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Abstract 

Sums. products and compositions with Sierpinski-Zygmund functions are investigated. More- 
over. cardinal invariants connected with those operations are defined and studied. 0 1997 Elsevier 
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1. Preliminaries 

Let us establish some terminology to be used. No distinction is made between a 

function and its graph. The family of all functions from a set 1y into Y will be denoted 

by Ya’. Symbol card(X) will stand for the cardinality of a set X. The cardinality of the 

set IlZ of real numbers is denoted by c. Symbol [Xl” denotes the family of all subsets Y 

of X with card(Y) = K. Similarly we define [Xl’” and [X]GK. For a cardinal number K 

we will write cf(K) for the cofinality of K. Recall that a cardinal number K is regular, if 

K = cf(K). For A c Iw its characteristic function is denoted by )(A. If =1 is a planar set, 

we denote its x-projection by dam(A) and y-projection by mg(A). For f,g E Iww the 

notation [f = g] means the set {Z E Iw: f(x) = g(z)}. Likewise for [f > g], [S # g], 

etc. 
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For X c R we say that a function ,f : X --t IR is of Sierpin’ski-Z~grn111zd ~ppe (shortly, 

an SZ-function), if its restriction .f’ InI is discontinuous for any set AI c S with 

card(nl) = c [ 151. The family of all SZ-functions from R to Iw will be denoted by SZ. 

The symbol C will stand for the family of all continuous functions f : R + R, and CG, 

for the family of all continuous functions defined on Gh-sets X c IR with card(X) = c. 

Recall also that a function f E Iw” is an SZ-function if and only if card([f = g]) < c 

for every g E CG, [15]. We will sometimes abuse this notation by writing f E SZ and 

f E C for partial functions f : X + IL? with X 2 Iw. 

The following fact can be proved by a slight modification of the original proof of 

Sierpinski and Zygmund [ 151. 

Proposition 1.1. For evep fumily (1; :x E R} of subsets of IR of curdinali~ c there 

exists an SZ-function f : R + R such that f(z) t I’, fur every II: E R. 

In particular, card(SZ) = 2’. 

For every cardinal K and a partially ordered set (shortly poset) P we shall consider the 

following statements. (See [3]. Compare also [7,9.10,16].) 

MA,(P) (K-Martin’s Axiom for P). For any family 2) of dense subsets of P with 

card(D) < K there exists a D-generic filter G in P, i.e., such that D n G # 8 for 

every D E D. 

Lus,(P). There exists a sequence (Ga: N < K,) of P-filters, called a K-Lusin sequence, 

such that card({a: < 6: G,, n D = fl}) < K for every dense set D c IP. 

2. Sums 

Theorem 2.1. For eve? family T c IR” with card(F) < c there exists an h E II%” such 

thathff l SZforeach f EF‘. 

Proof. Let {ga: cy < c} = Cc,, {s,, : (I: < c} = IR, and {fu: (Y < c} = F. For every 

cy < c choose h(z,) E R \ {.9?(.rn) - fu(.r,,): /‘I. ye < CL!}. Such a function h satisfies 

the following condition: 

(Y’P < c) (VJY < c) [h + fti = g-,] c {Jo: cy < max(P, y)}, 
so card((h + fo) n gy) < c for all 13, y < c. 0 

Corollary 2.2. Every real functiorl f can be expressed as the sum of two SZ-functions. 

Proof. Use Theorem 2.1 with .7= = { 0, f }. 0 

The following cardinal function has been defined in [l l] for G C RR. (Compare also 

[3>41.) 
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a(G) = min({card(?): F c RR & -3h E RR V’f E F h + f E G} U { (2’)+}) 

= min({card(YJ: ?’ c IR” & Vh E IR” 3f E _7= h + f $ G} U { (2’)+}). 

Evidently, there is no h E RR such that h + f E SZ for all f E RR. Therefore 

Theorem 2.1 yields to the following corollary. 

Corollary 2.3. c < n(S2) 6 2’. 

Hence, if c+ = 2c, then a(S2) = 2c. However, it is interesting whether or not anything 

more can be said about the cardinal a(S2). (The analogous problem for the classes AC 

of almost continuous functions and 2) of Darboux functions is considered in [3].) To 

address this question we need the following partially ordered sets (IP, 6) and (P*, 6). 

IP = {p E iRAY: X C IR & card(X) < c}? 

i.e., IP’ is the set of all partial functions from R to IR of cardinality less than c. We put 

p < q if and only if p > q, i.e., when p extends q as a partial function. 

IP* = {(p, E): p E P & E c Iw” & card(E) < c}. 

The ordering on P* is defined by 

(p, E) < (q, F) iff p > q and E > F 

and Kr E dam(p) \ dam(q) V’f E F p(z) # f(x). 

The following theorem can be found in [3. Theorem 3.71. 

Theorem 2.4. Let X > K 3 tiz be cardinals such that cf(X) > tit and K is regular: Then 

it is reluti\*ely consistent ,lith ZFC + CH that 2’ = X and Lus,(IP*) holds. 

We will prove the following theorem. 

Theorem 2.5. If h: > c is a regular cardinal then Lus,(P*) implies that a(SZ) = K. 

This and Theorem 2.4 will immediately imply the following corollary. 

Corollary 2.6. Let X > 6 > UJ~ be cardinals such that cf(X) > LJI and r; is regular: 

Then it is relatively consistent with ZFC + CH that 2’ = X and a(SZ) = IF. 

The proof of Theorem 2.5 will be split into three lemmas. 

Lemma 2.7. 

(i) Lus,(P*) + Lus,(P). 

(ii) For any regular K we have Lus,(P’*) =+ MA,@*). 

Proof. The proof is implicitly contained in the proof of [3. Lemma 3.61. Let (G,: c): < 6) 

be a K-Lusin sequence for P*. 
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(i) follows from the fact that in some sense P is “living inside” of P*. To see it, let 

I’ : R -t II8 be a map with of card(l.- ’ ( y) ) = c for every y E R. Define x : IP’ + IP by 

n(p, F) = r 0 p. 

Notice that if (p, E) < (y. F) then ~(p, E) < r(q. F). This implies that 7r[G] is a P-filter 

for any IP*-filter G. Furthermore, we claim that if D C P is dense, then -in-’ (D) is dense 

in P*. To see this, let (p. F) E P* be arbitrary. Since D is dense, there exists y 6 r(p, F) 

with q E D. Now. find ,s E P extending p such that T o s = q > T 027 and S(X) # f(.r) 

for every .z E dam(s) \ dam(p) and .f E F. This can be done by choosing 

S(X) E r-t (q(.c)) \ {f(x): f E F} 

for every 2 E dam(y) \ dam(p). Then, (s, F) < (p. F) and (s, F) E r-‘(q) C T-‘(D). 

Now, (n[G,]: a < 6) is a h--Lusin sequence for P since for every dense D C IP, 

{a < K: r[Ga] n D = @} = { (1 < K: 7r[Go] n n [K’(D)] = a} 

c {a < K: c-r’<> n f’(D) = @}. 

To see (ii) take a family D of dense subsets of P* of cardinality less than K. By the 

regularity of K, there exists o < 6, such that G, meets every element of ID. 0 

Lemma 2.8. Asswne that K is CI regular cardid md K, > c. Then Lus,(P) implies that 

u(SZ) < K. 

Proof. Let (G,,: a < K) be a r;-Lusin sequence of P-filters and let 

fa = UGa. 

Then fa is a partial function from IR into JR. Let 

D, = {p E IP: .z E dam(p)}. 

It is easy to see that each D, is dense in P. Hence, since c < K and K is regular, we 

may assume that each f,t is a total function. 

Now, let {XC: < < c} = R. For each < < c, 9 E CGh, and h E RR define 

Dg(g. h) = {P E P: (3~ >, ;)(J, E dam(p) n dam(g) & (h UP) = g(.r,))}. 

Note that Dc(y, h) is dense in IP, since for any 1-1 E P there is q 3 < with 

J+ E dam(g) \ dam(p). 

Then 

extends p. By the regularity of K, for any h E RR there exists Q < h: such that G, 

intersects every set Dc(g, h) with < < c and 9 E CC;,. and so. card((h + fO) n g) = c. 
Thus, for every h E RR there exists CY < K such that h + fa $ SZ, i.e., the family 

3 = {fn: o < K} shows that (l(SZ) < K as was to be shown. 0 
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Lemma 2.9. 1f~ > c then MA,(P*) implies that a(sz) 3 K. 

Proof. Let F c R” be such that card(F) < K. We will find h E I/X” such that h+f E 5’2 

for every f E FT. 

Notice that for any x E R the set 

D, = {(y, E) E P*: .r E dam(p)} 

is dense in P*. Indeed, let (q? F) be an arbitrary element of P* and suppose it is not 

already an element of D,. The set Q = {f(x): f E F} has cardinality less than c, so 

there exists y E R \ Q. Let p = q U {(x, y)}. Then (p, F) < (q, I?) and (p, F) E D,. 

Therefore h = U{p: (3E) ((p, E) E G)} . is a function from Iw into Iw for any lP*-filter 

G intersecting all sets D,. 

Note also, that for f E R” the set 

Ef ={(p.E)O*: f&Y} 

is dense in P* since (p? E U {f}) E Ef extends (p, Ej. 

Let 

where Q E II%” extends g E CG~ by associating 0 at all undefined places. Then, D is a 

family of less than K many dense subsets of lP*. Let G be a V-generic filter in P* and 

let h = U{p: (3E)((p, E) E G)}. W e h ave to show that h + f E SZ for every f E FT. 

So, let f E 3 and g E C’c6. Then there exists (p, E) E Gn Eg_f. So, by the definition 

of order on IP it is easy to see that 

{X E IR: (f + h)(z) = g(r)} C {X E R: h(.z) = g(x) - f(x)} C dam(p). 

Thus, h + f E SZ for every f E 3. 0 

Application of Lemmas 2.7, 2.8 and 2.9 finishes the proof of Theorem 2.5. 

In [3] it has been proved that a(D) = u(AC) = e, and that this number has cofinality 

greater than continuum c. where 

eK = min{card(F): F C K? & Vh E 6 3f e F card(f n h) < K}. 

Next, we will compare a(SZ) with u(D), and give a characterization of ~(5’2) similar 

to that of e,. We will also address an issue of the cofinality of a(S2). 

Since for a regular K > c an axiom Lus,(P*) implies o(D) = K. [3, Section 31 we can 

conclude the following fact. 

Corollary 2.10. Let X 3 K > tiz be cardinals such that cf(X) > tit and /c is regular: 

Then it is relatively consistent with ZFC + CH that 2’ = X and a(D) = a(S2) = K. 

Note also the following strengthening of [3, Theorem 3.31. 
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Theorem 2.11. Let X 3 UJ? he a car&u1 such that cf(X) > WI. Then it is relatively 

consistent with ZFC + CH that 2’ = X and Lus,(P) holds for every regular K > c, 

/i < 2c. 

Proof. The proof is identical to that of [3, Theorem 3.31. 0 

Now, recall also that Lus,(IP) implies o(D) > K for every regular K > c [3]. Thus, 

in a model of Theorem 2.11 we have u(D) = 2’ = A. On the other hand in this model 

we have Lus,+ (P). So, by Lemma 2.8 and Corollary 2.3, a(SZ) = c+. In particular, we 

obtain the following corollary. 

Corollary 2.12. Let X > L+ be a cardinal such that cf(X) > ~‘1. Then it is relativel> 

consistent with ZFC + CH that 2’ = X is true, and o(SZ) = C+ < 2’ = a(D). 

The following remains an open problem. 

Problem 2.13. Is it consistent that n(SZ) > n(D)‘? 

For an infinite cardinal K define 

d, = min{card(F): F C I? & Vh. E K~ 3f E F card(f I- h) = K}. 

Notice that d, > K. 

Theorem 2.14. a(SZ) = (1,. 

Proof. To see that d, < a(SZ) choose F c RR with card(F) < d, and define 

_7J = {j=j - f: f E F & g E c,,}. 

where jj E R” extends g by associating 0 at all undefined places. Then, 

card(F) 6 card(F) . c < d,. 

So, there exists an h E R” such that card(h n f) < c for every f E 7. Hence, for every 

f E F and g E CC, 

card((h + f) n g) < card((h + f) fl ij) = card(h n (?j - f)) < c 

since ?j - f E 3. So, h + f E SZ every f E F, and d, < ~(5’2). 

To see that n(SZ) 6 d, choose F c RR with card(F) < a(SZ) and let -F = 

{-S: f E 3). Using the definition of a(S.Z) to -F we can find h E IR” such that 

h - f E SZ for every f E _7=. In particular, for go G 0 we have 

card(h n f) = card(h n (f + CJO)) = card((h - f) r;l go) < c 

for every f E 3. So, a(SZ) < cl,. 0 

To address the problem of cofinality of a(SZ) we need the following theorem, where 

~~~ is the supremum of all cardinals K’ with X < K. 



K. Ciesielski, I: Natkarriec / Topology and its Applications 79 (1997) 75-99 81 

Theorem 2.15. If K 3 w is a cardinal number such that K<” = PC then cf(d,) > K. 

Proof. Let T be the set of all functions from some < < K into K, i.e., T = UC<& KC. Thus, 

by our assumption, card(T) = K. Let (FE c T”: [ < K) be an increasing sequence such 

that card(Fc) < d, for every < < K. We shall show that the cardinality of F = UECK Fc 

is less than d, by finding h E T” such that card(h n f) < n for every f E F. This will 

finish the proof. 

For [ < K define 

FE = {f E (td)? (3f E F<)(b'a < I) = f(a) I*[)}> 

where [f(o) I*<](<) = f(o)(<) if C E dom(f(cu)) and [f(o) I*<](() = 0 otherwise. 

Thus, card(Fe) < card(Fc) < d, for every < < K. 

By induction on < < h; we will define a sequence (hc E (KC)“: [ < K) such that 

(il h<(o) c he(n) for every cx < K and C < [ < K. 

(ii) card(h.c n 1) < K for every f E FE and every successor ordinal [ < ri. 

So assume that for some < < K the sequence (hc: { < I) is already constructed. If < 

is a limit ordinal put he(o) = U C_,E h<(a) for every u < K. Then (i) is clearly satisfied, 

and (ii) does not apply. 

If < = n + 1 is a successor ordinal, then the space 

HE = {h E (&)? (k’o < r;)(h,(cx) c h(a))) 

is naturally isomorphic to K” by an isomorphism i : He ---f I?, i(h)(a) = h,(a) (7) for 

h E He and c): < 6. Moreover, card(Fg n He) 6 card(Fc) < d,. So, there exists 

h, E HE c (~0” satisfying (ii), while (i) is satisfied by any h E He. The construction 

is completed. 

To finish the proof define h : K + T by h(J) = h,(t). We will show that card( hnf) < 

K for every f E F. 

So, let f E F. Then, there exists a successor ordinal number [ < K such that f E Ft. 

Let f E Fe be such that f(o) = f(o) I*< for every CE < K. Then 

{o < K: h(cu) = f(a)} c { u {cy < 6: h.(a) > f(a)} 

=@{cx<<n: h&)=f(C%)} 

and, by (ii), this last set has cardinality less than K. So card(h n f) < tc. 0 

From Theorems 2.14 and 2.15 we obtain the following corollary. (Note that ccc is the 

supremum of all cardinals 2’ with X < c.) 

Corollary 2.16. Ifcic = c then cf(a(S2)) > c. 

The following remains an open problem. 

Problem 2.17. Can a(S2) be a singular cardinal? 
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Since a(S2) = d, and a(D) = c,, Problems 2.13 and 2.17 can be rephrased as 

follows. 

(*) Let IC = c. Is it consistent that td, > e,? Can d, be singular? 

Notice that for K = ti the answer for these problems is well known, since d, = 

non(meager) is the minimum cardinality of a nonmeager subset of R, and e, = 

cov(meager) is the minimum cardinality of a family of meager subset of IR whose union 

is equal to IR. (See [2].) Thus. for K = LC? the answer for both questions is positive. 

(Compare also [8] for some results concerning eh. for K > LJ.) 

Next, let Ma(SZ) denote the nzclsi~~al Lldditive ,ftimily for the class SZ. i.e., 

M,(SZ) = {f E RR: ,f + k E SZ for each 11 E SZ}. 

To describe the structure of JW~(SZ) we need the following easy lemma. 

Lemma 2.18. Let X c R and f : X + R be on SZ-function. Then there exists m 

SZ-extension off, i.e.. mz f* E I%’ that f * E SZ md f* IX = f. 

Proof. Obviously for each h : IR + IR. k. E SZ if and only if h r(R \ X) E SZ and 

h IX E SZ. Moreover, we can use the Sierpiliski-Zygmund’s method to obtain an SZ- 

function defined on any subset of R. Therefore it is enough to construct an SZ-function 

g:R\X+IRandput f* = f Ug. 0 

Theorem 2.19. For ever) jmction f E RR the ,following conditions are equivalent: 

Ci> f E M,(SZ); 
(ii) for each X E [RI’ there exists cl Y E [SIC such that f 11’ E C. 

Proof. (ii) + (i). Suppose that f satisfies the condition (ii) and h + f $ 5’2 for some 

h E SZ. Then (h + f) YS E C for some set S E [R]c. Let Y E [Xl’ be a set such that 

f rk' E C. Then k. 11’ E C. in contradiction with k E SZ. 

(i) + (ii). Suppose that f does not fulfill the condition (ii). Then there exists X E [IR]’ 

such that f II’ $ C for each Y- E [-‘iI ‘, i.e., f 1-Y E SZ. Let f* E IR” be an SZ-extension 

of ,f. Then -f* E SZ and (f-f*) IX EC, so f $ M,(SZ). 0 

Remark. U. Darji proved under CH that a Bore1 function f satisfies the the condition 

(ii) if and only if it is countably continuous [6. Theorem lo]. In the same way one can 

prove that (ii) implies the following condition: 

(iii) f is the union of less than c many continuous functions; 

and, assuming regularity of c, that (iii) implies (ii). 

Proof. (ii) + (iii). Let {gn: CL < c} = CG~. Suppose that f is not the union of less than 

c many continuous functions. Then card(dom(f \ IJo<, ga)) = c for each Q < c. For 

every a: < c choose .ca -E dom( f \ U I-3<a go) \ {.rij: ,3 < a} and set X = (2,: (Y < c}. 

By (ii), there exists Y E [Xl” such that f 11’ is continuous. Therefore f r k7 = ga rY for 

some cy < c, so card(f n ga) = c, contrary to the construction of X. 
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Now assume that c is a regular cardinal and f satisfies (iii). Then f = UcycK f /X, 

for some K < c and all functions f IX, are continuous. Fix X E [R]“. By the regularity 

of c. card(X n X, ) = c for some cy < h: and. for Y = X n X,, f /Y is continuous. 0 

It is also worth to notice in this context that if f : X + IR is SZ for some X c R then 

for every Y E [X]’ its restriction f rY is not countably (even K < cf(c)) continuous. 

3. Products 

In this section we will examine for which functions f E RR there exists h E RR such 

that hf E SZ. 

First note that if card( [f = O]) = c then h.f E SZ for no h : IR + IR. Thus, we will 

restrict our attention to the family 

72” = {f E RR: card([f = 01) < c}. 

Theorem 3.1. For every family F c 72~ with card(3) 6 c there exists an h : E% --) 

R \ (0) such that h f E SZ for each f E 3. 

Proof. Let {ga: Q < c} = Cc,, {za: ct < c} = IR, and {fa: o < c} = 3. For QI < c 

choose 

Such a function h satisfies the following condition: 

(Vd < c) (Vy < c) [hfp = gl] c [fo = 0] u {x,: Q < max(H, y)}, 

so card((hfn) n gl) < c for all /!J> 7 < c. 0 

Corollary 3.2. For every function f E RR the following conditions are equivalent: 

(i) card([f = 01) < c, 

(ii) f is the product of two SZ-functions. 

Let m(SZ) denote the least cardinal 6 for which there exists a family-3 c F& such 

that card(3) = K and for every h : IR --t IR there exists f E 3 with hf q! SZ. (Note that 

this definition is different from the definition of the cardinal function m defined in [ 11 J; 

cf. [13].) 

Theorem 3.3. a(SZ) = m(SZ). 

Proof. “a(SZ) < m(SZ)“. Assume that 3 C %LJ is a family of functions such that 

card(3) < a(SZ). For every f E 3 let f be the function defined by 

iw = 1 
{ 

If(x)I if f(x) # 0, 
if f(z) = 0. 



Note that card({j: f E F}) < card(F) < cl(SZ), so there exists h: IR - JR such that 

h + In(f) E SZ for each .f E F. Therefore exp(h + In(f)) E 5’2. so exp(lz)j E 5’2 for 

f E F. We shall verify that exp(ll)f t SZ for every ,f E 3. Suppose that exp(h)f IS E 

C for some S c R. Let X_ = S n [,f < 01. S+ = X n [f > 0] and So = X n [f = 01. 

Note that card(So) < c. Also, card(l+) < c, since exp(h).frX+ = exp(h)f IX+ E C. 

Similarly, card(X_) < c. since exp( II)f rS_ = - exp(/l)f /X_ E C. Thus card(,y) < c 

and consequently, exp(h)f E 5’2. 

“rra(S2) < u( SZ)“. N ow assume that F c RR is a family of functions such that 

card(F) < rn(SZ). Let /j E RR be a function such that exp(f)h E SZ and - exp(f)h E 

SZ for all f E FT. Obviously. we can ensure that It E 5’2 by adding the constant 

function 0 to F. Let h be defined as above. Then rng(&) c (0, x) and exp(f),$ G SZ 

for each f E F. Indeed. suppose that exp(f)/? IS E C for some X c R and f E 3. 

Then X = X- U & U S+. where S_ = zy n [II < 01. _Y+ = S n [h > 0] and X0 = 

X n [h = 01. Of course, card(So) < c. Moreover. exp(f)h IX+ = exp(f)h IX+ E C 

and exp(f)h IX = - exp(f)!l YS- E C, so card(X+) < c and card(X) < c. Hence 

card(X) < c. 

Therefore ln(exp(f)h) E SZ, so In(&) + f E SZ for each ,f E F. 0 

Let .UV,(SZ) denote the nzaxirnnl nzzzltiplicczti\~e ,fizmily for the class SZ, i.e., 

M,,,(SZ) = {f E RR: .fh E SZ for each h. E SZ}. 

Theorem 3.4. For eve? function .f E RR the ,follming conditiorzs we eqzkulent: 

(i) f E M,,(SZ); 
(ii) card([f = 01) < c arzd for each S E [RI’ there exists a Y E [Xl’ such that 

f!Y EC. 

Proof. (ii) =+ (i). Suppose that .f satisfies the condition (ii) and Ilf $ SZ for some 

h E SZ. Then Ilf IX E C for some set S E [R.lr. Let Y E [X \ [f = O]]’ be a set such 

that f IE’ E C. Then h 11’ = (/lf)/.f rY E C. in contradiction with h E SZ. 

(i) + (ii). Assume that j E M,,,(SZ). Note that card([S = O]) < c. Fix 9 E [IR]’ 

and set So = S \ [f = 01. Obviously, card(_yo) = c. Suppose that f rY E C for no 

Y E [Sg]C. i.e., f ISO E SZ. Then (l/f) ASPS E SZ and there exists an SZ-extension 

f* E R” of the function (1 /.f) r_Tio. Then (f* f) r X0 E C, a contradiction. Hence there 

exists Y E [Xl’ such that ,f 11’7 E C. 0 

4. Compositions 

Let 

M..,(SZ) = {f E RR: f o II E SZ for each 1, E SZ}, 

Mi,(SZ) = {f E R”: h o f E SZ for each ft. E SZ}. 



Praclf (i) =S (ii). Fix f E &&(sZ). Suppose that cdrci(+f-'(,y)) = c for some ;y E R. 

By ~o~os~tion I I I we can choose an SZ-function g E W” with rng(s) c S-i (;j). Then 

f 0 g E C, a contradiction. 

Suppose that there exists a choice function g:rng(f) ----I R. 3&i) E f-‘(:sr), without 

the property f*j, i.e.. that there exist _,y E [rng[f)]” and 3 E I!%-’ such that 3 E SZ and 

f03 = id-x. Let g’ E R” be an SZ-extension of g# Then Joy* IX E C, so joy* $! SZ 

and consequently, f $ M,,,(SZ), a contradiction. 

(ii) =+ fi). Suppose that S o h $ SZ for some SZ-function h E RR. Then there exists 

X E [IR]” such that f 0 h TX E C. Note that card(rn~~~ 0 h YS)) = c, Indeed. otherwise, 

.by regularity oft, Ioh is constant on some set X’a E [.,X1’ and because card(fP’ (v)) < c 

for each g, h is constant on some set Xt E [x’o]‘, a contradiction. Let 3: rng(f) -+ R, 

gig) E f”-‘(y), be a choice function such that 3(t) E rng(h [lw) for I E rngif o A IX). 

Let 3 [Y E C for Y E [rng(f o h IX)]“. Th en Xo = (f o !I)-t(Y) n Jy E [_U]” and 

/r IX, = 3 o (f o h 1 ;U,) E C, a contradiction. 

(iii) =+ (ii,). Fix f E ,~i,,~SZ}. Obviously. card(~-‘~~)~ < c for every y E R 

Suppose that 3 : rng(f) - R. g(g) E 8-t (9). is a choice function witbout the property 

(*), i,e,, that there exists X E [mg(f)lc such that g IX E SZ. Let !/* E R” be an 

SZ-extension of y IX. Then 3* o f r(rng(3fllX)) - id,,(,Ix). But 3 is one-to-one. So. 

card(mg(g [X)) = c and 3* o S 6 SZ. A contradiction with f E Mi,(S%f. 

fii) + (iii). Suppose that h o f 4 SZ for some h E SZ, Then h o f IX- E C for 

some X E [R]‘. Note that card(rng(f IX)) = c since card(f-t(y)) < c for each y E IR 

and c is regular. Let 3 : mg(f> 1 W, g(y) E f-’ fy), be a choice function such that 

y(v) E X for y E mg(f IX) and let Y E frng(j IX) be such that 3 IY E C. Then 

h, IY = fh o f) o 3 IY t C, a contradiction. 0 

Notice that in the proofs of impI~cations (if =+ (ii] and (iii) + (ii] we did not use 

the assumption that e is regular, Moreover, in the above proof of implication (ii) =+ (iii] 

we do no.t have to use the assumption of regularity of c if we additionally assume that 

f is one-to-one. (Or even only that sup{card(f-l(g)): ‘g E R} < c.) This implies the 

following two coroltaries. 

Corollary 4.2. Ifc is regulur then M,,t(SZf = M,,(SZ). 
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The next result, being a version of Sierpinski-Zygmund theorem, will be used to show 

that Corollary 4.2 is false when c is singular. 

Theorem 4.4. Suppose that h; 6 c is c( cardinal such that cf(K) = cf(c). Then for every 

X E [IWIn there exists f : S --t R such that card(rngf) = cf(c) and f 1x0 is continuous 

for no X0 E [Xl”. 

Proof. Let {Xc: < < cf(c)} and {/L:: < < cf(c)} be increasing sequences of ordinal 

numbers such that K = IJ E<cf(cj Xc and c = lJE<cr(cJ ,QE and let X = (5~: E < K}. 
Choose a partition {Xc: < < cf(c)} of X such that card(Xc) = card(&) for every 

< < cf(c) and let {gc: < < c} be an enumeration of CG,. By induction on < < K define 

a sequence (~JE E R: < < cf(c)) such that for every < < K 

ye E IR\ {g&r): q < /l”5 & .1’ E Xc}. 

Now, define h by putting h(:r) = y: for T E Xc and < < cf(c). It is easy to see that 

rng(h) = {yc: < < cf(c)}. Also, if y = go E CG6 and 71 < & then [h = g] C Q,<<Xc. 

Thus, card([h = g]) < K and, as in Sierpinski-Zygmund’s proof, we conclude that h 1x0 

is continuous for no Xa E [Xl”. 0 

Corollary 4.5. There exists arz SZfimction h: IR 4 R with card(rng(h)) = cf(c). 

Problem 4.6. Does there exist an SZ function h : R ---f Y for every Y E [RICf(‘)? 

Corollary 4.7. Ifc is singular then M,,(SZ) it M,,t(SZ). 

Proof. Let h be as in Corollary 4.5. Fix .rg E rng(h) and define a function f by putting 

f(z) = 50 for zr E mg(h) and f(r) = 7 otherwise. Notice that f E Mi”(SZ). Indeed, 

consider g E SZ. In order to show that g o f E SZ by way of contradiction suppose 

that there is an X E [RI’ such that 9 o f IX is continuous. But card(X \ rng(h)) = c, 

since cf(c) < c. Moreover, f(x) = s for every z E X \ rng(h). So, g IX \ mg(h) = 

g 0 f 1X \ mg(h) is continuous on a set of cardinality c, contradicting g E SZ. 

On the other hand, f o h. is constant, so f o h $ SZ, while h E SZ. Thus, f $ 

Mo,t(SZ). 0 

Problem 4.8. Can inclusion M,,,(SZ) c M;,(SZ) be proved without the assumption 

that c is regular? 

4.1. Compositions with SZ-functions ,from the kft 

Theorem 4.9. For each f : R - IR the following conditions are equivalent: 

(i) there exists h E SZ n II?.” such that h o f E SZ: 

(ii) there exists h : II% --f R such that h 0 f E SZ; 

(iii) card(fP’(y)) < cfor each y E R. 
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Proof. (i) *(ii). Obvious. 

(ii) + (iii). Suppose that card(f-‘(go)) = c f or some yo E LR. Then h o f is constant 

on f-‘(~a). a contradiction. 

(iii) + (i). First notice that there exists E C c and a one-to-one enumeration {ye: N E 

E} of IR such that 

card(f-‘(y,)) < card(o) for every cy E E. (*) 

To see it, let {yol: cv < c} be an enumeration of R with each number appearing c many 

times. For y E IL? let o(y) = min{cu < c: y, = y& card(f-‘(y)) < card(o)} and put 

& = {o(y): y E JR}. Then {y ol: cy E E} has the desired properties. 

Next, let {gc: < < C} = CG~ and let {a~: < < c} be an increasing enumeration of E. 

Then {ya,: < < c} is a one-to-one enumeration of IR. For each < < c choose 

Such a choice can be made, since the set U{gc [f-’ (ya,)]: <. < [} is a union of card([) < 

c many sets, each set of cardinality 6 card(oc) < c. 

It is clear that h E SZ. To verify that h o f E 5’2 fix < < c. Observe that 

[hof = gel C u f-‘(~a,). 
F65 

Indeed. if h 0 f(x) = gc(z) and f(z) = y/a< some < < c then h(y,<) E gc[f-‘(ya,)]. 

So < 6 C and s E U <<< .?(~a, ). Thus> by (*I. 

card((h 0 f) n SC) < card U f-‘(yla,) 6 card(C) card(a<) < c. q 

EG > 

Theorem 4.9 justifies restriction of our attention only to the functions from a family 

R’ = {f E R”: card(f-l(g)) < c for every y E R} 

and definition 

= min({card(F) : F c 72’ & +lh E RR V’f E F h o f E SZ} U { (2’)+}) 

= min({card(_F) : 3 c R’ & V’h E R” 3f E F h o f $ SZ} U { (2’)+}). 

Note that SZ 2 R’, so card(%L’) = 2’. 

Now, we have the following analog of Theorem 2.1. 

Theorem 4.10. Ifc is a regular cardinal then 

c < C&SZ) < 2c. 

Proof. The inequality c < c,,i(SZ) is proved similarly as the implication (iii) + (i) of 

Theorem 4.9. To see it, let F = {ft: [ < c} C RI, {gc: < < c} = CG6 and {YE: c < c} 

be a one-to-one enumeration of IL?. For each < < c choose 

h(Y<) ER\ (U{gc[f;‘(y<)]: <.s<E}). 
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The possibility of such a choice is guaranteed by the regularity of c, since the set 

UkIi[f,‘(Y:)l: c. v < <> IS a union of less than c many sets of cardinality less than c. 

To see that h 0 f. E SZ for every rl < c it is enough to notice that 

[h 0 f, = yi] C U f71_‘(!,c) for every < < c. 
<<mnn{C.~j} 

To prove the inequality c,,~(SZ) < 2’ take F = 72, and h. E IFiR. It is enough to find 

f E 3 such that h o f $ SZ. 

By way of contradiction assume that h o f E S’Z for every f E RI. Then. h. = h o id E 

SZ, since id E ‘721. In particular, card(rng( h)) = c, since otherwise k would be constant 

on a set of cardinality c. So, there exists j’ E ‘721 such that f(j)) E h.-‘(g) for every 

y E rng(h). Then h 0 f(y) = y for every !/ E rng(h) and so card((h o f) n id) = c, 

a contradiction. 0 

The importance of the assumption of regularity of c in Theorem 4.10 is not clear. For 

an arbitrary value of c, including the case when c is singular, we have only the following 

theorem. 

Theorem 4.11. cf(c) 6 (.,,t(SZ) < zcf(c) = cc+‘(c). 

Proof. The proof of the inequality cf(c) < c,,t(SZ) is a simple modification of the 

proof of the implication (iii) + (i) from Theorem 4.9. To see it, take F C RI with 

card(F) < cf(c) and choose a one-to-one enumeration {ran: a E E} of R, E C c, such 

that 

card( U fl(u,)) < card(n) for every n E E. (*I 
.fEF 

Let {gi: < < c} = CG+ and {o;: < < c} be as in Theorem 4.9 and for each [ < c 

choose 

h(lln:)fB\(U{gi[U{f--‘(y,,i!: W}]: W}). 
It is easy to see that for such defined h we have h o f E SZ for every f E F. 

The other inequality for regular c follows from Theorem 4.10. So, assume that c is 

singular and let (A,: o < cf(c)) be an increasing sequence of cardinals such that A, /” c. 

Let S be the set of all one-to-one functions s : cf(c) 4 R and g : R + R be a continuous 

function such that card@‘(y)) = c for every y E R. For every pair s, t E S choose: 

a sequence of sets (KG* C y-‘(s(e)): n < cf(c)) such that card(Xi*) = A,, for each 

CY < cf(c), and a function j’\* E Rt such that f$* (x) = t(a) for every x E X$ and 

cr < cf(c). Define 

F = {id} U {fs,: s.t E S} 

and notice that card(F) = c cf(c) It is enough to show that for every h : R --f IR there . 

exists f E F such that h o f $ SZ. 
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By way of contradiction assume that h o f E SZ for every ,f E F’. Then. h = 

h 0 id E SZ. since id E F. In particular, card(rng(h)) 3 cf(c). since otherwise h would 

be constant on a set of cardinality c. Choose s, t E S such that s[cf(c)] c rng(h) and 

t(o) E J2-‘(s(n)) for every o < cf(c). Then, for every 0 < cf(c) and I’ E X-i” we have 

/2 0 &(I) = ho t(a) = S(N) = g(s). 

Thus, h o fst equals to 9 on 

S,q+ = U _u;’ 
rr<cf(c) 

So 11 o ,fst $ SZ, since card(Xst) = c. 0 

By Theorem 4. I 1 we can restrict our attention in the definition of cout(SZ) to functions 

h from SZ. This is the case, since we can always assume that the identity function id 

belong to .F. So. we have the following corollary. 

Corollary 4.12. 

cout(SZ) = min({card(_F) : F c Rt & 7% E SZV,f E F h o f E SZ} 

u {PC)+}). 

Despite of some knowledge of cf(c) for singular c, given by Theorem 4.11. the fol- 

lowing problem remains open. 

Problem 4.13. Is the assumption of regularity of c important in Theorem 4.1 O? 

On the other hand. the case when c = K+ for some cardinal K the number q,,t(SZ) is 

pretty easily handled by our results from the previous sections and the following theorem. 

Theorem 4.14. If c = /-;+ for some cardinal K therz c-,,,~(SZ) = a(SZ). 

Proof. By Theorem 2.14 it is enough to show that c,,~(SZ) = d,. 

“cOul(SZ) < cl,“. Let N stand for the set of irrational numbers and let _7= C NN be 

such that card(F) < coUt (SZ). W e will show that card(F) < d, by finding h : N + N 

such that card(h n f) < c for every f E 3. 

For f E F define a partial function f^* on a subset of fl by putting 

.f*((r. f(r))) = r 

for every .r E N. Notice that f* is one-to-one on its domain. By identifying ,@ with 

N via natural homeomorphism we can consider f^* as a partial function on IR. Let 

f* : R + Iw be an extension of f^* such that f * E 721 and define _? = {id}U{f* : f E F}. 
Since card(?) < card(F) + 1 < c,,~(SZ) th ere exists an & E Iw” such that A. o f^ E SZ 

for every f^ E ?. We will prove that for every f E _F 

card({.z E N: f(z) = h,(o)) < c. (1) 
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It is enough, since k = 6 o id E SZ implies that k’(Q) has cardinality < c, and so. 

there exists h : N ---f N such that card( {.z E .V: f~(s) # h(z)}) < c. 

To see (1) let f E S and let s EN be such that f(z) = h(z). Then 

i 0 f*((L f(r))) = i,(z) = ,f(s) = 7r2((.2., f(X))), 

where rri~?_ : fl + JV is the projection onto the second coordinate. thus continuous. So, 

card({z EN: f(r) = i(z)}) G card([jl of* = ~21) < c 

since k o f* E SZ. This finishes the proof of “c,,~(SZ) < d,“. (Notice, we do not use 

here even regularity of c!) 

“d, < c&SZ)“. N ow assume that 3 c 72, and card(F) < d,. For every f E F 

choose the family {fa: o < K} such that f-‘(y) = {ia( cy < K} for each 7~ E: rng(f), 

and define 

&P = {g 0 $: g E cG’* & f E F 82 N < K}. 

where ij E RR extends g t CG* by associating 0 at all undefined places. Note that 

card(y) < card(?). c < d,, hence there exists an 11 E RR such that card(h n f^) < c for 

each j E ?. We shall verify that h o f E SZ for every f E 3. For this fix g E CGA and 

observe that 

card((h o f) n g) = card({x: h of(s) = g(s)}) 

= card U {ja(y): :Y E rng(f) & h(y) = ““s’k)}) 
Ly<ti 

= c card( { y: h(y) = y 0 fa(y)}) < c. 

This finishes the proof of Theorem 4.14. 0 

Problem 4.15. Can Theorem 4.14 be proved for any value of c? What about c being a 

regular limit cardinal? 

Theorem 4.14 implies immediately the following corollary. 

Corollary 4.16. Let X 3 K 3 w2 be cardinals such that cf(X) > wi and K is regular: 

Then it is relatively consistent with ZFC thut the Continuum Hypothesis (C = N1) is true, 

2’ = A, and cOUt (SZ) = K. 

4.2. Compositions with SZ functions from the right 

In this section we will examine for which functions f E RR there exists an h E IF? 

such that f o h E SZ. The class of all functions f E R” having this property will 

be denoted by Rz. Also, as in previous sections, we will define the cardinal ci,,(SZ) 

analogous to c,,~(SZ) restricting our attention to the maximal family for which such a 

definition has a sense, i.e., to Rz. Thus, we define 
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G”(SZ) 

=min({card(F): ~c~~&~~~EIW~~,~E~~O~~SSZ}U{(~~)+}) 

= min({card(F): F c R? & Vh E R” 3f E 3 f o h @ SZ} U { (2’)+}). 

The next theorem gives a characterization of the family R2 in case when c is regular. 

Theorem 4.17. Assume that c is a regular cardinal. For each f : iR ---) R the following 

conditions are equivalent: 

(i) there exists h E SZ n RR such that f o h E SZ; 

(ii) there exists h : R + R such that f o h E SZ; 

(iii) card(rng(f)) = c. 

Proof. (i) + (ii). Obvious. 

(ii) + (iii). Note that card(rng(h)) = c. Indeed, otherwise, by regularity of c, 

card(h,-‘(ye)) = c for some Y/O E Iw and then f o h is constant on h-‘(~0) for any 

f, a contradiction. Next, by way of contradiction, suppose that card(rng(f)) < c. Then, 

there exists a ~0 E R such that card(f-‘(~0) f’ mg(h)) = c. Therefore, 

card( (f 0 h)-’ (ye)) = c, 

a contradiction. 

(iii) + (i). Let {ya: Q < c} = CG6, and {.&: cy < c} = R. For every ~1: < c choose 

h(.ra) E R\ ({s&o): d G o} u u i’(i&..))). 
P<a 

The choice can be made since, by (iii), 

is not empty. 

Obviously, h E SZ. It is enough to verify that f o h E SZ. So, fix Q < c. Then 

{x: f 0 h.(r) = s&r)} = (2: h(x) E f-‘(g&$)} c {Q: /3 < cy}> 

and so card((f o h) n ga) < c. 0 

Note that we did not use the regularity assumption in implications (iii) + (i) and 

(i) * (ii). In particular, if 

Rz = {f E RR: card(mg(f)) = c} 

then 

Corollary 4.18. R; c R?. 

We have also 
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Corollary 4.19. Ifc is u regular cardinal therz R’ C 722 = R;. 

Example 4.20. There exist functions fo; fl E R; such that for every h : R ----f R either 

fooh$SZorfloh$!SZ. 

Proof. Indeed, decompose the real line onto two sets A0 and A’ such that card(Ai) = c 

for i < 2, and define a function f2 such that fl(A,) = 0 and fi rA’_i is one-to-one. Fix 

an h : Iw + JR. Since IR = K’(R) = h-‘(&) U h.-‘(Al) there exists i < 2 such that 

card(h-‘(Ai)) = c. Then card((f; oh-‘(O)) = card(h-‘(Ai)) = c, so fro h $ 5’2. 0 

Corollary 4.21. c,“(SZ) = 2. 

4.3. Coding functions bp SZ-functions 

In the previous sections we examined when for a given function f E RR there exist 

two SZ-functions g, h E RR such that f o h = y or h of = g. In this section we will ask 

for which f E E%” there exist SZ-functions 9, h E IR” such that f = g o h or f = h o g, 

i.e., that f is coded by two SZ-functions. Note that even when for some f the first set 

of questions have a positive answer with h. being one-to-one, this does not imply the 

positive answer for the second set of questions, since the inverse of an SZ-function does 

not have to be SZ. In fact. it is consistent with ZFC that no SZ-function h : IR + R 

has an SZ inverse. This happens in the iterated perfect set model, where there is no 

SZ-function from Iw onto R [I]. (If hk’ is SZ then it is onto R and any of its SZ- 

extension is an SZ-function from R onto R.) The same example also shows, that the set 

of questions we consider in this section cannot have a positive answer in ZFC for any 

function from IR onto JR, even for the identity function. Thus, we will work here with 

the additional set theoretical assumptions. 

We will start with the following lemmas. 

Lemma 4.22. Assume that c is a regular cardirml. Then the class R’ is closed under 

the compositions of functions. 

Proof. Suppose that f = f: o f’, f’, f2 E 72 ’ and card(f-‘(~0)) = c for 90 E IR. Then 

f is constant on the set X = f-‘(:tyo) = U{(,f’)-‘(t): t E (fz)-‘(yo)}, so either f’ or 

f2 is constant on a set of cardinality c, a contradiction. 0 

Note that if c is a singular cardinal then the conclusion of Lemma 4.22 is false. 

Proposition 4.23. If c is a singular cardinal then evev fkction from II% into R is a 

composition of two functions from the cluss R’. 

Proof. Suppose that R = (5,: o < c}. K = cf(c) < c and (X,: a: < 6) is an 

increasing sequence of cardinals such that c = lJn_ X,. Fix f E JR”. For every Q < c 

let X, = f -‘(z,) and let X, = lJ;j<r; X,,, be a partition such that card(X,?o) < X0 
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for every /3 < K. Choose a sequence (Y,: cy < c) of pairwise disjoint sets of reals, each 

of cardinality equal to n; Y, = {~~,o: ,8 < K} and define fl (.r) = ga,p for JJ~E X,,,j 

and &Y~,o) = 5, for cy < c, /? < K. Let f2 E 731 be any extension of f2. Then 

f = fz 0 SI 0 

Lemma 4.24. Assume f E RI. Then f E SZ if and only if card( f n g) < c for each 

continuous nouhere constant function g defined on a G&-set. 

Proof. The implication “+” is obvious. To prove “+” assume that g is a continuous 

function defined on a G&-set G. Let (Gn)n<w be a sequence of all maximal intervals in 

G (i.e.. nonempty sets of the form G n (a, b), for a < b) on which g is constant. Then 

H=G\U,<,G is a Gg set and g rH is nowhere constant. Moreover, 

g=(g/H)u U(grGn) 
IL<W 

and for each n, < w, g IG, is constant, so card((g /Gn) n f) < c. Hence 

gnf= ((gW)nf) u u ((grG&V) 
n<UJ 

and card(g n f) < c since cf(c) > in. 0 

The next theorem tells us that for every sequence (fa: LY < c) of RI functions there 

exists a sequence (f:: a < c) of their SZ codes and an o-decoder function h E SZ 

such that every fa can be “right o-decoded” by h from f:. 

Theorem 4.25. Assume that the real line is not a union of less than c many meager sets. 

Then for every family { fa: a < C} c 721 there is a family {f,“: CY < c} of SZ-functions 

and a “decoding” function h E SZ and such that f: o h = fa for each CY < C. 

Proof. Let C, = {ga: Q: < c} be an enumeration of all nowhere constant g E CG~ and 

let {x cy: LY < c} = R. For every Q < c choose 

h(.r,) E R \ ({g&a): P < o} I-. { h(zfi): P < a} 

u u {S~‘(fv(Gd): P,v G a,). 

Note that the choice can be made since every set gp’ (fv(x,)) is meager and IR is not a 

union of less than c many meager sets. 

It is easy to observe that the function h is one-to-one and so, h E Rr. Also, by our 

choice, card([h = g]) < c for every g E C,. So, by Lemma 4.24, h E SZ. 

Now for v < c define f,“. Put fL(h(xa)) = fv(z,) for every cy < c and for n: 6 rng(h) 

define f,“(x) = h(x). Clearly fV = f,” o h f or every v < c. To see that f,” E SZ first 

notice that f,” E RI, since for every y E IR the set 

(f,“)-‘(v) = {h(z): f,“(h(x)) = uy> U (2 6 IR \m(h): f,“(z) = Y} 

c h [f;’ b)] u h-’ (Y/) 
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has cardinality less than c as h., fy E 721. Moreover, for every p < e 

[fy” = gal = {h(x): f,D(h.(z)) = gti(Ws))} u (2 E R\%(h): f,“(z) = go(z)> 
=h[{x: f,,(x) =gj3(h(2))}] u (2 E R\mg(h): h(Z) =SB(“)} 

= h[{z: h(x) E gj’(.fLj(~))}] u ([h = ml \mdh)) 

c h[{z,: c1 < max{;j.v}}] U [h. = g,j]. 

Thus, card([fE = g]) < c for every g E C, and, by Lemma 4.24, f,” E SZ. 0 

Lemma 4.22 together with Theorem 4.25 yield to the following result: 

Corollary 4.26. Assume that the reed line is not a union of less than c many meager 

sets and that c is a regular cardinul. For every f : R --t R the following conditions are 

equivalent: 

(i) there exist h, f” E SZ such that f = .f” o h; 

(ii) f E RI. 

Note that Theorem 4.25 cannot be proved in ZFC since, as mentioned above, there 

exists a model V of ZFC in which no real function onto R (including the identity function) 

is a composition of two SZ-functions. Nevertheless, we have the following example. 

Example 4.27. There exists an SZ-function h : IR 4 R such that its 72th composition h” 

is SZ for every 12 > 0. 

Proof. Let {ga: cy < c} = CG~ and {s u: Q: < c} = R. For every y < c choose 

h(q) E R \ ({g&cc): cru>D 6 r} U {in: ~1 6 T}). 

Observe that h E SZ. We shall verify that h” E SZ for rz > 1. Suppose that go(.r:cy) = 

h71(za). Let zy = hn-‘(.r,,). Note that 7 > CI and g,T(z:,) = h(+), so y < P. Therefore 

{x: hn(z) = g&x)} c {.~a: n < ij}, so card(hn n go) < c. 0 

Now, we consider the following cardinals. (See [4].) 

G(SZ) = min(card(3): 3 c 721 & 13h E 5’2 V’f E F’ 3fb E SZ f = f” o h} 

= min(card(3): 3 c 721 & bfh E SZ 3f E _F V’f” E 5’2 f # f” o h} 

and 

cl(SZ) = min(card(3): 3 c 721 & 1% E SZ V’f E 3 3fa E SZ f = h o f”} 

= min(card(3): 3 c 721 & Vh E SZ 3f E 3 Vj” E SZ f # h o f”}. 

(We will assign the value (2’)+ in case when the minimum is run over the empty set.) 

Note, that by the remark above in the iterated perfect set model the following corollary 

holds. 
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Corollary 4.28. It is consistent ti’ith ZFC that c = UJ: and c, (SZ) = cl (SZ) = 1. 

Theorem 4.29. Assume that the real line is not a union of less than c many meager sets 

and that c is a regular cardinal. Then 

c < c,(SZ) < 2c. 

Proof. The inequality c < cr(SZ) follows from Theorem 4.25. To prove the inequality 

cr(SZ) < 2’ it is enough to show that for every h E SZ there exists f E SZ such that 

g o h = f for no g E SZ. Fix h E SZ and recall that card(mg(h)) = c. 

Set f = h and suppose that g o h = h for some g E IR”. Then g(h(r)) = h(z). so 

mg(h) c [g = id] an consequently, card(g n id) = c, hence g $ SZ. d 0 

To determine how big can be the cardinal ~~(5’2) we shall use the following poset: 

IPD = {(p, E. G): p E IP & G C C, & E C R” & card(E) + card(G) < c} 

ordered by 

(p7E.G) 6 (u, F,H) 

iff p > q and E > F and G > H 

and V.I- E dom(p)\dom(q) V’f E F Vg E H p(x) $!g-’ (f(.r)), 

where C, is formed by nowhere constant CG* functions. 

The following theorem can be proved analogously to [3, Theorem 3.41. 

Theorem 4.30. Let X 3 K 3 LJ~ be cardinals such that cf(X) > wt and K is regular: 

Then it is relatively consistent vtith ZFC + CH that 2’ = X and Lus,(PD) holds. 

We will prove the following theorem. 

Theorem 4.31. If c = WI and K > c is a regular cardinal then Lus,(P) implies that 

ry(SZ) = 6. 

This and Theorem 4.30 will immediately imply the following corollary. 

Corollary 4.32. Let X > K 3 in? be cardinals such that cf(X) > WI and h: is regular: 

Then it is relatively consistent with ZFC + CH that 2’ = X and c,(SZ) = n. 

The proof of Theorem 4.31 will be split into three lemmas. 

Lemma 4.33. 
(i) Assume that a union of less than continuum many meager sets is meager again. 

Then Lus,(Pb) =+ Lus,(lP). 

(ii) For any regular h: we have Lus,(PD) + MA,(P). 
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Proof. The proof is similar to the proof of Lemma 2.7. The only modification is that in 

the proof of (i) we must replace the condition “card(r-l(v)) = c for every y E Iw” by 

“for every y E R the level set r- ’ (y ) is not meager” and that we choose 

s(x) E T--’ (q(4) \ u {g-’ (fb-1): f E E & g E G). q 

Lemma 4.34. Assume that c and K u-e regular cardinals and K > c. Then Lus,(P) 

implies that c,(SZ) < 6. 

Proof. Let (G,: cy < K) be a K-Lusin sequence of P-filters and define 

scu = UG. 

Then similarly as in the proof of Lemma 2.8 we can assume that each gu is a total 

function from R into R. Let {.re: < < c} be an enumeration of R. For every o < K put 

X, = {J.E: goi(xO # gLy(zV) for every rl < <} 

and let fey E %?I be an extension of y, IX,. We will show that for an arbitrary h E RR 

there is an o < 6 such that fLI = f: o h for no f: E SZ. 

If h $ 721 then f, o h $ 721 for each f: E R” and, since fa E Rt, fa # f: o h. So, 

assume that h E ‘721. Then card(rng(h)) = c, b ecause c is a regular cardinal. For < < c 

let DC be the set of all p E IP such that 

and observe that every DC is dense in IP. 

Indeed, for every p E P there is 2 > < with t-, $ dam(p) and h(xy) 6 rng(p). Choose 

y # h(z,) and set 

4=Pu{(+ h(+))} U { (+. Y): rl < Y & x0 4: dam(p)}. 

Then q E DC and q < p. 

By the regularity of K, there exists Q < h: such that G, intersects every set DC with 

< < c. Note that this implies that card(X,) = c. Now, suppose that fQ = f: o h. We 

will show that f,” $ SZ. 

To see it note first that if Y, = {.x E X,: fa(s) = h(z)}, then card(Y,) = c, since 

G, intersects every set DC. So, h E 721 and the regularity of c imply that 

card(mg(h lY=)) = c. 

Finally, observe that fE(h(x-)) = h(x) when fn(z) = h(z), so rng(h ]Yo) C [f,” = id]. 

Therefore card(fL n id) = c and consequently, f,” $ SZ. 0 

Lemma 4.35. Zf K > c = WI then MA,(P) implies that cT(SZ) 3 K.. 

Proof. Let F C 72, be such that card(F) < K. We shall find h E SZ such that for every 

f E 3 there exists f” E SZ with f = f” o h. 
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Observe that for any J E IR the set 

D, = {(p, E, H) E JP: z E dam(p)} 

is dense in PD. 

Indeed, for (q, E, H) E IPb \ D, choose 

Y E IR \ u {g-‘(f(z)): g E H & f E E}. 

The choice is possible since, by CH, the set U{g-‘(f(x)): g E H & f E E} is meager 

as a countable union of nowhere dense sets. Put p = q U { (2,~)). Then (p, E, H) 6 

(q,E,H) and (nE,H) E D,. 
Note also that for any f E R” and g E C, the set 

Ef.s = {(P, E, H): f E E & g E H} 

is dense in pD, because (p, E U {f}, H U {g}) extends (p, E, H). Let 

‘D = {Dz: L E IR} U {Eg,id: g E CG~} U {Ef.k: f E 3 & I; E C,}, 

where g E R” extends g E CG~ by associating 0 at all undefined places. Then 2, is a 

family of less than K many dense subsets of PD. Let G be a V-generic filter in pD and 

let 

il=u{p: 3EclRR3HcC, (~,E,H)EG}. 

Since G n D, # 0 for every zr E R, i is a total function from R into R. 

Observe that h E 5’2. Indeed, fix g E CGa and (p, E, H) E Eq,id n G. Then 

{.r: h(.r) = g(z)} c {x: i(x) = o(r)} c dam(p), 

so card(k n g) < c. 

To define h note that by CH all level sets of A are countable. In particular, the set 

k’(Q) is also countable. For every y E rng(h) n N let k’(y) = {z~,~: n < ti}. 

Choose a one-to-one sequence (sn: n < w) of irrationals and define a function h” : 

i”~ \ h-‘(Q) + N by h*(q,,n ) = (sn, y), where we identify N = R \ Q with N x N 
via natural homeomorphism. Note that h* is one-to-one. Let h: IR + IR be a one-to-one 

extension of h*. Then h E SZ. Indeed, suppose that h IX E C for some X E [Rlc. Then 

x0 = x \ kl(Q) E [lR]C and h* 1x0 = h IX0 E C, so 

krXo=prVoh*rXoEC, 

contrary to A E SZ. 

Now, for arbitrary f E F define f:rng(h) + R by f(y) = f(x) for .r = h-](y). We 

shall verify that f E 5’2. 

First, note that f” E RI, because f E RI. So, by Lemma 4.24, it is enough to verify 

that card(f n g) < c for every g E C,. 

So, fix g E C, and suppose that X = [f = g] E [mg(h)lc. Then there exists X0 E 

[rng(h*)lc such that X0 C [f = g]. Therefore there are R < w and 2 E [mg(&) n N]’ 

such that {sn} x 2 c X0. so 

2 c {k(z): (sJ$x)) E g_‘(f(z))}. 
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Let y:N 4 {sn} x N b e a function defined by w( ;y) = (s,, y). Then p is a homeo- 

morphism, so k = g o y ryP’(dom(g)) E C,,. Let (p, E, H) E G n Ef,k. Then 

Y = {.r: k(z) E K’(f(s))} c dam(p), 

so card(Y) < c. But Z c j~(l,~). contrary to card(Z) = c. 

Finally, let f” : IR + R be an SZ-extension of f. Then f = f” o h.. 0 

Theorem 4.36. Assume that the reld line is not a union of less than c many meager sets 

and that c is a regulur cardinal. Then 

Cl(SZ) > c. 

Proof. To see it take {jij: t-l < c} c 72,. We will construct an h E SZ and a family 

{fl: /3 < c} of SZ-f unctions such that j/j = h o f,$ for each /j < c. 

Let C, = {gn: cr < c} be an enumeration of all nowhere constant g E CG~ and 

(2~: < < c} be a one-to-one enumeration of Z = uE<crng(fE). Define inductively a 

sequence (y:: < < c) by choosing for every < < c 

yctIR\({I/:: i<~PJU{g,,‘k): N6:}uU{g&‘(~S)]: OGFJ). 

The choice can be made, since the exceptional set is a union of less than c many meager 

sets. 

Now, let Y = {ye: < < c}, and define h : I’ + IR by putting 

for every < < c. Moreover. for every ,I < c define ,$ : R --i IR by a formula 

Note that fl is defined on IR since rng(f,j) c Z. Also, f/j = h. o fl for every /3 < c, 

since for every z E IR there exists E < c such that fo(.r) = z:, and fg(z) = z< = 

h(yc) = h(fi(x)), as x E f,;‘(z~). 
To see that h E SZ note first that h is one-to-one, so h E RI. Thus, by Lemma 4.24, it 

is enough to show that card([h = gcy]) < c for every Q < c. But if go&) = h(yc) = ZE 

then ye E g;‘(zc) and, by the choice of YE, a > <. So, [h = ga] C {ye: < < a} has 

cardinality less than c, and h E SZ. 

Next fix ,3 < c and notice that f; E RI. To see that f; E SZ fix Q < C. We will 

show that card([f,$ = gal) < c. So. let ga(z) = f,;(.r) = yt. Then z E f;‘(zc) and 

Y< = ga(JJ) E gn [f&)1 

So, by the choice of ye, cy > < or D > <. In particular, [.$ = gry] C: {ye: < < max(% P)} 

has cardinality less than c. 0 

Problem 4.37. Can it be proved in ZFC that cl (SZ) < 2’? What about under CH? 
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5. Final remarks 

Proofs of the following statements are left to the reader. 

( 1) Every function f E I@ is the uniform limit of a sequence of SZ-functions. 

(2) Assuming cf(c) = WI, every function f E Iw” is the transfinite limit of a sequence 

of SZ-functions (cf. [ 141). 

(3) Assuming c is a regular cardinal, the discrete limits of sequences of SZ-functions 

are in the class SZ (cf. [5]). 

(4) If f> g E SZ, then max(f,g) E SZ and min(f, y) E SZ (hence the family SZ 

forms a lattice of functions). 
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