such that

(i) he(a) C he(a) forevery a < k and { < £ < k.

(ii) card(hg N f) < & for every f € F¢ and every successor ordinal £ < k.

So assume that for some £ < & the sequence (h¢: ¢ < &) is already constructed. If £
is a limit ordinal put h¢(@) = |, h¢(@) for every a < . Then (i) is clearly satisfied,
and (ii) does not apply.

If £ =+ 1 is a successor ordinal, then the space

He ={he (k)" (Va < &)(hy(a) C h{a))}

is naturally isomorphic to k* by an isomorphism ¢: He — &~ i(h)(a) = h(a)(n) for
h € He and a < k. Moreover, card(F¢ N He) < card(F¢) < di. So, there exists
he € He C (KE )" satisfying (ii), while (i) is satisfied by any h € He. The construction
is completed.

To finish the proof define i : k — T by h(€) = he(€). We will show that card(hN f) <
k for every f € F.

So, let f € F. Then, there exists a successor ordinal number ¢ < & such that f € F¢.
Let f € F¢ be such that f(a) = f(a) "¢ for every @ < k. Then

{a <k ha) = fla)} c€U{a<k: h(a)D fla)}
=fU{a <k: he(a) = f(a)}
and, by (ii), this last set has cardinality less than . So card(h N f) < k. O

From Theorems 2.14 and 2.15 we obtain the following corollary. (Note that ¢<€ is the
supremum of all cardinals 2* with A < ¢.)

Corolary 2.16. [f ¢<¢ = ¢ then cf(a(SZ)) > ¢
The following remains an open problem.

Problem 2.17. Can a(SZ) be a singular cardinal?
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Since a(SZ) = d. and a{D) = ¢, Problems 2.13 and 2.17 can be rephrased as
follows.

(x) Let K = c. Is it consistent that d,; > e,.? Can d,; be singular?

Notice that for x = w the answer for these problems is well known, since d, =
non(meager) is the minimum cardinality of a nonmeager subset of R, and e, =
cov(meager) is the minimum cardinality of a family of meager subset of R whose union
is equal to R. (See [2].) Thus. for x = w the answer for both questions is positive.
(Compare also [8] for some results concerning e, tor £ > w.)

Next, let M, (SZ) denote the maximal additive family for the class SZ. i.e.,
Mo (SZ)={feR™ f+hecSZforeahhecSZ}.

To describe the structure of M, (SZ) we need the following easy lemma.

Lemma 2.18. Let X C R and f: X — R be an SZ-function. Then there exists an
SZ-extension of f, i.e.., an f* € R¥ that f* € SZ and f*| X = f.

Proof. Obviously for each h:R — R. h € SZ if and only if A[|(R\ X) € §Z and
h1X € SZ. Moreover, we can use the Sierpinski-Zygmund’s method to obtain an SZ-
function defined on any subset of R. Therefore it is enough to construct an SZ-function
g:R\X —Randput f* = fUg. O

Theorem 2.19. For every function f € RE the following conditions are equivalent:
(1) f e Ma(52):
(ii) for each X € [R]® there exists a Y € [X]¢ such that f|Y € C.

Proof. (ii) = (i). Suppose that f satisfies the condition (ii} and h + f ¢ SZ for some
h € SZ. Then (h+ f)[ X € C for some set X € [R]°. Let Y & [X]¢ be a set such that
Ff1Y €C. Then hlY € C, in contradiction with h € SZ.

(i) = (ii). Suppose that f does not fulfill the condition (ii). Then there exists X € [R]¢
such that f|Y ¢ CforeachY € [X]%i.e., f| X € SZ.Let f* € R¥ be an SZ-extension
of f. Then —f* € SZ and (f — f*)[| X €C.s0 f ¢ My(SZ). O

Remark. U. Darji proved under CH that a Borel function f satisfies the the condition
(ii) if and only if it is countably continuous [6. Theorem 10]. In the same way one can
prove that (ii) implies the following condition:

(iii) f is the union of less than ¢ many continuous functions;
and, assuming regularity of ¢, that (iii) implies (i1).

Proof. (ii) = (iii). Let {g.: @ < ¢} = Cg,. Suppose that f is not the union of less than
¢ many continuous functions. Then card(dom(f \ Us<a 9a)) = ¢ for each o < ¢. For
every a < ¢ choose z, € dom(f\ Uz, 90) \ {23 B < a} and set X = {u,: o < c}.
By (ii), there exists Y € [X]¢ such that f [Y is continuous. Therefore f Y = g, Y for
some « < ¢, so card(f N go) = ¢, contrary to the construction of X.
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Now assume that ¢ is a regular cardinal and f satisfies (iii). Then f = {J .. f [ Xa
for some x < ¢ and all functions f [ X, are continuous. Fix X € [R]¢. By the regularity
of ¢, card(X N X, ) = ¢ for some o < k and, for Y = X N X, f Y is continuous. O

It is also worth to notice in this context that if f: X — R is SZ for some X C R then
for every Y € [X]€ its restriction f[Y is not countably (even x < cf(c)) continuous.

3. Products

In this section we will examine for which functions f € R¥ there exists A € R¥ such
that hf € 5Z.

First note that if card([f = 0]) = ¢ then Af € SZ for no h:R — R. Thus, we will
restrict our attention to the family

Ro = {f € R*: card([f =0]) < c}.

Theorem 3.1. For every familv F C Ry with card(F) < ¢ there exists an h:R —
R\ {0} such that hf € SZ for each f € F.

Proof. Let {go: @ < ¢} =Cq,, {7q: a<c} =R, and {fy: a <c¢} =F. Fora <c
choose

ew) € B\ (000 { B 5 <a s foln) # o})

Such a function h satisfies the following condition:
(V3 <e) (Vy <¢) [hfs =g, Cfs =0]U{za: o <max(5,7)},
so card((hfz)Ng,) <cforall 5,y <ec. O

Corollary 3.2. For every function f € R® the following conditions are equivalent:
(i) card([f =0]) < ¢,
(ii) [ is the product of two SZ-functions.

Let m(SZ) denote the least cardinal « for which there exists a family*F C Ry such
that card(F) = k and for every h:R — R there exists f € F with hf ¢ SZ. (Note that
this definition is different from the definition of the cardinal function m defined in [11];
cf. [13].)

Theorem 3.3. a(SZ) =m(SZ).

Proof. “a(5Z) < m(SZ)”. Assume that F C Ry is a family of functions such that
card(F) < a(SZ). For every f € F let f be the function defined by
(

;o @) if fz) #0,
f(I)-{l if f(z)=0.
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Note that card({f: f ¢ F1) < card(F) < a(SZ), so there exists h: R — R such that
h+1n(f) € SZ for each f € F. Therefore exp(h +In(f)) € SZ. so exp(h)f € SZ for
f € F. We shall verify that exp(h) f € SZ for every f € F. Suppose that exp(h)f [ X €
Cforsome X CR. Let X_ = XN[f<0.X;=XN[f>0 and Xo= XN[f=0].
Note that card(Xp) < . Also, card(.X}) < ¢, since exp(h)f | Xy = exp(h)f ] X4 € C.
Similarly, card(X _) < c. since exp(h)f | X_ = — exp(h)f JX_ € C. Thus card(X) < ¢
and consequently. exp(h)f € SZ.

“m(SZ) < a(SZ)". Now assume that F < RF is a family of functions such that
card(F) < m(SZ). Let h € R¥ be a function such that exp(f)h € SZ and — exp(f)h €
SZ for all f € F. Obviously. we can ensure that h € SZ by adding the constant
function 0 to F. Let / be defined as above. Then mg(h) C (0,2c) and exp(f)h € SZ
for each f € F. Indeed. suppose that exp(f)h[.X € C for some X C R and f € F.
Then X = X_UXoUX ., where X_ =XN[h<0l.Xy=XN[h>0] and Xy =
X N [h = 0]. Of course, card(Xy) < ¢. Moreover, exp(f)h [ Xy = exp(f)h| X4 € C
and exp(f)h!X_ = —exp(f)h]X_ € C, so card(X,) < ¢ and card(X_) < ¢. Hence
card(.Y) < c.

Therefore In(exp(f)h) € SZ. so In(h) + f € SZ for each f € F. O

Let M,,,(SZ) denote the maximal multiplicative family for the class SZ. i.e.,

M (SZ)y={f R fhe SZforeach hc SZ}.

Theorem 3.4, For everv function | € RE the following conditions ure equivalent:
(i) feMpu(SZ);
(i) card([f = 0]) < ¢ and for each X € [R|® there exists a Y € [X|® such that
iy ecC.

Proof. (ii) = (i). Suppose that f satisfies the condition (ii) and hf ¢ SZ for some
h e SZ. Then hf|X € C for some set X & [R]*. Let Y € [X \ [f = 0]]° be a set such
that f1Y € C. Then hY = (hf)/f Y € C. in contradiction with h € SZ.

(i) = (i1). Assume that f € M,,(SZ). Note that card([f = 0]} < c. Fix X € [R]
and set Xo = X \ [f = 0]. Obviously, card(Xy) = c. Suppose that fY € C for no
Y e [Xo] ie., f]Xo € SZ. Then (1/f) ] X, € SZ and there exists an SZ-extension
f* € R® of the function (1/f)!X,. Then (f*f) X, € C, a contradiction. Hence there
exists Y € [X]¢ such that f|Y eC. O

4. Compositions

Let
Mou(SZ)={f €R® foh e SZ foreach h € SZ},
Min(SZ) = {f € R*: ho f e SZ foreach h € SZ}.
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Theorem 4.1. Assume that ¢ is a regular cardinal. Then for every function f € RR the
Jfollowing conditions are equivalent:
(1) f € Mau{SZY:
(i) card(f~'(y)) < ¢ for each y € R, and every choice function g:mg(f) — R,
g(y) € f~'y). satisfies the following condition

for each X € [mg{f)]° there exists a Y € [ X[ such that g|Y € C; {(x)
(ili) f € Mu(SZ).

Proof. (i) = (ii). Fix f € Mo (SZ). Suppose that card({f~!(y)) = ¢ for some y € R.
By Proposition 1.1 we can choose an §Z-function g € R® with mg(g) € f~1{»). Then
fog e C, acontradiction,

Suppose that there exists a choice function g:mg(f) — R. g(y) € Ff~{y). without
the property (), i.e., that there exist X € [rg(f)}¢ and g € R such that g € SZ and
fog=idx.Let g* € R* be an SZ-extension of g. Then fog* 1 X €C, 50 Jog* ¢ SZ
and consequently, f ¢ M,y (9Z), a contradiction.

(ii) = (i). Suppose that f o h ¢ SZ for some SZ-function h € R®. Then there exists
X € [R]® such that foh[X € C. Note that card{rng{f o 2] X)) = ¢. Indeed. otherwise,
.by regularity of ¢, foh is constant on some set X & [.X1® and because card(f ' (y)) < ¢
for each y, h is constant on some set X} € [X¢l“, a contradiction. Let g: mg(f) — R,
g{y) € f~'{y). be a choice function such that g(¢) € mg(h[X) for ¢t € mg(f o h[X).
Let g[Y € C for Y € [mg(foh[X)*. Then Xg = (foh) "' (Y)NX € [X]f and
hl Xy =go(fohlX) e, acontradiction.

(i) = (). Fix f € M;,(SZ). Obviously. card{f'{y)} < ¢ for every y € R.
Suppose that g:mg(f) — R. g(y) € f~Hy). is a choice function without the property
(%), ie., that there exists X € [mg(f)]® such that g] X € SZ. Let y* ¢ RF be an
SZ-extension of g[ X. Then g* o f [ (mg(g| X)) = idmg(y1x). But g is one-to-one. So.
card(rmg(g{ X)) =cand g* o f ¢ SZ. A contradiction with f € M (SZ).

(it} = (iii). Suppose that ho f ¢ SZ for some b € SZ. Then ho f|X € C for
some X € [R]¢. Note that card(rg(f | X)) = ¢ since card(f~'(y)) < ¢ for each y € R
and ¢ is regular. Let g:mg(f) — R, g(y) € £ '(y), be a choice function such that
gly) € Xfory € mg(f]X) and let ¥ € [mg(f [ X)® be such that g]Y € €. Then
hlY =(ho foglY €, a contradiction. O

Notice that in the proofs of implications (i) = (i) and (iii) = (i) we did not use
the assumption that ¢ is regular. Moreover, in the above proof of implication (ii) = (iii)
we do not have to use the assumption of regularity of ¢ if we additionally assume that
f is one-to-one. (Or even only that sup{card(f~'(y)): ¥ € R} < ¢.) This implies the
following two corollaries.

Corollary 4.2, If ¢ is regular then My (SZ) = My (SZ).

Corollary 4.3. If a one-to-one function f:R — R satisfies condition (ii) from Theo-
rem 4.1 then [ € M{SZ).
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The next result, being a version of Sierpifiski—Zygmund theorem, will be used to show
that Corollary 4.2 is false when ¢ is singular.

Theorem 4.4. Suppose that < ¢ is a cardinal such that cf (k) = cf(c). Then for every
X € [R]" there exists f: X — R such that card(mgf) = cf(c) and f[ X, is continuous
forno Xy € [ X%,

Proof. Let {A:: £ < cf(e)} and {jie: € < cf(c)} be increasing sequences of ordinal
numbers such that £ = U;_ o) Ae and ¢ = g o He and let X = {z¢: § < &}
Choose a partition {X¢: & < cf(e)} of X such that card(X,) = card()¢) for every
& < cf(c) and let {ge: € < c} be an enumeration of Cg,. By induction on £ < & define
a sequence (ye € R: £ < cf(c)) such that for every £ < &

ye € R\ {gn(z): n < pe & 1 € X¢}.

Now, define h by putting h(x) = ye for & € X and £ < cf(e). It is easy to see that
mg(h) = {ye: £ <cf(c)}. Also,if g = g, € Cq, and ) < p¢ then [h = g] C . Xe.
Thus, card([h = g]) <  and, as in Sierpiriski-Zygmund’s proof, we conclude that i [ Xp
is continuous for no Xp € [X]*. O

Corollary 4.5. There exists an SZ function h:R — R with card(mg(h)) = cf(c).
Problem 4.6. Does there exist an SZ function h: R — Y for every Y & [R]*f(¢)?
Corollary 4.7. If ¢ is singular then My, (SZ) ¢ Mou(SZ).

Proof. Let h be as in Corollary 4.5. Fix xry € mg(h) and define a function f by putting
f(z) = xg for ¢ € mg(h) and f(xr) = = otherwise. Notice that f € Mi,(SZ). Indeed,
consider g € SZ. In order to show that g o f € SZ by way of contradiction suppose
that there is an X € [R] such that g o f[X is continuous. But card(X \ mg(h)) = ¢,
since cf{c) < ¢. Moreover, f(x) = x for every xr € X \ mg(h). So, g[ X \ mg(h) =
go f]X \ mg(h) is continuous on a set of cardinality ¢, contradicting g € SZ.

On the other hand, f o h is constant, so f o h ¢ SZ, while h € SZ. Thus, f ¢
Mou(SZ). O

Problem 4.8. Can inclusion My, (SZ) C My (5Z) be proved without the assumption
that ¢ is regular?

4.1. Compositions with S Z-functions from the left

Theorem 4.9. For each f:R — R the following conditions are equivalent:
(i) there exists h € SZ N R® such that ho f € SZ:
(1) there exists h:R — R such that ho f € SZ;
(iii) card(f~'(y)) < ¢ for each y € R.
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Proof. (i) =>(ii). Obvious.
(ii) = (iii). Suppose that card(f~'(yo)) = ¢ for some yo € R. Then ko f is constant
on f~'(yo), a contradiction.
(iii) = (i). First notice that there exists £ C ¢ and a one-to-one enumeration {y,: « €
£} of R such that
card(f ' (ya)) < card(a) for every a € £. (%)

To see it, let {y,: & < ¢} be an enumeration of R with each number appearing ¢ many
times. For y € R let a(y) = min{a < ¢ yo = y&card(f~!(y)) < card(a)} and put
€ = {aly): y € R}. Then {y,: o € £} has the desired properties.

Next, let {g¢: £ < ¢} =Cq, and let {a¢: & < ¢} be an increasing enumeration of £.
Then {yq,: § < ¢} is a one-to-one enumeration of R. For each £ < ¢ choose

(yag)ER\<{gC yas C<£}UU{QC ya&]: C<£})

Such a choice can be made, since the set ({g¢[f ™' (ya)]: ¢.< £} is a union of card(¢) <
¢ many sets, each set of cardinality < card(cg) < .
It is clear that A € SZ. To verify that ho f € SZ fix { < ¢. Observe that

[ho ’_gCCUf ya5

1334

Indeed, if ho f(x) = g¢(x) and f(z) = Yo, some & < ¢ then 2(yq,) € gc[f ™" (Yae )l
So& < ¢andx € g, 7' (Yag)- Thus, by (),

card((ho f) N gc) card( U F (Yae) ) < card(() - card(c) < ¢. -
1344
Theorem 4.9 justifies restriction of our attention only to the functions from a family
Ry = {f €R® card(f~'(y)) < c for every y € R}
and definition
cou(SZ)
= min({card(F): F C Ry & ~Fh e R*Vf e FhofeSZ}u{(29"})
= min({card(F): F CR; & VheRF 3f € Fhof ¢ SZ}u{(29"}).
Note that SZ C Ry, so card(R) = 2°.
Now, we have the following analog of Theorem 2.1.
Theorem 4.10. If ¢ is a regular cardinal then
¢ <com(SZ) € 2¢
Proof. The inequality ¢ < cou(SZ) is proved similarly as the implication (iii) = (i) of

Theorem 4.9. To see it, let F = {f¢e: £ < ¢} SRy, {ge: £ < ¢} =Cq, and {ye: € < c}
be a one-to-one enumeration of R. For each £ < ¢ choose

hlwe) € R\ (U {oc[f7 ' we)): ¢ <€}).
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The possibility of such a choice is guaranteed by the regularity of ¢, since the set
Udgelfy ' (ye)l: ¢.n < £} is a union of less than ¢ many sets of cardinality less than c.
To see that h o f, € SZ for every i < c it is enough to notice that

[hofy =y C U fr'(ye) forevery ( <c.

g<max{C.}

To prove the inequality cou(SZ) < 2° take F = R, and h € RE. It is enough to find
feFsuchthat ho f ¢ SZ.

By way of contradiction assume that ho f € SZ forevery f € R. Then. h = hoid €
SZ, since id € Ry. In particular, card(rng(h)) = ¢, since otherwise h would be constant
on a set of cardinality ¢. So, there exists f € Ry such that f(y) € h~!(y) for every
y € mg(h). Then ho f(y) = y for every y € rg(h) and so card((h o f) Nid) = ¢,
a contradiction. O

The importance of the assumption of regularity of ¢ in Theorem 4.10 is not clear. For
an arbitrary value of ¢, including the case when c¢ is singular, we have only the following
theorem.

Theorem 4.11. cf(c) < cou(SZ) < 2°7(€) = ¢efle),

Proof. The proof of the inequality cf(¢) < cou{SZ) is a simple modification of the
proof of the implication (iii) = (i) from Theorem 4.9. To see it, take 7 C R, with
card(F) < cf(c) and choose a one-to-one enumeration {y,: « € £} of R, £ C ¢, such
that

card( U f‘l(ya)> < card(a) for every a € . (%)
feF
Let {ge: £ < ¢} = Cq, and {a¢: £ < ¢} be as in Theorem 4.9 and for each £ < ¢
choose

Alye) € R\ (U {oc UL e £ FY]: C <))

It is easy to see that for such defined h we have ho f € SZ for every f € F.

The other inequality for regular ¢ follows from Theorem 4.10. So, assume that ¢ is
singular and let (A\,: a < cf(c)) be an increasing sequence of cardinals such that A, " c.
Let S be the set of all one-to-one functions s: cf(¢) — R and g: R — R be a continuous
function such that card(g~'(y)) = ¢ for every y € R. For every pair s.t € S choose:
a sequence of sets (X3! C ¢7!(s(a)): a < cf(c)) such that card(X3') = X, for each
« < cf(e), and a function fy; € R, such that fy(x) = t(a) for every z € X3! and
a < cf(c). Define

F={d}U{fst: s.t €S}

and notice that card(F) = ¢®). It is enough to show that for every h:R — R there
exists f € F such that ho f ¢ SZ.
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By way of contradiction assume that h o f € SZ for every f € F. Then, h =
hoid € SZ. since id € F. In particular, card(rng(h)) > cf(c), since otherwise ~A would
be constant on a set of cardinality ¢. Choose s.t € S such that s[cf(¢)] C rg(h) and
ter) € h='(s(a)) for every « < cf(c). Then, for every & < cf(¢) and € X5 we have

ho foa(r) =hot(a) = s(a) = g(x).
Thus, h o fs equals to g on
X = U X3t
a<cf(c)

So ho fs ¢ SZ, since card(X) =¢. O

By Theorem 4.11 we can restrict our attention in the definition of ¢, (.S Z) to functions
h from SZ. This is the case, since we can always assume that the identity function id
belong to F. So. we have the following corollary.

Corollary 4.12.
co(SZ) = min({card(F): F C Ry & -3h € SZVf € F ho f € SZ}

U {9

Despite of some knowledge of cf(c) for singular ¢, given by Theorem 4.11, the fol-
lowing problem remains open.

Problem 4.13. Is the assumption of regularity of ¢ important in Theorem 4.10?

On the other hand, the case when ¢ = k™ for some cardinal » the number cou(SZ) is
pretty easily handled by our results from the previous sections and the following theorem.

Theorem 4.14. If ¢ = r for some cardinal k then cou(SZ) = a(SZ).

Proof. By Theorem 2.14 it is enough to show that c,u(SZ) = d..

“Con(SZ) < d.”. Let N stand for the set of irrational numbers and let 7 C NV be
such that card(]-‘) < cou(SZ). We will show that card(F) < d. by finding h: N — N
such that card(h N f) < ¢ for every f € F.

For f € F define a partial function f* on a subset of A/2 by putting

Sz f(0)) =

for every & € N. Notice that f* is one-to-one on its domain. By identifying A with
N via natural homeomorphism we can consider f* as a partial function on R. Let
f*:R — R be an extension of f* such that f* € R, and define F = {1d}U{f* f € F}.
Since card(f) < card(F) + 1 < cou(SZ) there exists an h € R® such that ho f € SZ
for every f € F. We will prove that for every f € F

card({z € N f(z) = h(z)}) <. (1)
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It is enough, since b = h oid € SZ implies that fz“(@) has cardinality < ¢, and so,
there exists h: N — A such that card({z € N : h(x z)}) <c
To see (1) let f € F and let r € A be such that f( ) = h{xz). Then

ho f*(<1:, f(;r)>) = il(l‘) = f(r)= 7r3(<;1', j(r)>)
where m : N2 — N is the projection onto the second coordinate, thus continuous. So,
card{({z e N f(x) = fz(ﬂc)}) < card([fz off=m])<c

since h o f* € SZ. This finishes the proof of “cout(SZ) < d.”. (Notice, we do not use
here even regularity of c¢!)

“de € cou(SZ)”. Now assume that F C R, and card(F) < d.. For every f € F
choose the family {fa: a < r} such that f~'(y) = {fa(y) a < k} for each y € mg(f),
and define

ﬁ:{gofaiQGch&fE}—&a<H}.

where g € RR extends g € Cg, by associating 0 at all undefined places. Note that
card(f) < card(F) - € < de, hence there exists an h € R® such that card(h N f) < ¢ for
each f € F. We shall verify that ho f € SZ for every f € F. For this fix g € C¢, and
observe that

card((ho f)Ng)=card({a: ho f(z) = g(x)})

:card( U {foly): y € me(f) & h(y) = gOfa(y)})

=Y card({y: h(y) = go fuly)}) <c.

This finishes the proof of Theorem 4.14. O

Problem 4.15. Can Theorem 4.14 be proved for any value of ¢? What about ¢ being a
regular limit cardinal?

Theorem 4.14 implies immediately the following corollary.

Corollary 4.16. Let \ > k > w; be cardinals such that cf(\) > wy and K is regular.
Then it is relatively consistent with ZFC that the Continuum Hypothesis (¢ = X)) is true,
= A and con(SZ) = k.

4.2. Compositions with SZ functions from the right

In this section we will examine for which functions f € RR there exists an h € R®
such that f o h € SZ. The class of all functions f € R® having this property will
be denoted by R,. Also, as in previous sections, we will define the cardinal ¢, (SZ)
analogous to oy (SZ) restricting our attention to the maximal family for which such a
definition has a sense, i.e., to R>. Thus, we define
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Cin(SZ)
= min({card(F): FC R, & Sh e REVf e F foheSZ}u{(29"})
= min({card(F): F C Ry & Vhe R* If € F foh¢ SZ}U{(2*}).

The next theorem gives a characterization of the family R, in case when c is regular.

Theorem 4.17. Assume that ¢ is a regular cardinal. For each f:R — R the following
conditions are equivalent:
(i) there exists h € SZ N R® such that foh € SZ;
(i) there exists h: R — R such that foh € SZ;
(iit) card(mg(f)) =

Proof. (i) = (ii). Obvious.

(ii) = (iii). Note that card(rng(h)) = c. Indeed, otherwise, by regularity of c
card(h~'(yo)) = ¢ for some 3 € R and then f o h is constant on h~!(y) for any
f. a contradiction. Next, by way of contradiction, suppose that card(rng(f)) < c. Then,
there exists a yo € R such that card(f~'(yo) Nrng(h)) = c. Therefore,

card((f o h) " '(wo)) =,

a contradiction.
(iii) = (). Let {go: @ < ¢} =Cqg,, and {xy: a < ¢} = R. For every a < ¢ choose

h(xa) € R\ ({gg(xa) a} U U ! gg To) >
A<
The choice can be made since, by (ii1),

R <{g;3(37a) <a}ulJ r(gs(za) )

B<a
is not empty.
Obviously, h € SZ. It is enough to verify that f o h € SZ. So, fix o < ¢. Then

{a: foh(x) =ga(r)} = {z: h(z) € f ' (9a(2))} C {zs: B <al,
and so card((f o h)Ng,) <ec. O

Note that we did not use the regularity assumption in implications (iii) = (i) and
(i) = (ii). In particular, if

Ry = {f € R®: card(mg(f)) = ¢}
then

Corollary 4.18. R3 C R».

We have also
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Corollary 4.19. If ¢ is a regular cardinal then Ry C Ry = R3.

Example 4.20. There exist functions fo, fi € R} such that for every h: R — R either
fooh¢ SZor foh¢ SZ.

Proof. Indeed, decompose the real line onto two sets Ap and A, such that card(4;) = ¢
for ¢ < 2, and define a function f, such that f,(4,) = 0 and f; [ A,_; is one-to-one. Fix
an h:R — R. Since R = h " "(R) = h~'(Ag) U h~'(A;) there exists 4 < 2 such that
card(h™'(A;)) = ¢. Then card((f; o h)~'(0)) = card(h~'(A4;)) = ¢, 50 fioh ¢ SZ. O

Corollary 4.21. ¢,,(SZ) = 2.
4.3. Coding functions by SZ-functions

In the previous sections we examined when for a given function f € R there exist
two SZ-functions g, h € R¥ such that foh = g or ho f = g. In this section we will ask
for which f € R® there exist SZ-functions g, h € R® such that f = gohor f =hog.
i.e., that f is coded by two SZ-functions. Note that even when for some f the first set
of questions have a positive answer with h being one-to-one, this does not imply the
positive answer for the second set of questions, since the inverse of an S Z-function does
not have to be SZ. In fact, it is consistent with ZFC that no SZ-function h:R — R
has an SZ inverse. This happens in the iterated perfect set model, where there is no
SZ-function from R onto R [1]. (If A~' is SZ then it is onto R and any of its $Z-
extension is an S Z-function from R onto R.) The same example also shows, that the set
of questions we consider in this section cannot have a positive answer in ZFC for any
function from R onto R, even for the identity function. Thus, we will work here with
the additional set theoretical assumptions.

We will start with the following lemmas.

Lemma 4.22. Assume that ¢ is a regular cardinal. Then the class R is closed under
the compositions of functions.

Proof. Suppose that f = f>0 fi, f1, f € Ry and card(f~!(yo)) = ¢ for yo € R. Then
f is constant on the set X = f~'(yo) = U{(f1))~"(®): t € (f2)""(y0)}, so either f, or
f2 is constant on a set of cardinality ¢, a contradiction. O

Note that if ¢ is a singular cardinal then the conclusion of Lemma 4.22 is false.

Proposition 4.23. If ¢ is a singular cardinal then every function from R into R is a
composition of two functions from the class R,.

Proof. Suppose that R = {z,: a < ¢}. x = cf(c) < c and {(Ay: @ < k) is an
increasing sequence of cardinals such that ¢ = |, Aa. Fix f € RE. For every a < ¢
let Xy = f~'(zq) and let X, = |J;.,, Xa.s be a partition such that card(Xa,5) < Ag
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for every 3 < k. Choose a sequence (Y,: « < ¢) of pairwise disjoint sets of reals, each
of cardinality equal to x; Y, = {ya,s: 3 < x} and define fi(z) = ya g for T € Xo.s
and f>(yap3) = zo for @ < ¢, B < k. Let f, € Ry be any extension of f. Then

f=faofi. O

Lemma 4.24. Assume f € R. Then f € 57 if and only if card(f N g) < ¢ for each
continuous nowhere constant function g defined on a Gs-set.

Proof. The implication “=" is obvious. To prove “«<” assume that g is a continuous
function defined on a Gs-set G. Let {G,)n <. be a sequence of all maximal intervals in
G (i.e.. nonempty sets of the form G N (a, ), for a < b) on which g is constant. Then
H =G\ U,<,Gnis aGs set and g H is nowhere constant. Moreover,

g=(glHu |J91G
and for each n < w, g [G,, is constant, so card((g [G,) N f) < ¢. Hence
gnf=(glH)nful ((g1G)N )
n<w

and card(g N f) < ¢ since cf(¢c) >w. O

The next theorem tells us that for every sequence (f,: a < ¢) of R, functions there
exists a sequence (f%: o < c) of their SZ codes and an o-decoder function h € SZ
such that every f, can be “right o-decoded” by h from fZ.

Theorem 4.25. Assume that the real line is not a union of less than € manv meager sets.
Then for every family {fo: a < ¢} C Ry there is a family {f>: a < ¢} of SZ-functions
and a “decoding” function h € SZ and such that f* o h = f, for each o < c.

Proof. Let C,, = {g,: o < ¢} be an enumeration of all nowhere constant g € Cg, and
let {x,: a < ¢} =R. For every a < ¢ choose

hixs) € R\ ({gg(xa): B<alU{h(zs): B<a}

UU{Q fu xoz) <OZ})

Note that the choice can be made since every set ggl (fv(zs)) is meager and R is not a
union of less than ¢ many meager sets.

It is easy to observe that the function } is one-to-one and so, A € R;. Also, by our
choice, card([h = g]) < ¢ for every g € C,,. So, by Lemma 424, h € SZ.

Now for v < cdefine f. Put f}(h(z,)) = fu.(z4) forevery a < c and for = ¢ mg(h)
define f7(x) = h{x). Clearly f, = f o h for every v < ¢. To see that f> € SZ first
notice that f> € R, since for every y € R the set

() ') ={h(z): £ (h(z)) =y} U{z e R\mgh): f2(2) =y}
Chlf, ' (W)U (v)
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has cardinality less than ¢ as h. f, € R. Moreover, for every 8 < ¢
v = gpl={h(@): f7(h(x)) = gs(h(x)) } U {z € R\ mg(h): f3(2) = gs(2)}
_h[{x: Fule) = ga(h2) )] U (= € R\ mg(h): h(2) = ga(2))
=h{{z: h(z) € g5' (f(2))}] U ([h = g5] \ mg(R))
[{ra: a < max{3.v}}| Uk = gg.
=4

Thus, card([fS = g]) < ¢ for every g € C,, and, by Lemma 4.24, f> € SZ. O

Lemma 4.22 together with Theorem 4.25 yield to the following result:

Corollary 4.26. Assume that the real line is not a union of less than ¢ many meager
sets and that ¢ is a regular cardinal. For every f:R — R the following conditions are

equivalent:
(1) there exist h, f* € SZ such that f = f* o h;
(i) fe Ry

Note that Theorem 4.25 cannot be proved in ZFC since, as mentioned above, there
exists a model V of ZFC in which no real function onto R (including the identity function)
is a composition of two SZ-functions. Nevertheless, we have the following example.

Example 4.27. There exists an SZ-function h: R — R such that its nth composition A"
is §Z for every n > 0.

Proof, Let {g,: o <c¢} =Cq, and {x,: a < ¢} = R. For every 7 < ¢ choose

h(z,) € R\ ({gs(za): a8 <7} U{zas o <a}).
Observe that h € SZ. We shall verify that h* € SZ for n > 1. Suppose that gg(x.) =
h™(z,). Let 2, = h"~!(x,). Note that v > « and gg(za) = h(z-), so v < 3. Therefore
{z: h*(z) = gs(z)} C {xa: a < 3}, socard(h™ Ngg) <e. O
Now, we consider the following cardinals. (See [4].)
cr(SZ)=min{card(F): F C R & ~Jhe SZVfe FIfPeSZ f=f"o h}
=min{card(F): F C Ry & Vh € SZAf € FNf* € SZ f+# f*oh}
and
ci(SZ) =min{card(F): F CR| & -3h € SZVfe FIAf' € SZ f=ho [}
=min{card(F): F C R &Vh € SZ3f € FVf € SZ [ # ho f°}.

(We will assign the value (2¢)T in case when the minimum is run over the empty set.)
Note, that by the remark above in the iterated perfect set model the following corollary
holds.
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Corollary 4.28. It is consistent with ZFC that ¢ = w; and ¢,.(SZ) = ¢(8Z) = 1.
Theorem 4.29. Assume that the real line is not a union of less than ¢ many meager sets
and that ¢ is a regular cardinal. Then
c< e (S2) <25
Proof. The inequality ¢ < ¢,(SZ) follows from Theorem 4.25. To prove the inequality
cr(SZ) < 2¢ it is enough to show that for every h € SZ there exists f € 5Z such that
goh = f forno g € SZ. Fix h € SZ and recall that card(rng(h)) = c.
Set f = h and suppose that g o h = h for some g € RE. Then g(h(z)) = h(x), so
mg(h) C [g = id] and consequently, card(g Nid) = ¢, hence g ¢ SZ. O
To determine how big can be the cardinal ¢.(5Z) we shall use the following poset:
P"={(p.E.G): pec P& GCC, & E CR® & card(E) + card(G) < ¢}
ordered by
(. E.G) < (q,F. H)
iff pDgand FO Fand GO H
and Vr € dom(p)\dom(q) Vf € F Vg € H p(x)¢ g~ (f(z)),

where C,, is formed by nowhere constant C, functions.
The following theorem can be proved analogously to [3, Theorem 3.4].

Theorem 4.30. Let A > k > w; be cardinals such that ¢f(\) > w; and k is regular.
Then it is relatively consistent with ZFC + CH thar 2° = A and Lus,.(P*) holds.

We will prove the following theorem.

Theorem 4.31. [f ¢ = w| and & > c is a regular cardinal then Lus, (P) implies thar
& (SZ) = k.

This and Theorem 4.30 will immediately imply the following corollary.

Corollary 4.32. Let A > & > w» be cardinals such that cf(\) > w; and k is regular.
Then it is relatively consistent with ZFC 4+ CH that 2¢ = X and ¢, (SZ) = k.

The proof of Theorem 4.31 will be split into three lemmas.

Lemma 4.33.
(i) Assume that a union of less than continuum many meager sets is meager again.
Then Lus, (IP*) = Lus.(P).
(ii) For any regular k we have Lus, (P”) = MA,(P*).
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Proof. The proof is similar to the proof of Lemma 2.7. The only modification is that in
the proof of (i) we must replace the condition “card(r~'(y)) = ¢ for every y € R” by
“for every y € R the level set 7~!(y) is not meager™ and that we choose

s(x)Gr‘l(q(l’))\U{g*](f(r)): fEE&gEG}. a

Lemma 4.34. Assume that ¢ and v are regular cardinals and « > ¢ Then Lus,(P)
implies that ¢, (SZ) < k.

Proof. Let (G,: o < k) be a x-Lusin sequence of P-filters and define

Ga = UGa-

Then similarly as in the proof of Lemma 2.8 we can assume that each g, is a total
function from R into R. Let {ir¢: & < ¢} be an enumeration of R. For every o < x put

Xo = {15: 9alxe) # galzy) for every n < 5}

and let f, € R, be an extension of g, [ X,. We will show that for an arbitrary h € RE
there is an « < & such that f, = fZ o h forno ff € SZ.

If h ¢ Ry then f5oh ¢ R for each f2 € R® and, since f,, € Ry, fo # f2 0 h. So,
assume that o € R,. Then card(rng(h)) = ¢, because ¢ is a regular cardinal. For £ < ¢
let D¢ be the set of all p € P such that

Iy > £[(Va < 7) (20 € dom(p)) & (Yor < v)(pla) # p(zy)) & plas) = h(z,)]

and observe that every Dy is dense in PP
Indeed, for every p € P there is v > £ with «, ¢ dom(p) and h(x,) ¢ rng(p). Choose
y # h(z~) and set

qg=pU {(I')'ﬂh(xv))} U {(.’L‘n,y): n<y &z, ¢ dom(p)}.

Then g € D¢ and g < p.

By the regularity of «, there exists a < & such that G, intersects every set D¢ with
& < c¢. Note that this implies that card(X,,) = ¢. Now, suppose that f, = fZ o h. We
will show that f> ¢ SZ.

To see it note first that if Y, = { € X, fo(x) = h(z)}, then card(Y,) = ¢, since
G, intersects every set D¢. So, h € R and the regularity of ¢ imply that

card(rg(h |Yy,)) = c.
Finally, observe that f2(h(x)) = h(x) when f,(z) = h(z), so mg(h[Y,) C [f; = id].
Therefore card(f% Mid) = ¢ and consequently, f> ¢ SZ. O
Lemma 4.35. If k > ¢ = w; then MA(P*) implies that ¢.(SZ) 2 k.

Proof. Let F C R, be such that card(F) < . We shall find h € SZ such that for every
f € F there exists f* € SZ with f = f>oh.
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Observe that for any x € R the set
D, = {{(p,E.H) € P*: z € dom(p)}

is dense in P".
Indeed, for (q, E, H) € P>\ D, choose

yeR\|[J{g7"(f(x)): g H & f € E}.

The choice is possible since, by CH, the set J{g~!(f(x)): g € H & f € E} is meager
as a countable union of nowhere dense sets. Put p = q U {{x,y)}. Then {p, E, H) <
(q,E,H) and {p,E,H) € D,.

Note also that for any f € R® and g € C,, the set

Erg={(pEH): fEE&gec H}
is dense in P*, because (p, EU {f}, H U {g}) extends {p, E, H). Let
D={D;: x e R}U{E5ia: 9€Cq,} U{Esi: f€F &k <y},

where g € RR extends g € Cg, by associating 0 at all undefined places. Then D is a
family of less than x many dense subsets of P*. Let G be a D-generic filter in P> and
let

h=|J{p: 3E cR* 3H c C, (p. E.H) € G}.

Since G N D, # { for every x € R, h is a total function from R into R.
Observe that h € SZ. Indeed, fix g € Cg, and (p, E, H) € E5;4 N G. Then

{x: h(z) = g(x)} C {=: h(z) = g(z)} C dom(p),

so card(h N g) < c.

To define h note that by CH all level sets of h are countable. In particular, the set
h=1(Q) is also countable. For every y € mg(h) NN let h=l(y) = {Zyn: n < w}
Choose a one-to-one sequence (s,: n < w) of irrationals and define a function h*:
R\ A~HQ) — N by h*(zy,n) = (sn,y), where we identify A’ = R\ Q with N x A/
via natural homeomorphism. Note that A* is one-to-one. Let h:R — R be a one-to-one
extension of h*. Then h € SZ. Indeed, suppose that 2 [ X € C for some X € [R]¢. Then
Xo=X\h""(Q) € [R¢and h* | Xo = h | X, € C, s0

b Xy = pr,oh™ [ Xo €C,
contrary to h € SZ.

Now, for arbitrary f € F define f:mg(h) — R by f(y) = f(z) for z = h=1(y). We
shall verify that f € SZ.

First, note that f € R, because f € Ri. So, by Lemma 4.24, it is enough to verify
that card(f N g) < ¢ for every g € Ch,.

So, fix g € C,, and suppose that X = [f = g] € [mg(h)]°. Then there exists X, €
[mg(h*)]¢ such that Xy C [f = g]. Therefore there are n < w and Z € [mg(h) N N]¢
such that {s,} x Z C Xp. so

Z c {h(=x): (sn, h(z)) € g~ (f(x)) ]}
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Let o: N — {s,} x N be a function defined by w(y) = (sp,y). Then » is a homeo-
morphism, so k = g o @[ '(dom(g)) € C,. Let {p, E, H) € G Ef . Then

Y = {a h(x) € k™! (f(x))} C dom(p),

so card(Y) < c. But Z C iz(Y). contrary to card(Z) = ¢.
Finally, let f>:R — R be an §Z-extension of f. Then f = f>oh. O

Theorem 4.36. Assume that the real line is not a union of less than ¢ many meager sets
and that ¢ is a regular cardinal. Then

a(SZ) > c.

Proof. To see it take {f3: /J < ¢} C R,. We will construct an h € SZ and a family
{f5: /3 < ¢} of SZ-functions such that f; = h o f3 for each 3 <c.

Let C, = {ga: @ < ¢} be an enumeration of all nowhere constant g € Cg, and
{z¢: € < ¢} be a one-to-one enumeration of Z = | J;_.mg(fe). Define inductively a
sequence (y¢: & < ¢) by choosing for every { < ¢

yfeR\({yc: ¢ <& ulU{a" (e a <y Ul {galfs' o) a-ﬁ<€})-

The choice can be made, since the exceptional set is a union of less than ¢ many meager
sets. .
Now, let Y = {ye: € < c}, and define h: Y — R by putting

h(ye) = =¢

for every £ < c. Moreover. for every ;3 < ¢ define f3:R — R by a formula

f3@) =ye iff zef;'(z¢)

Note that fj is defined on R since mg(f3) C Z. Also, fg = ho f5 for every 3 <,
since for every r € R there exists £ < ¢ such that f3(z) = z¢, and fa(x) = 2¢ =
hye) = h(f3(a)). as x € £ (z0).

To see that i € SZ note first that b is one-to-one, so h € R;. Thus, by Lemma 4.24, it
is enough to show that card([h = g,]) < ¢ for every c < ¢. But if g, (ye) = h(ye) = 2¢
then ye € g '(z¢) and, by the choice of ye, @ > & So, [h = ga] € {ye: § < a} has
cardinality less than ¢, and h € §Z.

Next fix 3 < ¢ and notice that f§ € R;. To see that f§ € SZ fix o < ¢. We will
show that card([f5 = ga]) < €. So. let go(z) = f5(x) = y¢. Then x € fﬁ_l(ZE) and

Ye = ga(T) € ga [f;l(zﬁ)]
So, by the choice of y¢, a > £ or g > &. In particular, [f5 = ga] € {ye: § < max(c, 2)}

has cardinality less than ¢. O

Problem 4.37. Can it be proved in ZFC that ¢;(SZ) < 2¢? What about under CH?
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5. Final remarks

Proofs of the following statements are left to the reader.

(1) Every function f € RF is the uniform limit of a sequence of SZ-functions.

(2) Assuming cf(c) = w;, every function f € RE is the transfinite limit of a sequence
of SZ-functions (cf. [14]).

(3) Assuming c is a regular cardinal, the discrete limits of sequences of SZ-functions
are in the class SZ (cf. [5]).

(4) If f,g € SZ, then max(f,g) € SZ and min(f,g) € SZ (hence the family SZ
forms a lattice of functions).
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