

Topology and its Applications 79 (1997) 75-99

TOPOLOGY AND ITS APPLICATIONS

Algebraic properties of the class of Sierpiński–Zygmund functions [☆]

Krzysztof Ciesielski^{a,*}, Tomasz Natkaniec^{b,1}

^a Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

^b Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland

Received 20 May 1996; revised 17 September 1996

Abstract

Sums, products and compositions with Sierpiński–Zygmund functions are investigated. Moreover, cardinal invariants connected with those operations are defined and studied. © 1997 Elsevier Science B.V.

Keywords: Cardinal invariants; Sierpiński–Zygmund functions; Generalized Martin's Axiom; Lusin sequence of filters

AMS classification: Primary 26A15, Secondary 03E50; 03E65

1. Preliminaries

Let us establish some terminology to be used. No distinction is made between a function and its graph. The family of all functions from a set X into Y will be denoted by Y^X . Symbol card(X) will stand for the cardinality of a set X. The cardinality of the set \mathbb{R} of real numbers is denoted by \mathbf{c} . Symbol $[X]^{\kappa}$ denotes the family of all subsets Y of X with card(Y) = κ . Similarly we define $[X]^{<\kappa}$ and $[X]^{\leqslant\kappa}$. For a cardinal number κ we will write $cf(\kappa)$ for the cofinality of κ . Recall that a cardinal number κ is regular, if $\kappa = cf(\kappa)$. For $A \subset \mathbb{R}$ its characteristic function is denoted by χ_A . If A is a planar set, we denote its x-projection by dom(A) and y-projection by rng(A). For $f, g \in \mathbb{R}^{\mathbb{R}}$ the notation [f = g] means the set $\{x \in \mathbb{R}: f(x) = g(x)\}$. Likewise for $[f > g], [f \neq g]$, etc.

^{*} This work was partially supported by NSF Cooperative Research Grant INT-9600548.

^{*} Corresponding author. E-mail: kcies@wvnvms.wvnet.edu.

¹ E-mail: mattn@ksinet.univ.gda.pl.

For $X \subset \mathbb{R}$ we say that a function $f: X \to \mathbb{R}$ is of *Sierpiński–Zygmund type* (shortly, an *SZ*-function), if its restriction $f \upharpoonright M$ is discontinuous for any set $M \subset X$ with $\operatorname{card}(M) = \mathbf{c}$ [15]. The family of all *SZ*-functions from \mathbb{R} to \mathbb{R} will be denoted by *SZ*. The symbol \mathcal{C} will stand for the family of all continuous functions $f: \mathbb{R} \to \mathbb{R}$, and $\mathcal{C}_{G_{\delta}}$ for the family of all continuous functions defined on G_{δ} -sets $X \subset \mathbb{R}$ with $\operatorname{card}(X) = \mathbf{c}$. Recall also that a function $f \in \mathbb{R}^{\mathbb{R}}$ is an *SZ*-function if and only if $\operatorname{card}([f = g]) < \mathbf{c}$ for every $g \in \mathcal{C}_{G_{\delta}}$ [15]. We will sometimes abuse this notation by writing $f \in SZ$ and $f \in \mathcal{C}$ for partial functions $f: X \to \mathbb{R}$ with $X \subseteq \mathbb{R}$.

The following fact can be proved by a slight modification of the original proof of Sierpiński and Zygmund [15].

Proposition 1.1. For every family $\{Y_x : x \in \mathbb{R}\}$ of subsets of \mathbb{R} of cardinality **c** there exists an SZ-function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \in Y_x$ for every $x \in \mathbb{R}$.

In particular, $card(SZ) = 2^{c}$.

For every cardinal κ and a partially ordered set (shortly poset) \mathbb{P} we shall consider the following statements. (See [3]. Compare also [7,9,10,16].)

 $\mathbf{MA}_{\kappa}(\mathbb{P})$ (κ -Martin's Axiom for \mathbb{P}). For any family \mathcal{D} of dense subsets of \mathbb{P} with $\operatorname{card}(\mathcal{D}) < \kappa$ there exists a \mathcal{D} -generic filter G in \mathbb{P} , i.e., such that $D \cap G \neq \emptyset$ for every $D \in \mathcal{D}$.

Lus_{κ}(\mathbb{P}). There exists a sequence $\langle G_{\alpha}: \alpha < \kappa \rangle$ of \mathbb{P} -filters, called a κ -Lusin sequence, such that card({ $\alpha < \kappa: G_{\alpha} \cap D = \emptyset$ }) < κ for every dense set $D \subset \mathbb{P}$.

2. Sums

Theorem 2.1. For every family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ with $card(\mathcal{F}) \leq \mathbf{c}$ there exists an $h \in \mathbb{R}^{\mathbb{R}}$ such that $h + f \in SZ$ for each $f \in \mathcal{F}$.

Proof. Let $\{g_{\alpha}: \alpha < \mathbf{c}\} = C_{G_{\delta}}, \{x_{\alpha}: \alpha < \mathbf{c}\} = \mathbb{R}$, and $\{f_{\alpha}: \alpha < \mathbf{c}\} = \mathcal{F}$. For every $\alpha < \mathbf{c}$ choose $h(x_{\alpha}) \in \mathbb{R} \setminus \{g_{\gamma}(x_{\alpha}) - f_{\beta}(x_{\alpha}): \beta, \gamma \leq \alpha\}$. Such a function h satisfies the following condition:

 $(\forall \beta < \mathbf{c}) \ (\forall \gamma < \mathbf{c}) \ [h + f_{\beta} = g_{\gamma}] \subset \{x_{\alpha}: \ \alpha < \max(\beta, \gamma)\},\$

so $\operatorname{card}((h + f_{\beta}) \cap g_{\gamma}) < \mathbf{c}$ for all $\beta, \gamma < \mathbf{c}$. \Box

Corollary 2.2. Every real function f can be expressed as the sum of two SZ-functions.

Proof. Use Theorem 2.1 with $\mathcal{F} = \{0, f\}$. \Box

The following cardinal function has been defined in [11] for $\mathcal{G} \subset \mathbb{R}^{\mathbb{R}}$. (Compare also [3,4].)

$$a(\mathcal{G}) = \min(\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \ \& \ \neg \exists h \in \mathbb{R}^{\mathbb{R}} \ \forall f \in \mathcal{F} \ h + f \in \mathcal{G}\} \cup \{(2^{\mathfrak{c}})^+\})$$
$$= \min(\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \ \& \ \forall h \in \mathbb{R}^{\mathbb{R}} \ \exists f \in \mathcal{F} \ h + f \notin \mathcal{G}\} \cup \{(2^{\mathfrak{c}})^+\}).$$

Evidently, there is no $h \in \mathbb{R}^{\mathbb{R}}$ such that $h + f \in SZ$ for all $f \in \mathbb{R}^{\mathbb{R}}$. Therefore Theorem 2.1 yields to the following corollary.

Corollary 2.3. $\mathbf{c} < a(SZ) \leq 2^{\mathbf{c}}$.

Hence, if $\mathbf{c}^+ = 2^{\mathbf{c}}$, then $a(SZ) = 2^{\mathbf{c}}$. However, it is interesting whether or not anything more can be said about the cardinal a(SZ). (The analogous problem for the classes AC of almost continuous functions and \mathcal{D} of Darboux functions is considered in [3].) To address this question we need the following partially ordered sets $\langle \mathbb{P}, \leqslant \rangle$ and $\langle \mathbb{P}^*, \leqslant \rangle$.

$$\mathbb{P} = \{ p \in \mathbb{R}^X : X \subseteq \mathbb{R} \& \operatorname{card}(X) < \mathbf{c} \},\$$

i.e., \mathbb{P} is the set of all partial functions from \mathbb{R} to \mathbb{R} of cardinality less than c. We put $p \leq q$ if and only if $p \supseteq q$, i.e., when p extends q as a partial function.

 $\mathbb{P}^* = \big\{ \langle p, E \rangle \colon \ p \in \mathbb{P} \ \& \ E \subseteq \mathbb{R}^{\mathbb{R}} \ \& \ \operatorname{card}(E) < \mathbf{c} \big\}.$

The ordering on \mathbb{P}^* is defined by

$$\langle p, E \rangle \leqslant \langle q, F \rangle$$
 iff $p \supseteq q$ and $E \supseteq F$
and $\forall x \in \operatorname{dom}(p) \setminus \operatorname{dom}(q) \ \forall f \in F \ p(x) \neq f(x).$

The following theorem can be found in [3, Theorem 3.7].

Theorem 2.4. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC + CH that $2^c = \lambda$ and $Lus_{\kappa}(\mathbb{P}^*)$ holds.

We will prove the following theorem.

Theorem 2.5. If $\kappa > \mathbf{c}$ is a regular cardinal then $\operatorname{Lus}_{\kappa}(\mathbb{P}^*)$ implies that $a(SZ) = \kappa$.

This and Theorem 2.4 will immediately imply the following corollary.

Corollary 2.6. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC + CH that $2^c = \lambda$ and $a(SZ) = \kappa$.

The proof of Theorem 2.5 will be split into three lemmas.

Lemma 2.7.

(i) $\operatorname{Lus}_{\kappa}(\mathbb{P}^*) \Rightarrow \operatorname{Lus}_{\kappa}(\mathbb{P}).$

(ii) For any regular κ we have $Lus_{\kappa}(\mathbb{P}^*) \Rightarrow MA_{\kappa}(\mathbb{P}^*)$.

Proof. The proof is implicitly contained in the proof of [3, Lemma 3.6]. Let $\langle G_{\alpha}: \alpha < \kappa \rangle$ be a κ -Lusin sequence for \mathbb{P}^* .

(i) follows from the fact that in some sense \mathbb{P} is "living inside" of \mathbb{P}^* . To see it, let $r: \mathbb{R} \to \mathbb{R}$ be a map with of $\operatorname{card}(r^{-1}(y)) = \mathbf{c}$ for every $y \in \mathbb{R}$. Define $\pi: \mathbb{P}^* \to \mathbb{P}$ by

$$\pi(p,F)=r\circ p.$$

Notice that if $\langle p, E \rangle \leq \langle q, F \rangle$ then $\pi(p, E) \leq \pi(q, F)$. This implies that $\pi[G]$ is a \mathbb{P} -filter for any \mathbb{P}^* -filter G. Furthermore, we claim that if $D \subseteq \mathbb{P}$ is dense, then $\pi^{-1}(D)$ is dense in \mathbb{P}^* . To see this, let $\langle p, F \rangle \in \mathbb{P}^*$ be arbitrary. Since D is dense, there exists $q \leq \pi(p, F)$ with $q \in D$. Now, find $s \in \mathbb{P}$ extending p such that $r \circ s = q \supseteq r \circ p$ and $s(x) \neq f(x)$ for every $x \in \text{dom}(s) \setminus \text{dom}(p)$ and $f \in F$. This can be done by choosing

$$s(x) \in r^{-1}(q(x)) \setminus \{f(x): f \in F\}$$

for every $x \in \text{dom}(q) \setminus \text{dom}(p)$. Then, $\langle s, F \rangle \leq \langle p, F \rangle$ and $\langle s, F \rangle \in \pi^{-1}(q) \subseteq \pi^{-1}(D)$. Now, $\langle \pi[G_{\alpha}]: \alpha < \kappa \rangle$ is a κ -Lusin sequence for \mathbb{P} since for every dense $D \subseteq \mathbb{P}$,

$$\{ \alpha < \kappa \colon \pi[G_{\alpha}] \cap D = \emptyset \} = \{ \alpha < \kappa \colon \pi[G_{\alpha}] \cap \pi[\pi^{-1}(D)] = \emptyset \}$$

$$\subseteq \{ \alpha < \kappa \colon G_{\alpha} \cap \pi^{-1}(D) = \emptyset \}.$$

To see (ii) take a family \mathcal{D} of dense subsets of \mathbb{P}^* of cardinality less than κ . By the regularity of κ , there exists $\alpha < \kappa$ such that G_{α} meets every element of \mathcal{D} . \Box

Lemma 2.8. Assume that κ is a regular cardinal and $\kappa > \mathbf{c}$. Then $\operatorname{Lus}_{\kappa}(\mathbb{P})$ implies that $a(SZ) \leq \kappa$.

Proof. Let $\langle G_{\alpha}: \alpha < \kappa \rangle$ be a κ -Lusin sequence of \mathbb{P} -filters and let

$$f_{\alpha} = \bigcup G_{\alpha}.$$

Then f_{α} is a partial function from \mathbb{R} into \mathbb{R} . Let

$$D_x = \left\{ p \in \mathbb{P} \colon x \in \operatorname{dom}(p) \right\}.$$

It is easy to see that each D_x is dense in \mathbb{P} . Hence, since $\mathbf{c} < \kappa$ and κ is regular, we may assume that each f_{α} is a total function.

Now, let $\{x_{\xi}: \xi < \mathbf{c}\} = \mathbb{R}$. For each $\xi < \mathbf{c}, g \in \mathcal{C}_{G_{\delta}}$, and $h \in \mathbb{R}^{\mathbb{R}}$ define

$$D_{\xi}(g,h) = \left\{ p \in \mathbb{P} \colon (\exists \eta \ge \xi) \big(x_{\eta} \in \operatorname{dom}(p) \cap \operatorname{dom}(g) \And (h+p)(x_{\eta}) = g(x_{\eta}) \big) \right\}.$$

Note that $D_{\xi}(g,h)$ is dense in \mathbb{P} , since for any $p \in \mathbb{P}$ there is $\eta \ge \xi$ with

 $x_{\eta} \in \operatorname{dom}(g) \setminus \operatorname{dom}(p).$

Then

$$p \cup \left\{ \left\langle x_{\eta}, g(x_{\eta}) - h(x_{\eta}) \right\rangle \right\} \in D_{\xi}(g, h)$$

extends p. By the regularity of κ , for any $h \in \mathbb{R}^{\mathbb{R}}$ there exists $\alpha < \kappa$ such that G_{α} intersects every set $D_{\xi}(g,h)$ with $\xi < \mathbf{c}$ and $g \in C_{G_{\delta}}$, and so, $\operatorname{card}((h + f_{\alpha}) \cap g) = \mathbf{c}$.

Thus, for every $h \in \mathbb{R}^{\mathbb{R}}$ there exists $\alpha < \kappa$ such that $h + f_{\alpha} \notin SZ$, i.e., the family $\mathcal{F} = \{f_{\alpha}: \alpha < \kappa\}$ shows that $a(SZ) \leq \kappa$ as was to be shown. \Box

Lemma 2.9. If $\kappa > \mathbf{c}$ then $MA_{\kappa}(\mathbb{P}^*)$ implies that $a(SZ) \ge \kappa$.

Proof. Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be such that $\operatorname{card}(\mathcal{F}) < \kappa$. We will find $h \in \mathbb{R}^{\mathbb{R}}$ such that $h+f \in SZ$ for every $f \in \mathcal{F}$.

Notice that for any $x \in \mathbb{R}$ the set

$$D_x = \{ \langle p, E \rangle \in \mathbb{P}^* \colon x \in \operatorname{dom}(p) \}$$

is dense in \mathbb{P}^* . Indeed, let $\langle q, F \rangle$ be an arbitrary element of \mathbb{P}^* and suppose it is not already an element of D_x . The set $Q = \{f(x): f \in F\}$ has cardinality less than **c**, so there exists $y \in \mathbb{R} \setminus Q$. Let $p = q \cup \{\langle x, y \rangle\}$. Then $\langle p, F \rangle \leq \langle q, F \rangle$ and $\langle p, F \rangle \in D_x$. Therefore $h = \bigcup \{p: (\exists E) (\langle p, E \rangle \in G)\}$ is a function from \mathbb{R} into \mathbb{R} for any \mathbb{P}^* -filter *G* intersecting all sets D_x .

Note also, that for $f \in \mathbb{R}^{\mathbb{R}}$ the set

$$E_f = \left\{ \langle p, E \rangle \in \mathbb{P}^* \colon f \in E \right\}$$

is dense in \mathbb{P}^* since $\langle p, E \cup \{f\} \rangle \in E_f$ extends $\langle p, E \rangle$.

Let

$$\mathcal{D} = \{ D_x \colon x \in \mathbb{R} \} \cup \{ E_{\bar{g}-f} \colon f \in \mathcal{F} \& g \in \mathcal{C}_{G_b} \},\$$

where $\bar{g} \in \mathbb{R}^{\mathbb{R}}$ extends $g \in C_{G_{\delta}}$ by associating 0 at all undefined places. Then, \mathcal{D} is a family of less than κ many dense subsets of \mathbb{P}^* . Let G be a \mathcal{D} -generic filter in \mathbb{P}^* and let $h = \bigcup \{p: (\exists E) (\langle p, E \rangle \in G)\}$. We have to show that $h + f \in SZ$ for every $f \in \mathcal{F}$.

So, let $f \in \mathcal{F}$ and $g \in \mathcal{C}_{G_{\delta}}$. Then there exists $\langle p, E \rangle \in G \cap E_{\bar{g}-f}$. So, by the definition of order on \mathbb{P} it is easy to see that

$$\left\{x \in \mathbb{R}: (f+h)(x) = g(x)\right\} \subseteq \left\{x \in \mathbb{R}: h(x) = \bar{g}(x) - f(x)\right\} \subseteq \operatorname{dom}(p).$$

Thus, $h + f \in SZ$ for every $f \in \mathcal{F}$. \Box

Application of Lemmas 2.7, 2.8 and 2.9 finishes the proof of Theorem 2.5.

In [3] it has been proved that $a(D) = a(AC) = e_c$ and that this number has cofinality greater than continuum c, where

$$e_{\kappa} = \min\{\operatorname{card}(F): F \subseteq \kappa^{\kappa} \And \forall h \in \kappa^{\kappa} \exists f \in F \operatorname{card}(f \cap h) < \kappa\}.$$

Next, we will compare a(SZ) with a(D), and give a characterization of a(SZ) similar to that of e_{c} . We will also address an issue of the cofinality of a(SZ).

Since for a regular $\kappa > c$ an axiom $\text{Lus}_{\kappa}(\mathbb{P}^*)$ implies $a(\mathcal{D}) = \kappa$ [3, Section 3] we can conclude the following fact.

Corollary 2.10. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC + CH that $2^c = \lambda$ and $a(\mathcal{D}) = a(SZ) = \kappa$.

Note also the following strengthening of [3, Theorem 3.3].

Theorem 2.11. Let $\lambda \ge \omega_2$ be a cardinal such that $cf(\lambda) > \omega_1$. Then it is relatively consistent with ZFC + CH that $2^{\mathfrak{c}} = \lambda$ and $Lus_{\kappa}(\mathbb{P})$ holds for every regular $\kappa > \mathfrak{c}$, $\kappa \le 2^{\mathfrak{c}}$.

Proof. The proof is identical to that of [3, Theorem 3.3]. \Box

Now, recall also that $\text{Lus}_{\kappa}(\mathbb{P})$ implies $a(\mathcal{D}) \ge \kappa$ for every regular $\kappa > \mathbf{c}$ [3]. Thus, in a model of Theorem 2.11 we have $a(\mathcal{D}) = 2^{\mathbf{c}} = \lambda$. On the other hand in this model we have $\text{Lus}_{\mathbf{c}^+}(\mathbb{P})$. So, by Lemma 2.8 and Corollary 2.3, $a(SZ) = \mathbf{c}^+$. In particular, we obtain the following corollary.

Corollary 2.12. Let $\lambda > \omega_2$ be a cardinal such that $cf(\lambda) > \omega_1$. Then it is relatively consistent with ZFC + CH that $2^{\mathbf{c}} = \lambda$ is true, and $a(SZ) = \mathbf{c}^+ < 2^{\mathbf{c}} = a(\mathcal{D})$.

The following remains an open problem.

Problem 2.13. Is it consistent that a(SZ) > a(D)?

For an infinite cardinal κ define

$$d_{\kappa} = \min\{\operatorname{card}(F): F \subseteq \kappa^{\kappa} \And \forall h \in \kappa^{\kappa} \exists f \in F \operatorname{card}(f \cap h) = \kappa\}.$$

Notice that $d_{\kappa} > \kappa$.

Theorem 2.14. $a(SZ) = d_{c}$.

Proof. To see that $d_{\mathbf{c}} \leq a(SZ)$ choose $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ with $\operatorname{card}(\mathcal{F}) < d_{\mathbf{c}}$ and define

 $\overline{\mathcal{F}} = \{ \overline{g} - f \colon f \in \mathcal{F} \& g \in \mathcal{C}_{G_{\delta}} \}.$

where $\bar{g} \in \mathbb{R}^{\mathbb{R}}$ extends g by associating 0 at all undefined places. Then,

 $\operatorname{card}(\overline{\mathcal{F}}) \leq \operatorname{card}(\mathcal{F}) \cdot \mathbf{c} < d_{\mathbf{c}}.$

So, there exists an $h \in \mathbb{R}^{\mathbb{R}}$ such that $\operatorname{card}(h \cap \overline{f}) < \mathbf{c}$ for every $\overline{f} \in \overline{\mathcal{F}}$. Hence, for every $f \in \mathcal{F}$ and $g \in \mathcal{C}_{G_{\delta}}$

$$ext{card}ig((h+f)\cap gig)\leqslant ext{card}ig((h+f)\cap ar{g}ig)= ext{card}ig(h\cap (ar{g}-f)ig)< \mathbf{c}$$

since $\overline{g} - f \in \overline{\mathcal{F}}$. So, $h + f \in SZ$ every $f \in \mathcal{F}$, and $d_{\mathbf{c}} \leq a(SZ)$.

To see that $a(SZ) \leq d_{\mathbf{c}}$ choose $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ with $\operatorname{card}(\mathcal{F}) < a(SZ)$ and let $-\mathcal{F} = \{-f: f \in \mathcal{F}\}$. Using the definition of a(SZ) to $-\mathcal{F}$ we can find $h \in \mathbb{R}^{\mathbb{R}}$ such that $h - f \in SZ$ for every $f \in \mathcal{F}$. In particular, for $g_0 \equiv 0$ we have

$$\operatorname{card}(h \cap f) = \operatorname{card}(h \cap (f + g_0)) = \operatorname{card}((h - f) \cap g_0) < \mathbf{c}$$

for every $f \in \mathcal{F}$. So, $a(SZ) \leq d_{\mathbf{c}}$. \Box

To address the problem of cofinality of a(SZ) we need the following theorem, where $\kappa^{<\kappa}$ is the supremum of all cardinals κ^{λ} with $\lambda < \kappa$.

Theorem 2.15. If $\kappa \ge \omega$ is a cardinal number such that $\kappa^{<\kappa} = \kappa$ then $cf(d_{\kappa}) > \kappa$.

Proof. Let T be the set of all functions from some $\xi < \kappa$ into κ , i.e., $T = \bigcup_{\xi < \kappa} \kappa^{\xi}$. Thus, by our assumption, $\operatorname{card}(T) = \kappa$. Let $\langle F_{\xi} \subset T^{\kappa}: \xi < \kappa \rangle$ be an increasing sequence such that $\operatorname{card}(F_{\xi}) < d_{\kappa}$ for every $\xi < \kappa$. We shall show that the cardinality of $F = \bigcup_{\xi < \kappa} F_{\xi}$ is less than d_{κ} by finding $h \in T^{\kappa}$ such that $\operatorname{card}(h \cap f) < \kappa$ for every $f \in F$. This will finish the proof.

For $\xi < \kappa$ define

$$\overline{F}_{\xi} = \left\{ \overline{f} \in \left(\kappa^{\xi}\right)^{\kappa} \colon (\exists f \in F_{\xi}) (\forall \alpha < \kappa) \left(\overline{f}(\alpha) = f(\alpha) \upharpoonright^{\star} \xi\right) \right\},\$$

where $[f(\alpha) \upharpoonright^{\star} \xi](\zeta) = f(\alpha)(\zeta)$ if $\zeta \in \text{dom}(f(\alpha))$ and $[f(\alpha) \upharpoonright^{\star} \xi](\zeta) = 0$ otherwise. Thus, $\text{card}(\overline{F}_{\xi}) \leq \text{card}(F_{\xi}) < d_{\kappa}$ for every $\xi < \kappa$.

By induction on $\xi < \kappa$ we will define a sequence $\langle h_{\xi} \in (\kappa^{\xi})^{\kappa} : \xi < \kappa \rangle$ such that

(i) $h_{\zeta}(\alpha) \subset h_{\xi}(\alpha)$ for every $\alpha < \kappa$ and $\zeta < \xi < \kappa$.

(ii) $\operatorname{card}(h_{\xi} \cap \overline{f}) < \kappa$ for every $\overline{f} \in \overline{F}_{\xi}$ and every successor ordinal $\xi < \kappa$.

So assume that for some $\xi < \kappa$ the sequence $\langle h_{\zeta}: \zeta < \xi \rangle$ is already constructed. If ξ is a limit ordinal put $h_{\xi}(\alpha) = \bigcup_{\zeta < \xi} h_{\zeta}(\alpha)$ for every $\alpha < \kappa$. Then (i) is clearly satisfied, and (ii) does not apply.

If $\xi = \eta + 1$ is a successor ordinal, then the space

$$H_{\xi} = \left\{ h \in \left(\kappa^{\xi}\right)^{\kappa} : \ (\forall \alpha < \kappa) \left(h_{\eta}(\alpha) \subset h(\alpha) \right) \right\}$$

is naturally isomorphic to κ^{κ} by an isomorphism $i: H_{\xi} \to \kappa^{\kappa}$, $i(h)(\alpha) = h(\alpha)(\eta)$ for $h \in H_{\xi}$ and $\alpha < \kappa$. Moreover, $\operatorname{card}(\overline{F}_{\xi} \cap H_{\xi}) \leq \operatorname{card}(\overline{F}_{\xi}) < d_{\kappa}$. So, there exists $h_{\xi} \in H_{\xi} \subset (\kappa^{\xi})^{\kappa}$ satisfying (ii), while (i) is satisfied by any $h \in H_{\xi}$. The construction is completed.

To finish the proof define $h : \kappa \to T$ by $h(\xi) = h_{\xi}(\xi)$. We will show that $\operatorname{card}(h \cap f) < \kappa$ for every $f \in F$.

So, let $f \in F$. Then, there exists a successor ordinal number $\xi < \kappa$ such that $f \in F_{\xi}$. Let $\overline{f} \in \overline{F}_{\xi}$ be such that $\overline{f}(\alpha) = f(\alpha) \upharpoonright^{\star} \xi$ for every $\alpha < \kappa$. Then

$$\{ \alpha < \kappa : \ h(\alpha) = f(\alpha) \} \subset \xi \cup \{ \alpha < \kappa : \ h(\alpha) \supset f(\alpha) \}$$

= $\xi \cup \{ \alpha < \kappa : \ h_{\xi}(\alpha) = \bar{f}(\alpha) \}$

and, by (ii), this last set has cardinality less than κ . So card $(h \cap f) < \kappa$. \Box

From Theorems 2.14 and 2.15 we obtain the following corollary. (Note that $\mathbf{c}^{<\mathbf{c}}$ is the supremum of all cardinals 2^{λ} with $\lambda < \mathbf{c}$.)

Corollary 2.16. If $\mathbf{c}^{<\mathbf{c}} = \mathbf{c}$ then $\mathrm{cf}(a(SZ)) > \mathbf{c}$.

The following remains an open problem.

Problem 2.17. Can a(SZ) be a singular cardinal?

Since $a(SZ) = d_c$ and $a(D) = e_c$, Problems 2.13 and 2.17 can be rephrased as follows.

(*) Let $\kappa = \mathbf{c}$. Is it consistent that $d_{\kappa} > e_{\kappa}$? Can d_{κ} be singular?

Notice that for $\kappa = \omega$ the answer for these problems is well known, since $d_{\omega} = \text{non}(\text{meager})$ is the minimum cardinality of a nonmeager subset of \mathbb{R} , and $e_{\omega} = \text{cov}(\text{meager})$ is the minimum cardinality of a family of meager subset of \mathbb{R} whose union is equal to \mathbb{R} . (See [2].) Thus, for $\kappa = \omega$ the answer for both questions is positive. (Compare also [8] for some results concerning e_{κ} for $\kappa > \omega$.)

Next, let $\mathcal{M}_a(SZ)$ denote the maximal additive family for the class SZ, i.e.,

 $\mathcal{M}_a(SZ) = \{ f \in \mathbb{R}^{\mathbb{P}} : f + h \in SZ \text{ for each } h \in SZ \}.$

To describe the structure of $\mathcal{M}_a(SZ)$ we need the following easy lemma.

Lemma 2.18. Let $X \subset \mathbb{R}$ and $f: X \to \mathbb{R}$ be an SZ-function. Then there exists an SZ-extension of f, i.e., an $f^* \in \mathbb{R}^{\mathbb{R}}$ that $f^* \in SZ$ and $f^* \upharpoonright X = f$.

Proof. Obviously for each $h : \mathbb{R} \to \mathbb{R}$, $h \in SZ$ if and only if $h \upharpoonright (\mathbb{R} \setminus X) \in SZ$ and $h \upharpoonright X \in SZ$. Moreover, we can use the Sierpiński–Zygmund's method to obtain an SZ-function defined on any subset of \mathbb{R} . Therefore it is enough to construct an SZ-function $g : \mathbb{R} \setminus X \to \mathbb{R}$ and put $f^* = f \cup g$. \Box

Theorem 2.19. For every function $f \in \mathbb{R}^{\mathbb{R}}$ the following conditions are equivalent:

(i)
$$f \in \mathcal{M}_a(SZ)$$

(ii) for each $X \in [\mathbb{R}]^{c}$ there exists a $Y \in [X]^{c}$ such that $f \mid Y \in C$.

Proof. (ii) \Rightarrow (i). Suppose that f satisfies the condition (ii) and $h + f \notin SZ$ for some $h \in SZ$. Then $(h + f) \upharpoonright X \in C$ for some set $X \in [\mathbb{R}]^{e}$. Let $Y \in [X]^{e}$ be a set such that $f \upharpoonright Y \in C$. Then $h \upharpoonright Y \in C$, in contradiction with $h \in SZ$.

(i) \Rightarrow (ii). Suppose that f does not fulfill the condition (ii). Then there exists $X \in [\mathbb{R}]^c$ such that $f \upharpoonright Y \notin C$ for each $Y \in [X]^c$, i.e., $f \upharpoonright X \in SZ$. Let $f^* \in \mathbb{R}^{\mathbb{R}}$ be an SZ-extension of f. Then $-f^* \in SZ$ and $(f - f^*) \upharpoonright X \in C$, so $f \notin \mathcal{M}_a(SZ)$. \Box

Remark. U. Darji proved under CH that a Borel function f satisfies the the condition (ii) if and only if it is countably continuous [6, Theorem 10]. In the same way one can prove that (ii) implies the following condition:

(iii) f is the union of less than **c** many continuous functions; and, assuming regularity of **c**, that (iii) implies (ii).

Proof. (ii) \Rightarrow (iii). Let $\{g_{\alpha}: \alpha < \mathbf{c}\} = C_{G_{\delta}}$. Suppose that f is not the union of less than \mathbf{c} many continuous functions. Then $\operatorname{card}(\operatorname{dom}(f \setminus \bigcup_{\beta < \alpha} g_{\alpha})) = \mathbf{c}$ for each $\alpha < \mathbf{c}$. For every $\alpha < \mathbf{c}$ choose $x_{\alpha} \in \operatorname{dom}(f \setminus \bigcup_{\beta < \alpha} g_{\alpha}) \setminus \{x_{\beta}: \beta < \alpha\}$ and set $X = \{x_{\alpha}: \alpha < \mathbf{c}\}$. By (ii), there exists $Y \in [X]^{\mathbf{c}}$ such that $f \upharpoonright Y$ is continuous. Therefore $f \upharpoonright Y = g_{\alpha} \upharpoonright Y$ for some $\alpha < \mathbf{c}$, so $\operatorname{card}(f \cap g_{\alpha}) = \mathbf{c}$, contrary to the construction of X. Now assume that **c** is a regular cardinal and f satisfies (iii). Then $f = \bigcup_{\alpha < \kappa} f \upharpoonright X_{\alpha}$ for some $\kappa < \mathbf{c}$ and all functions $f \upharpoonright X_{\alpha}$ are continuous. Fix $X \in [\mathbb{R}]^{\mathbf{c}}$. By the regularity of **c**, $\operatorname{card}(X \cap X_{\alpha}) = \mathbf{c}$ for some $\alpha < \kappa$ and, for $Y = X \cap X_{\alpha}$, $f \upharpoonright Y$ is continuous.

It is also worth to notice in this context that if $f: X \to \mathbb{R}$ is SZ for some $X \subset \mathbb{R}$ then for every $Y \in [X]^c$ its restriction $f \upharpoonright Y$ is not countably (even $\kappa < cf(c)$) continuous.

3. Products

In this section we will examine for which functions $f \in \mathbb{R}^{\mathbb{R}}$ there exists $h \in \mathbb{R}^{\mathbb{R}}$ such that $hf \in SZ$.

First note that if $\operatorname{card}([f = 0]) = \mathbf{c}$ then $hf \in SZ$ for no $h : \mathbb{R} \to \mathbb{R}$. Thus, we will restrict our attention to the family

 $\mathcal{R}_0 = \{ f \in \mathbb{R}^{\mathbb{R}} : \operatorname{card}([f=0]) < \mathbf{c} \}.$

Theorem 3.1. For every family $\mathcal{F} \subset \mathcal{R}_0$ with $card(\mathcal{F}) \leq c$ there exists an $h: \mathbb{R} \to \mathbb{R} \setminus \{0\}$ such that $hf \in SZ$ for each $f \in \mathcal{F}$.

Proof. Let $\{g_{\alpha}: \alpha < \mathbf{c}\} = C_{G_{\delta}}, \{x_{\alpha}: \alpha < \mathbf{c}\} = \mathbb{R}$, and $\{f_{\alpha}: \alpha < \mathbf{c}\} = \mathcal{F}$. For $\alpha < \mathbf{c}$ choose

$$h(x_{\alpha}) \in \mathbb{R} \setminus \left(\{0\} \cup \left\{ \frac{g_{\gamma}(x_{\alpha})}{f_{\beta}(x_{\alpha})} : \beta, \gamma \leq \alpha \And f_{\beta}(x_{\alpha}) \neq 0 \right\} \right).$$

Such a function h satisfies the following condition:

$$(orall eta < \mathbf{c}) \ (orall \gamma < \mathbf{c}) \ [hf_eta = g_\gamma] \subset [f_eta = 0] \cup \{x_lpha \colon lpha < \max(eta, \gamma)\}.$$

so $\operatorname{card}((hf_{\beta}) \cap g_{\gamma}) < \mathbf{c}$ for all $\beta, \gamma < \mathbf{c}$. \Box

Corollary 3.2. For every function $f \in \mathbb{R}^{\mathbb{R}}$ the following conditions are equivalent:

- (i) card([f = 0]) < c,
- (ii) f is the product of two SZ-functions.

Let m(SZ) denote the least cardinal κ for which there exists a family $\mathcal{F} \subset \mathcal{R}_0$ such that card $(\mathcal{F}) = \kappa$ and for every $h : \mathbb{R} \to \mathbb{R}$ there exists $f \in \mathcal{F}$ with $hf \notin SZ$. (Note that this definition is different from the definition of the cardinal function m defined in [11]; cf. [13].)

Theorem 3.3. a(SZ) = m(SZ).

Proof. " $a(SZ) \leq m(SZ)$ ". Assume that $\mathcal{F} \subset \mathcal{R}_0$ is a family of functions such that $card(\mathcal{F}) < a(SZ)$. For every $f \in \mathcal{F}$ let \tilde{f} be the function defined by

$$\tilde{f}(x) = \begin{cases} |f(x)| & \text{if } f(x) \neq 0, \\ 1 & \text{if } f(x) = 0. \end{cases}$$

Note that $\operatorname{card}(\{f: f \in \mathcal{F}\}) \leq \operatorname{card}(\mathcal{F}) < a(SZ)$, so there exists $h: \mathbb{R} \to \mathbb{R}$ such that $h + \ln(\tilde{f}) \in SZ$ for each $f \in \mathcal{F}$. Therefore $\exp(h + \ln(\tilde{f})) \in SZ$, so $\exp(h)\tilde{f} \in SZ$ for $f \in \mathcal{F}$. We shall verify that $\exp(h)f \in SZ$ for every $f \in \mathcal{F}$. Suppose that $\exp(h)f \upharpoonright X \in \mathcal{C}$ for some $X \subset \mathbb{R}$. Let $X_- = X \cap [f < 0]$, $X_+ = X \cap [f > 0]$ and $X_0 = X \cap [f = 0]$. Note that $\operatorname{card}(X_0) < \mathbf{c}$. Also, $\operatorname{card}(X_+) < \mathbf{c}$, since $\exp(h)\tilde{f} \upharpoonright X_+ = \exp(h)f \upharpoonright X_+ \in \mathcal{C}$. Similarly, $\operatorname{card}(X_-) < \mathbf{c}$, since $\exp(h)\tilde{f} \upharpoonright X_- = -\exp(h)f \upharpoonright X_- \in \mathcal{C}$. Thus $\operatorname{card}(X) < \mathbf{c}$ and consequently, $\exp(h)f \in SZ$.

" $m(SZ) \leq a(SZ)$ ". Now assume that $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ is a family of functions such that $\operatorname{card}(\mathcal{F}) < m(SZ)$. Let $h \in \mathbb{R}^{\mathbb{R}}$ be a function such that $\exp(f)h \in SZ$ and $-\exp(f)h \in SZ$ for all $f \in \mathcal{F}$. Obviously, we can ensure that $h \in SZ$ by adding the constant function 0 to \mathcal{F} . Let \tilde{h} be defined as above. Then $\operatorname{rng}(\tilde{h}) \subset (0, \infty)$ and $\exp(f)\tilde{h} \in SZ$ for each $f \in \mathcal{F}$. Indeed, suppose that $\exp(f)\tilde{h} \upharpoonright X \in \mathcal{C}$ for some $X \subset \mathbb{R}$ and $f \in \mathcal{F}$. Then $X = X_{-} \cup X_{0} \cup X_{+}$, where $X_{-} = X \cap [h < 0]$, $X_{+} = X \cap [h > 0]$ and $X_{0} = X \cap [h = 0]$. Of course, $\operatorname{card}(X_{0}) < \mathbf{c}$. Moreover, $\exp(f)\tilde{h} \upharpoonright X_{+} = \exp(f)h \upharpoonright X_{+} \in \mathcal{C}$ and $\exp(f)\tilde{h} \upharpoonright X_{-} = -\exp(f)h \upharpoonright X_{-} \in \mathcal{C}$, so $\operatorname{card}(X_{+}) < \mathbf{c}$ and $\operatorname{card}(X_{-}) < \mathbf{c}$. Hence $\operatorname{card}(X) < \mathbf{c}$.

Therefore $\ln(\exp(f)\tilde{h}) \in SZ$, so $\ln(\tilde{h}) + f \in SZ$ for each $f \in \mathcal{F}$. \Box

Let $\mathcal{M}_m(SZ)$ denote the maximal multiplicative family for the class SZ, i.e., $\mathcal{M}_m(SZ) = \{ f \in \mathbb{R}^{\mathbb{R}} : fh \in SZ \text{ for each } h \in SZ \}.$

Theorem 3.4. For every function $f \in \mathbb{R}^{\mathbb{R}}$ the following conditions are equivalent:

- (i) $f \in \mathcal{M}_m(SZ);$
- (ii) $\operatorname{card}([f = 0]) < \mathbf{c}$ and for each $X \in [\mathbb{R}]^{\mathbf{c}}$ there exists a $Y \in [X]^{\mathbf{c}}$ such that $f \upharpoonright Y \in \mathcal{C}$.

Proof. (ii) \Rightarrow (i). Suppose that f satisfies the condition (ii) and $hf \notin SZ$ for some $h \in SZ$. Then $hf \upharpoonright X \in C$ for some set $X \in [\mathbb{R}]^c$. Let $Y \in [X \setminus [f=0]]^c$ be a set such that $f \upharpoonright Y \in C$. Then $h \upharpoonright Y = (hf)/f \upharpoonright Y \in C$, in contradiction with $h \in SZ$.

(i) \Rightarrow (ii). Assume that $f \in \mathcal{M}_m(SZ)$. Note that $\operatorname{card}([f = 0]) < \mathbf{c}$. Fix $X \in [\mathbb{R}]^{\mathbf{c}}$ and set $X_0 = X \setminus [f = 0]$. Obviously, $\operatorname{card}(X_0) = \mathbf{c}$. Suppose that $f \upharpoonright Y \in \mathcal{C}$ for no $Y \in [X_0]^{\mathbf{c}}$, i.e., $f \upharpoonright X_0 \in SZ$. Then $(1/f) \upharpoonright X_0 \in SZ$ and there exists an SZ-extension $f^* \in \mathbb{R}^{\mathbb{R}}$ of the function $(1/f) \upharpoonright X_0$. Then $(f^*f) \upharpoonright X_0 \in \mathcal{C}$, a contradiction. Hence there exists $Y \in [X]^{\mathbf{c}}$ such that $f \upharpoonright Y \in \mathcal{C}$. \Box

4. Compositions

Let

$$\mathcal{M}_{\text{out}}(SZ) = \{ f \in \mathbb{R}^{\mathbb{R}} : f \circ h \in SZ \text{ for each } h \in SZ \},$$
$$\mathcal{M}_{\text{in}}(SZ) = \{ f \in \mathbb{R}^{\mathbb{R}} : h \circ f \in SZ \text{ for each } h \in SZ \}.$$

Theorem 4.1. Assume that **c** is a regular cardinal. Then for every function $f \in \mathbb{R}^{\mathbb{R}}$ the following conditions are equivalent:

- (i) $f \in \mathcal{M}_{out}(SZ)$;
- (ii) $\operatorname{card}(f^{-1}(y)) < \mathbf{c}$ for each $y \in \mathbb{R}$, and every choice function $g: \operatorname{rng}(f) \to \mathbb{R}$, $g(y) \in f^{-1}(y)$, satisfies the following condition

for each
$$X \in [mg(f)]^{c}$$
 there exists a $Y \in [X]^{c}$ such that $g \upharpoonright Y \in C$; (*)

(iii) $f \in \mathcal{M}_{in}(SZ)$.

Proof. (i) \Rightarrow (ii). Fix $f \in \mathcal{M}_{out}(SZ)$. Suppose that $\operatorname{card}(f^{-1}(y)) = \mathbf{c}$ for some $y \in \mathbb{R}$. By Proposition 1.1 we can choose an SZ-function $g \in \mathbb{R}^{\mathbb{R}}$ with $\operatorname{rng}(g) \subset f^{-1}(y)$. Then $f \circ g \in \mathcal{C}$, a contradiction.

Suppose that there exists a choice function $g: \operatorname{rng}(f) \to \mathbb{R}$, $g(y) \in f^{-1}(y)$, without the property (*), i.e., that there exist $X \in [\operatorname{rng}(f)]^{e}$ and $g \in \mathbb{R}^{X}$ such that $g \in SZ$ and $f \circ g = \operatorname{id}_{X}$. Let $g^{*} \in \mathbb{R}^{\mathbb{R}}$ be an SZ-extension of g. Then $f \circ g^{*} \upharpoonright X \in \mathcal{C}$, so $f \circ g^{*} \notin SZ$ and consequently, $f \notin \mathcal{M}_{\operatorname{out}}(SZ)$, a contradiction.

(ii) \Rightarrow (i). Suppose that $f \circ h \notin SZ$ for some SZ-function $h \in \mathbb{R}^{\mathbb{R}}$. Then there exists $X \in [\mathbb{R}]^{c}$ such that $f \circ h \upharpoonright X \in C$. Note that $\operatorname{card}(\operatorname{rng}(f \circ h \upharpoonright X)) = \mathbf{c}$. Indeed, otherwise, by regularity of \mathbf{c} , $f \circ h$ is constant on some set $X_{0} \in [X]^{c}$ and because $\operatorname{card}(f^{-1}(y)) < \mathbf{c}$ for each y, h is constant on some set $X_{1} \in [X_{0}]^{c}$, a contradiction. Let $g : \operatorname{rng}(f) \to \mathbb{R}$, $g(y) \in f^{-1}(y)$, be a choice function such that $g(t) \in \operatorname{rng}(h \upharpoonright X)$ for $t \in \operatorname{rng}(f \circ h \upharpoonright X)$. Let $g \upharpoonright Y \in C$ for $Y \in [\operatorname{rng}(f \circ h \upharpoonright X)]^{c}$. Then $X_{0} = (f \circ h)^{-1}(Y) \cap X \in [X]^{c}$ and $h \upharpoonright X_{0} = g \circ (f \circ h \upharpoonright X_{0}) \in C$, a contradiction.

(iii) \Rightarrow (ii). Fix $f \in \mathcal{M}_{in}(SZ)$. Obviously, $\operatorname{card}(f^{-1}(y)) < \mathbf{c}$ for every $y \in \mathbb{R}$. Suppose that $g: \operatorname{rng}(f) \to \mathbb{R}$, $g(y) \in f^{-1}(y)$, is a choice function without the property (*), i.e., that there exists $X \in [\operatorname{rng}(f)]^{\mathbf{c}}$ such that $g \upharpoonright X \in SZ$. Let $g^* \in \mathbb{R}^{\mathbb{R}}$ be an SZ-extension of $g \upharpoonright X$. Then $g^* \circ f \upharpoonright (\operatorname{rng}(g|X)) = \operatorname{id}_{\operatorname{rng}(g \upharpoonright X)}$. But g is one-to-one. So, $\operatorname{card}(\operatorname{rng}(g \upharpoonright X)) = \mathbf{c}$ and $g^* \circ f \notin SZ$. A contradiction with $f \in \mathcal{M}_{in}(SZ)$.

(ii) \Rightarrow (iii). Suppose that $h \circ f \notin SZ$ for some $h \in SZ$. Then $h \circ f \upharpoonright X \in C$ for some $X \in [\mathbb{R}]^c$. Note that $\operatorname{card}(\operatorname{rng}(f \upharpoonright X)) = \mathbf{c}$ since $\operatorname{card}(f^{-1}(y)) < \mathbf{c}$ for each $y \in \mathbb{R}$ and \mathbf{c} is regular. Let $g:\operatorname{rng}(f) \to \mathbb{R}$, $g(y) \in f^{-1}(y)$, be a choice function such that $g(y) \in X$ for $y \in \operatorname{rng}(f \upharpoonright X)$ and let $Y \in [\operatorname{rng}(f \upharpoonright X)]^c$ be such that $g \upharpoonright Y \in C$. Then $h \upharpoonright Y = (h \circ f) \circ g \upharpoonright Y \in C$, a contradiction. \Box

Notice that in the proofs of implications (i) \Rightarrow (ii) and (iii) \Rightarrow (ii) we did not use the assumption that **c** is regular. Moreover, in the above proof of implication (ii) \Rightarrow (iii) we do not have to use the assumption of regularity of **c** if we additionally assume that f is one-to-one. (Or even only that $\sup{\operatorname{card}(f^{-1}(y)): y \in \mathbb{R}} < \mathbf{c}$.) This implies the following two corollaries.

Corollary 4.2. If c is regular then $\mathcal{M}_{out}(SZ) = \mathcal{M}_{in}(SZ)$.

Corollary 4.3. If a one-to-one function $f : \mathbb{R} \to \mathbb{R}$ satisfies condition (ii) from Theorem 4.1 then $f \in \mathcal{M}_{in}(SZ)$. The next result, being a version of Sierpiński–Zygmund theorem, will be used to show that Corollary 4.2 is false when \mathbf{c} is singular.

Theorem 4.4. Suppose that $\kappa \leq \mathbf{c}$ is a cardinal such that $\mathrm{cf}(\kappa) = \mathrm{cf}(\mathbf{c})$. Then for every $X \in [\mathbb{R}]^{\kappa}$ there exists $f: X \to \mathbb{R}$ such that $\mathrm{card}(\mathrm{rng} f) = \mathrm{cf}(\mathbf{c})$ and $f \upharpoonright X_0$ is continuous for no $X_0 \in [X]^{\kappa}$.

Proof. Let $\{\lambda_{\xi}: \xi < cf(\mathbf{c})\}$ and $\{\mu_{\xi}: \xi < cf(\mathbf{c})\}$ be increasing sequences of ordinal numbers such that $\kappa = \bigcup_{\xi < cf(\mathbf{c})} \lambda_{\xi}$ and $\mathbf{c} = \bigcup_{\xi < cf(\mathbf{c})} \mu_{\xi}$ and let $X = \{x_{\xi}: \xi < \kappa\}$. Choose a partition $\{X_{\xi}: \xi < cf(\mathbf{c})\}$ of X such that $card(X_{\xi}) = card(\lambda_{\xi})$ for every $\xi < cf(\mathbf{c})$ and let $\{g_{\xi}: \xi < \mathbf{c}\}$ be an enumeration of $\mathcal{C}_{G_{\delta}}$. By induction on $\xi < \kappa$ define a sequence $\langle y_{\xi} \in \mathbb{R}: \xi < cf(\mathbf{c}) \rangle$ such that for every $\xi < \kappa$

 $y_{\xi} \in \mathbb{R} \setminus \{g_{\eta}(x): \eta < \mu_{\xi} \& x \in X_{\xi}\}.$

Now, define h by putting $h(x) = y_{\xi}$ for $x \in X_{\xi}$ and $\xi < cf(\mathbf{c})$. It is easy to see that $rng(h) = \{y_{\xi}: \xi < cf(\mathbf{c})\}$. Also, if $g = g_{\eta} \in C_{G_{\xi}}$ and $\eta < \mu_{\xi}$ then $[h = g] \subset \bigcup_{\zeta \leqslant \xi} X_{\zeta}$. Thus, $card([h = g]) < \kappa$ and, as in Sierpiński–Zygmund's proof, we conclude that $h \upharpoonright X_0$ is continuous for no $X_0 \in [X]^{\kappa}$. \Box

Corollary 4.5. There exists an SZ function $h : \mathbb{R} \to \mathbb{R}$ with card(rng(h)) = cf(c).

Problem 4.6. Does there exist an SZ function $h : \mathbb{R} \to Y$ for every $Y \in [\mathbb{R}]^{cf(c)}$?

Corollary 4.7. If c is singular then $\mathcal{M}_{in}(SZ) \not\subset \mathcal{M}_{out}(SZ)$.

Proof. Let h be as in Corollary 4.5. Fix $x_0 \in \operatorname{rng}(h)$ and define a function f by putting $f(x) = x_0$ for $x \in \operatorname{rng}(h)$ and f(x) = x otherwise. Notice that $f \in \mathcal{M}_{in}(SZ)$. Indeed, consider $g \in SZ$. In order to show that $g \circ f \in SZ$ by way of contradiction suppose that there is an $X \in [\mathbb{R}]^c$ such that $g \circ f \upharpoonright X$ is continuous. But $\operatorname{card}(X \setminus \operatorname{rng}(h)) = \mathbf{c}$, since $\operatorname{cf}(\mathbf{c}) < \mathbf{c}$. Moreover, f(x) = x for every $x \in X \setminus \operatorname{rng}(h)$. So, $g \upharpoonright X \setminus \operatorname{rng}(h) = g \circ f \upharpoonright X \setminus \operatorname{rng}(h)$ is continuous on a set of cardinality \mathbf{c} , contradicting $g \in SZ$.

On the other hand, $f \circ h$ is constant, so $f \circ h \notin SZ$, while $h \in SZ$. Thus, $f \notin \mathcal{M}_{out}(SZ)$. \Box

Problem 4.8. Can inclusion $\mathcal{M}_{out}(SZ) \subset \mathcal{M}_{in}(SZ)$ be proved without the assumption that c is regular?

4.1. Compositions with SZ-functions from the left

Theorem 4.9. For each $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent:

- (i) there exists $h \in SZ \cap \mathbb{R}^{\mathbb{R}}$ such that $h \circ f \in SZ$;
- (ii) there exists $h : \mathbb{R} \to \mathbb{R}$ such that $h \circ f \in SZ$;
- (iii) $\operatorname{card}(f^{-1}(y)) < \mathbf{c}$ for each $y \in \mathbb{R}$.

Proof. (i) \Rightarrow (ii). Obvious.

(ii) \Rightarrow (iii). Suppose that card $(f^{-1}(y_0)) = \mathbf{c}$ for some $y_0 \in \mathbb{R}$. Then $h \circ f$ is constant on $f^{-1}(y_0)$, a contradiction.

(iii) \Rightarrow (i). First notice that there exists $\mathcal{E} \subseteq \mathbf{c}$ and a one-to-one enumeration $\{y_{\alpha}: \alpha \in \mathcal{E}\}$ of \mathbb{R} such that

$$\operatorname{card}(f^{-1}(y_{\alpha})) \leq \operatorname{card}(\alpha) \quad \text{for every } \alpha \in \mathcal{E}.$$
 (*)

To see it, let $\{y_{\alpha}: \alpha < \mathbf{c}\}$ be an enumeration of \mathbb{R} with each number appearing \mathbf{c} many times. For $y \in \mathbb{R}$ let $\alpha(y) = \min\{\alpha < \mathbf{c}: y_{\alpha} = y \& \operatorname{card}(f^{-1}(y)) \leq \operatorname{card}(\alpha)\}$ and put $\mathcal{E} = \{\alpha(y): y \in \mathbb{R}\}$. Then $\{y_{\alpha}: \alpha \in \mathcal{E}\}$ has the desired properties.

Next, let $\{g_{\xi}: \xi < \mathbf{c}\} = C_{G_{\delta}}$ and let $\{\alpha_{\xi}: \xi < \mathbf{c}\}$ be an increasing enumeration of \mathcal{E} . Then $\{y_{\alpha_{\xi}}: \xi < \mathbf{c}\}$ is a one-to-one enumeration of \mathbb{R} . For each $\xi < \mathbf{c}$ choose

$$h(y_{\alpha_{\xi}}) \in \mathbb{R} \setminus \left(\left\{ g_{\zeta}(y_{\alpha_{\xi}}) : \zeta < \xi \right\} \cup \bigcup \left\{ g_{\zeta} \left[f^{-1}(y_{\alpha_{\xi}}) \right] : \zeta < \xi \right\} \right).$$

Such a choice can be made, since the set $\bigcup \{ y_{\zeta}[f^{-1}(y_{\alpha_{\xi}})]: \zeta < \xi \}$ is a union of card $(\xi) < \mathbf{c}$ many sets, each set of cardinality $\leq \operatorname{card}(\alpha_{\xi}) < \mathbf{c}$.

It is clear that $h \in SZ$. To verify that $h \circ f \in SZ$ fix $\zeta < \mathbf{c}$. Observe that

$$[h \circ f = g_{\zeta}] \subseteq \bigcup_{\xi \leqslant \zeta} f^{-1}(y_{\alpha_{\xi}}).$$

Indeed, if $h \circ f(x) = g_{\zeta}(x)$ and $f(x) = y_{\alpha_{\xi}}$ some $\xi < \mathbf{c}$ then $h(y_{\alpha_{\xi}}) \in g_{\zeta}[f^{-1}(y_{\alpha_{\xi}})]$. So $\xi \leq \zeta$ and $x \in \bigcup_{\xi \leq \zeta} f^{-1}(y_{\alpha_{\xi}})$. Thus, by (*),

$$\operatorname{card}\bigl((h \circ f) \cap g_{\zeta}\bigr) \leqslant \operatorname{card}\biggl(\bigcup_{\xi \leqslant \zeta} f^{-1}(y_{\alpha_{\xi}})\biggr) \leqslant \operatorname{card}(\zeta) \cdot \operatorname{card}(\alpha_{\zeta}) < \mathbf{c}. \qquad \Box$$

Theorem 4.9 justifies restriction of our attention only to the functions from a family

 $\mathcal{R}_1 = \left\{ f \in \mathbb{R}^{\mathbb{R}}: \operatorname{card}(f^{-1}(y)) < \mathbf{c} \text{ for every } y \in \mathbb{R} \right\}$

and definition

$$c_{\text{out}}(SZ) = \min(\{\operatorname{card}(\mathcal{F}): \mathcal{F} \subset \mathcal{R}_1 \And \neg \exists h \in \mathbb{R}^{\mathbb{R}} \forall f \in \mathcal{F} h \circ f \in SZ\} \cup \{(2^{\mathbf{c}})^+\}) \\ = \min(\{\operatorname{card}(\mathcal{F}): \mathcal{F} \subset \mathcal{R}_1 \And \forall h \in \mathbb{R}^{\mathbb{R}} \exists f \in \mathcal{F} h \circ f \notin SZ\} \cup \{(2^{\mathbf{c}})^+\}).$$

Note that $SZ \subseteq \mathcal{R}_1$, so card $(\mathcal{R}_1) = 2^{\mathbf{c}}$.

Now, we have the following analog of Theorem 2.1.

Theorem 4.10. If **c** is a regular cardinal then

$$\mathbf{c} < c_{\text{out}}(SZ) \leqslant 2^{\mathbf{c}}$$

Proof. The inequality $\mathbf{c} < c_{\text{out}}(SZ)$ is proved similarly as the implication (iii) \Rightarrow (i) of Theorem 4.9. To see it, let $\mathcal{F} = \{f_{\xi}: \xi < \mathbf{c}\} \subseteq \mathcal{R}_1, \{g_{\xi}: \xi < \mathbf{c}\} = \mathcal{C}_{G_{\delta}} \text{ and } \{y_{\xi}: \xi < \mathbf{c}\}$ be a one-to-one enumeration of \mathbb{R} . For each $\xi < \mathbf{c}$ choose

$$h(y_{\xi}) \in \mathbb{R} \setminus \left(\bigcup \left\{ g_{\zeta} \left[f_{\eta}^{-1}(y_{\xi}) \right] : \zeta, \eta < \xi \right\} \right).$$

The possibility of such a choice is guaranteed by the regularity of \mathbf{c} , since the set $\bigcup \{g_{\zeta}[f_{\eta}^{-1}(y_{\zeta})]: \zeta, \eta < \xi\}$ is a union of less than \mathbf{c} many sets of cardinality less than \mathbf{c} . To see that $h \circ f_{\eta} \in SZ$ for every $\eta < \mathbf{c}$ it is enough to notice that

$$[h \circ f_{\eta} = g_{\zeta}] \subseteq \bigcup_{\xi \leqslant \max\{\zeta, \eta\}} f_{\eta}^{-1}(y_{\xi}) \quad \text{for every } \zeta < \mathbf{c}.$$

To prove the inequality $c_{out}(SZ) \leq 2^{\mathbf{c}}$ take $\mathcal{F} = \mathcal{R}_1$ and $h \in \mathbb{R}^{\mathbb{R}}$. It is enough to find $f \in \mathcal{F}$ such that $h \circ f \notin SZ$.

By way of contradiction assume that $h \circ f \in SZ$ for every $f \in \mathcal{R}_1$. Then, $h = h \circ id \in SZ$, since $id \in \mathcal{R}_1$. In particular, $card(rng(h)) = \mathbf{c}$, since otherwise h would be constant on a set of cardinality \mathbf{c} . So, there exists $f \in \mathcal{R}_1$ such that $f(y) \in h^{-1}(y)$ for every $y \in rng(h)$. Then $h \circ f(y) = y$ for every $y \in rng(h)$ and so $card((h \circ f) \cap id) = \mathbf{c}$, a contradiction. \Box

The importance of the assumption of regularity of \mathbf{c} in Theorem 4.10 is not clear. For an arbitrary value of \mathbf{c} , including the case when \mathbf{c} is singular, we have only the following theorem.

Theorem 4.11. $cf(c) \leq c_{out}(SZ) \leq 2^{cf(c)} = c^{cf(c)}$.

Proof. The proof of the inequality $cf(\mathbf{c}) \leq c_{out}(SZ)$ is a simple modification of the proof of the implication (iii) \Rightarrow (i) from Theorem 4.9. To see it, take $\mathcal{F} \subseteq \mathcal{R}_1$ with $card(\mathcal{F}) < cf(\mathbf{c})$ and choose a one-to-one enumeration $\{y_\alpha : \alpha \in \mathcal{E}\}$ of $\mathbb{R}, \mathcal{E} \subseteq \mathbf{c}$, such that

$$\operatorname{card}\left(\bigcup_{f\in\mathcal{F}}f^{-1}(y_{\alpha})\right)\leqslant\operatorname{card}(\alpha)\quad\text{for every }\alpha\in\mathcal{E}.$$
 (*)

Let $\{g_{\xi}: \xi < \mathbf{c}\} = C_{G_{\xi}}$ and $\{\alpha_{\xi}: \xi < \mathbf{c}\}$ be as in Theorem 4.9 and for each $\xi < \mathbf{c}$ choose

$$h(y_{\alpha_{\xi}}) \in \mathbb{R} \setminus \left(\bigcup \left\{ g_{\zeta} \left[\bigcup \left\{ f^{-1}(y_{\alpha_{\xi}}) : f \in \mathcal{F} \right\} \right] : \zeta < \xi \right\} \right)$$

It is easy to see that for such defined h we have $h \circ f \in SZ$ for every $f \in \mathcal{F}$.

The other inequality for regular **c** follows from Theorem 4.10. So, assume that **c** is singular and let $\langle \lambda_{\alpha} : \alpha < cf(\mathbf{c}) \rangle$ be an increasing sequence of cardinals such that $\lambda_{\alpha} \nearrow \mathbf{c}$. Let S be the set of all one-to-one functions $s : cf(\mathbf{c}) \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $card(g^{-1}(y)) = \mathbf{c}$ for every $y \in \mathbb{R}$. For every pair $s, t \in S$ choose: a sequence of sets $\langle X_{\alpha}^{st} \subset g^{-1}(s(\alpha)) : \alpha < cf(\mathbf{c}) \rangle$ such that $card(X_{\alpha}^{st}) = \lambda_{\alpha}$ for each $\alpha < cf(\mathbf{c})$, and a function $f_{st} \in \mathcal{R}_1$ such that $f_{st}(x) = t(\alpha)$ for every $x \in X_{\alpha}^{st}$ and $\alpha < cf(\mathbf{c})$. Define

$$\mathcal{F} = \{ \mathrm{id} \} \cup \{ f_{st} \colon s, t \in S \}$$

and notice that $\operatorname{card}(\mathcal{F}) = \mathbf{c}^{\operatorname{cf}(\mathbf{c})}$. It is enough to show that for every $h : \mathbb{R} \to \mathbb{R}$ there exists $f \in \mathcal{F}$ such that $h \circ f \notin SZ$.

By way of contradiction assume that $h \circ f \in SZ$ for every $f \in \mathcal{F}$. Then, $h = h \circ id \in SZ$, since $id \in \mathcal{F}$. In particular, $\operatorname{card}(\operatorname{rng}(h)) \ge \operatorname{cf}(\mathbf{c})$, since otherwise h would be constant on a set of cardinality \mathbf{c} . Choose $s, t \in S$ such that $s[\operatorname{cf}(\mathbf{c})] \subset \operatorname{rng}(h)$ and $t(\alpha) \in h^{-1}(s(\alpha))$ for every $\alpha < \operatorname{cf}(\mathbf{c})$. Then, for every $\alpha < \operatorname{cf}(\mathbf{c})$ and $x \in X_{\alpha}^{st}$ we have

$$h \circ f_{st}(x) = h \circ t(\alpha) = s(\alpha) = g(x).$$

Thus, $h \circ f_{st}$ equals to g on

$$X_{st} = \bigcup_{\alpha < \mathrm{cf}(\mathbf{c})} X_{\alpha}^{st}$$

So $h \circ f_{st} \notin SZ$, since $\operatorname{card}(X_{st}) = \mathbf{c}$. \Box

By Theorem 4.11 we can restrict our attention in the definition of $c_{out}(SZ)$ to functions h from SZ. This is the case, since we can always assume that the identity function id belong to \mathcal{F} . So, we have the following corollary.

Corollary 4.12.

$$c_{\text{out}}(SZ) = \min(\{\operatorname{card}(\mathcal{F}) : \mathcal{F} \subset \mathcal{R}_1 \And \neg \exists h \in SZ \forall f \in \mathcal{F} h \circ f \in SZ \} \cup \{(2^{\mathfrak{c}})^+\}).$$

Despite of some knowledge of cf(c) for singular c, given by Theorem 4.11, the following problem remains open.

Problem 4.13. Is the assumption of regularity of c important in Theorem 4.10?

On the other hand, the case when $\mathbf{c} = \kappa^+$ for some cardinal κ the number $c_{\text{out}}(SZ)$ is pretty easily handled by our results from the previous sections and the following theorem.

Theorem 4.14. If $\mathbf{c} = \kappa^+$ for some cardinal κ then $c_{out}(SZ) = a(SZ)$.

Proof. By Theorem 2.14 it is enough to show that $c_{out}(SZ) = d_c$.

" $c_{\text{out}}(SZ) \leq d_{\mathbf{c}}$ ". Let \mathcal{N} stand for the set of irrational numbers and let $\mathcal{F} \subseteq \mathcal{N}^{\mathcal{N}}$ be such that $\operatorname{card}(\mathcal{F}) < c_{\text{out}}(SZ)$. We will show that $\operatorname{card}(\mathcal{F}) < d_{\mathbf{c}}$ by finding $h : \mathcal{N} \to \mathcal{N}$ such that $\operatorname{card}(h \cap f) < \mathbf{c}$ for every $f \in \mathcal{F}$.

For $f \in \mathcal{F}$ define a partial function \hat{f}^{\star} on a subset of \mathcal{N}^2 by putting

$$\hat{f}^{\star}(\langle x, f(x) \rangle) = x$$

for every $x \in \mathcal{N}$. Notice that \hat{f}^* is one-to-one on its domain. By identifying \mathcal{N}^2 with \mathcal{N} via natural homeomorphism we can consider \hat{f}^* as a partial function on \mathbb{R} . Let $f^*: \mathbb{R} \to \mathbb{R}$ be an extension of \hat{f}^* such that $f^* \in \mathcal{R}_1$ and define $\hat{\mathcal{F}} = \{\text{id}\} \cup \{f^*: f \in \mathcal{F}\}$. Since $\operatorname{card}(\hat{\mathcal{F}}) \leq \operatorname{card}(\mathcal{F}) + 1 < c_{\operatorname{out}}(SZ)$ there exists an $\hat{h} \in \mathbb{R}^{\mathbb{R}}$ such that $\hat{h} \circ \hat{f} \in SZ$ for every $\hat{f} \in \hat{\mathcal{F}}$. We will prove that for every $f \in \mathcal{F}$

$$\operatorname{card}\left(\left\{x \in \mathcal{N}: \ f(x) = \hat{h}(x)\right\}\right) < \mathbf{c}.$$
(1)

It is enough, since $\hat{h} = \hat{h} \circ id \in SZ$ implies that $\hat{h}^{-1}(\mathbb{Q})$ has cardinality $< \mathbf{c}$, and so, there exists $h: \mathcal{N} \to \mathcal{N}$ such that $\operatorname{card}(\{x \in \mathcal{N}: \hat{h}(x) \neq h(x)\}) < \mathbf{c}$.

To see (1) let $f \in \mathcal{F}$ and let $x \in \mathcal{N}$ be such that $f(x) = \hat{h}(x)$. Then

$$\hat{h} \circ f^{\star}(\langle x, f(x) \rangle) = \hat{h}(x) = f(x) = \pi_2(\langle x, f(x) \rangle),$$

where $\pi_2: \mathcal{N}^2 \to \mathcal{N}$ is the projection onto the second coordinate, thus continuous. So,

$$\operatorname{card}\left(\left\{x \in \mathcal{N}: f(x) = \hat{h}(x)\right\}\right) \leq \operatorname{card}\left(\left[\hat{h} \circ f^{\star} = \pi_{2}\right]\right) < \mathbf{c}$$

since $\hat{h} \circ f^* \in SZ$. This finishes the proof of " $c_{out}(SZ) \leq d_c$ ". (Notice, we do not use here even regularity of c!)

" $d_{\mathbf{c}} \leq c_{\text{out}}(SZ)$ ". Now assume that $\mathcal{F} \subset \mathcal{R}_1$ and $\operatorname{card}(\mathcal{F}) < d_{\mathbf{c}}$. For every $f \in \mathcal{F}$ choose the family $\{\hat{f}_{\alpha}: \alpha < \kappa\}$ such that $f^{-1}(y) = \{\hat{f}_{\alpha}(y): \alpha < \kappa\}$ for each $y \in \operatorname{rng}(f)$, and define

$$\widehat{\mathcal{F}} = \big\{ \bar{g} \circ \widehat{f}_{\alpha} \colon g \in \mathcal{C}_{G_{\delta}} \And f \in \mathcal{F} \And \alpha < \kappa \big\},\$$

where $\bar{g} \in \mathbb{R}^{\mathbb{R}}$ extends $g \in C_{G_{\delta}}$ by associating 0 at all undefined places. Note that $\operatorname{card}(\widehat{\mathcal{F}}) \leq \operatorname{card}(\mathcal{F}) \cdot \mathbf{c} < d_{\mathbf{c}}$, hence there exists an $h \in \mathbb{R}^{\mathbb{R}}$ such that $\operatorname{card}(h \cap \widehat{f}) < \mathbf{c}$ for each $\widehat{f} \in \widehat{\mathcal{F}}$. We shall verify that $h \circ f \in SZ$ for every $f \in \mathcal{F}$. For this fix $g \in C_{G_{\delta}}$ and observe that

$$\begin{aligned} \operatorname{card}((h \circ f) \cap g) &= \operatorname{card}(\left\{x: \ h \circ f(x) = g(x)\right\}) \\ &= \operatorname{card}\left(\bigcup_{\alpha < \kappa} \left\{\hat{f}_{\alpha}(y): \ y \in \operatorname{rng}(f) \ \& \ h(y) = g \circ \hat{f}_{\alpha}(y)\right\}\right) \\ &= \sum_{\alpha < \kappa} \operatorname{card}\left(\left\{y: \ h(y) = g \circ \hat{f}_{\alpha}(y)\right\}\right) < \mathbf{c}.\end{aligned}$$

This finishes the proof of Theorem 4.14. \Box

Problem 4.15. Can Theorem 4.14 be proved for any value of c? What about c being a regular limit cardinal?

Theorem 4.14 implies immediately the following corollary.

Corollary 4.16. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC that the Continuum Hypothesis ($\mathbf{c} = \aleph_1$) is true, $2^{\mathbf{c}} = \lambda$, and $c_{out}(SZ) = \kappa$.

4.2. Compositions with SZ functions from the right

In this section we will examine for which functions $f \in \mathbb{R}^{\mathbb{R}}$ there exists an $h \in \mathbb{R}^{\mathbb{R}}$ such that $f \circ h \in SZ$. The class of all functions $f \in \mathbb{R}^{\mathbb{R}}$ having this property will be denoted by \mathcal{R}_2 . Also, as in previous sections, we will define the cardinal $c_{in}(SZ)$ analogous to $c_{out}(SZ)$ restricting our attention to the maximal family for which such a definition has a sense, i.e., to \mathcal{R}_2 . Thus, we define

90

$$c_{in}(SZ)$$

= min({card(\mathcal{F}): \mathcal{F} \subset \mathcal{R}_2 \& \neg \exists h \in \mathbb{R}^{\mathbb{R}} \forall f \in \mathcal{F} f \circ h \in SZ } \cup \{(2^{\mathbf{c}})^+\})
= min({card(\mathcal{F}): \mathcal{F} \subset \mathcal{R}_2 \& \forall h \in \mathbb{R}^{\mathbb{R}} \exists f \in \mathcal{F} f \circ h \notin SZ } \cup \{(2^{\mathbf{c}})^+\}).

The next theorem gives a characterization of the family \mathcal{R}_2 in case when c is regular.

Theorem 4.17. Assume that **c** is a regular cardinal. For each $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent:

- (i) there exists $h \in SZ \cap \mathbb{R}^{\mathbb{R}}$ such that $f \circ h \in SZ$;
- (ii) there exists $h : \mathbb{R} \to \mathbb{R}$ such that $f \circ h \in SZ$;
- (iii) $\operatorname{card}(\operatorname{rng}(f)) = \mathbf{c}$.

Proof. (i) \Rightarrow (ii). Obvious.

(ii) \Rightarrow (iii). Note that card(rng(h)) = **c**. Indeed, otherwise, by regularity of **c**, card($h^{-1}(y_0)$) = **c** for some $y_0 \in \mathbb{R}$ and then $f \circ h$ is constant on $h^{-1}(y_0)$ for any f, a contradiction. Next, by way of contradiction, suppose that card(rng(f)) < **c**. Then, there exists a $y_0 \in \mathbb{R}$ such that card($f^{-1}(y_0) \cap \operatorname{rng}(h)$) = **c**. Therefore,

$$\operatorname{card}((f \circ h)^{-1}(y_0)) = \mathbf{c},$$

a contradiction.

(iii)
$$\Rightarrow$$
 (i). Let $\{g_{\alpha}: \alpha < \mathbf{c}\} = \mathcal{C}_{G_{\delta}}$, and $\{x_{\alpha}: \alpha < \mathbf{c}\} = \mathbb{R}$. For every $\alpha < \mathbf{c}$ choose $h(x_{\alpha}) \in \mathbb{R} \setminus \left(\{g_{\beta}(x_{\alpha}): \beta \leq \alpha\} \cup \bigcup_{\beta \leq \alpha} f^{-1}(g_{\beta}(x_{\alpha})) \right).$

The choice can be made since, by (iii),

$$\mathbb{R} \setminus \left(\left\{ g_{\beta}(x_{\alpha}) \colon \beta \leqslant \alpha \right\} \cup \bigcup_{\beta \leqslant \alpha} f^{-1}(g_{\beta}(x_{\alpha})) \right)$$

is not empty.

Obviously, $h \in SZ$. It is enough to verify that $f \circ h \in SZ$. So, fix $\alpha < \mathbf{c}$. Then

$$\left\{x: f \circ h(x) = g_{\alpha}(x)\right\} = \left\{x: h(x) \in f^{-1}(g_{\alpha}(x))\right\} \subset \{x_{\beta}: \beta < \alpha\},$$

and so card $((f \circ h) \cap g_{\alpha}) < \mathbf{c}$. \Box

Note that we did not use the regularity assumption in implications (iii) \Rightarrow (i) and (i) \Rightarrow (ii). In particular, if

$$\mathcal{R}_2^{\star} = \left\{ f \in \mathbb{R}^{\mathbb{R}} : \operatorname{card}(\operatorname{rng}(f)) = \mathbf{c} \right\}$$

then

Corollary 4.18. $\mathcal{R}_2^{\star} \subset \mathcal{R}_2$.

We have also

Corollary 4.19. If **c** is a regular cardinal then $\mathcal{R}_1 \subset \mathcal{R}_2 = \mathcal{R}_2^*$.

Example 4.20. There exist functions $f_0, f_1 \in \mathcal{R}_2^*$ such that for every $h : \mathbb{R} \to \mathbb{R}$ either $f_0 \circ h \notin SZ$ or $f_1 \circ h \notin SZ$.

Proof. Indeed, decompose the real line onto two sets A_0 and A_1 such that $\operatorname{card}(A_i) = \mathbf{c}$ for i < 2, and define a function f_i such that $f_i(A_i) = 0$ and $f_i \upharpoonright A_{1-i}$ is one-to-one. Fix an $h: \mathbb{R} \to \mathbb{R}$. Since $\mathbb{R} = h^{-1}(\mathbb{R}) = h^{-1}(A_0) \cup h^{-1}(A_1)$ there exists i < 2 such that $\operatorname{card}(h^{-1}(A_i)) = \mathbf{c}$. Then $\operatorname{card}((f_i \circ h)^{-1}(0)) = \operatorname{card}(h^{-1}(A_i)) = \mathbf{c}$, so $f_i \circ h \notin SZ$. \Box

Corollary 4.21. $c_{in}(SZ) = 2$.

4.3. Coding functions by SZ-functions

In the previous sections we examined when for a given function $f \in \mathbb{R}^{\mathbb{R}}$ there exist two SZ-functions $g, h \in \mathbb{R}^{\mathbb{R}}$ such that $f \circ h = g$ or $h \circ f = g$. In this section we will ask for which $f \in \mathbb{R}^{\mathbb{R}}$ there exist SZ-functions $g, h \in \mathbb{R}^{\mathbb{R}}$ such that $f = g \circ h$ or $f = h \circ g$, i.e., that f is coded by two SZ-functions. Note that even when for some f the first set of questions have a positive answer with h being one-to-one, this does not imply the positive answer for the second set of questions, since the inverse of an SZ-function does not have to be SZ. In fact, it is consistent with ZFC that no SZ-function $h: \mathbb{R} \to \mathbb{R}$ has an SZ inverse. This happens in the iterated perfect set model, where there is no SZ-function from \mathbb{R} onto \mathbb{R} [1]. (If h^{-1} is SZ then it is onto \mathbb{R} and any of its SZextension is an SZ-function from \mathbb{R} onto \mathbb{R} .) The same example also shows, that the set of questions we consider in this section cannot have a positive answer in ZFC for any function from \mathbb{R} onto \mathbb{R} , even for the identity function. Thus, we will work here with the additional set theoretical assumptions.

We will start with the following lemmas.

Lemma 4.22. Assume that \mathbf{c} is a regular cardinal. Then the class \mathcal{R}_1 is closed under the compositions of functions.

Proof. Suppose that $f = f_2 \circ f_1$, $f_1, f_2 \in \mathcal{R}_1$ and $\operatorname{card}(f^{-1}(y_0)) = \mathbf{c}$ for $y_0 \in \mathbb{R}$. Then f is constant on the set $X = f^{-1}(y_0) = \bigcup \{(f_1)^{-1}(t): t \in (f_2)^{-1}(y_0)\}$, so either f_1 or f_2 is constant on a set of cardinality \mathbf{c} , a contradiction. \Box

Note that if c is a singular cardinal then the conclusion of Lemma 4.22 is false.

Proposition 4.23. If **c** is a singular cardinal then every function from \mathbb{R} into \mathbb{R} is a composition of two functions from the class \mathcal{R}_1 .

Proof. Suppose that $\mathbb{R} = \{x_{\alpha}: \alpha < \mathbf{c}\}$, $\kappa = \mathrm{cf}(\mathbf{c}) < \mathbf{c}$ and $\langle \lambda_{\alpha}: \alpha < \kappa \rangle$ is an increasing sequence of cardinals such that $\mathbf{c} = \bigcup_{\alpha < \kappa} \lambda_{\alpha}$. Fix $f \in \mathbb{R}^{\mathbb{R}}$. For every $\alpha < \mathbf{c}$ let $X_{\alpha} = f^{-1}(x_{\alpha})$ and let $X_{\alpha} = \bigcup_{\beta < \kappa} X_{\alpha,\beta}$ be a partition such that $\mathrm{card}(X_{\alpha,\beta}) \leq \lambda_{\beta}$

for every $\beta < \kappa$. Choose a sequence $\langle Y_{\alpha}: \alpha < \mathbf{c} \rangle$ of pairwise disjoint sets of reals, each of cardinality equal to κ ; $Y_{\alpha} = \{y_{\alpha,\beta}: \beta < \kappa\}$ and define $f_1(x) = y_{\alpha,\beta}$ for $x \in X_{\alpha,\beta}$ and $\hat{f}_2(y_{\alpha,\beta}) = x_{\alpha}$ for $\alpha < \mathbf{c}, \beta < \kappa$. Let $f_2 \in \mathcal{R}_1$ be any extension of \hat{f}_2 . Then $f = f_2 \circ f_1$. \Box

Lemma 4.24. Assume $f \in \mathcal{R}_1$. Then $f \in SZ$ if and only if $card(f \cap g) < c$ for each continuous nowhere constant function g defined on a G_{δ} -set.

Proof. The implication " \Rightarrow " is obvious. To prove " \Leftarrow " assume that g is a continuous function defined on a G_{δ} -set G. Let $\langle G_n \rangle_{n < \omega}$ be a sequence of all maximal intervals in G (i.e., nonempty sets of the form $G \cap (a, b)$, for a < b) on which g is constant. Then $H = G \setminus \bigcup_{n < \omega} G_n$ is a G_{δ} set and $g \upharpoonright H$ is nowhere constant. Moreover,

$$g = (g \!\upharpoonright\! H) \cup \bigcup_{n < \omega} (g \!\upharpoonright\! G_n)$$

and for each $n < \omega$, $g \upharpoonright G_n$ is constant, so $\operatorname{card}((g \upharpoonright G_n) \cap f) < \mathbf{c}$. Hence

$$g \cap f = \left((g \upharpoonright H) \cap f \right) \cup \bigcup_{n < \omega} \left((g \upharpoonright G_n) \cap f \right)$$

and $\operatorname{card}(g \cap f) < \mathbf{c}$ since $\operatorname{cf}(\mathbf{c}) > \omega$. \Box

The next theorem tells us that for every sequence $\langle f_{\alpha}: \alpha < \mathbf{c} \rangle$ of \mathcal{R}_1 functions there exists a sequence $\langle f_{\alpha}^{\triangleright}: \alpha < \mathbf{c} \rangle$ of their SZ codes and an o-decoder function $h \in SZ$ such that every f_{α} can be "right o-decoded" by h from $f_{\alpha}^{\triangleright}$.

Theorem 4.25. Assume that the real line is not a union of less than \mathbf{c} many meager sets. Then for every family $\{f_{\alpha}: \alpha < \mathbf{c}\} \subset \mathcal{R}_1$ there is a family $\{f_{\alpha}^{\triangleright}: \alpha < \mathbf{c}\}$ of SZ-functions and a "decoding" function $h \in SZ$ and such that $f_{\alpha}^{\triangleright} \circ h = f_{\alpha}$ for each $\alpha < \mathbf{c}$.

Proof. Let $C_n = \{g_\alpha: \alpha < \mathbf{c}\}$ be an enumeration of all nowhere constant $g \in C_{G_\delta}$ and let $\{x_\alpha: \alpha < \mathbf{c}\} = \mathbb{R}$. For every $\alpha < \mathbf{c}$ choose

$$h(x_{\alpha}) \in \mathbb{R} \setminus \left(\left\{ g_{\beta}(x_{\alpha}) : \beta \leqslant \alpha \right\} \cup \left\{ h(x_{\beta}) : \beta < \alpha \right\} \right.$$
$$\cup \bigcup \left\{ g_{\beta}^{-1}(f_{\nu}(x_{\alpha})) : \beta, \nu \leqslant \alpha \right\} \right).$$

Note that the choice can be made since every set $g_{\beta}^{-1}(f_{\nu}(x_{\alpha}))$ is meager and \mathbb{R} is not a union of less than **c** many meager sets.

It is easy to observe that the function h is one-to-one and so, $h \in \mathcal{R}_1$. Also, by our choice, card([h = g]) < c for every $g \in \mathcal{C}_n$. So, by Lemma 4.24, $h \in SZ$.

Now for $\nu < \mathbf{c}$ define f_{ν}^{\triangleright} . Put $f_{\nu}^{\triangleright}(h(x_{\alpha})) = f_{\nu}(x_{\alpha})$ for every $\alpha < \mathbf{c}$ and for $x \notin \operatorname{rng}(h)$ define $f_{\nu}^{\triangleright}(x) = h(x)$. Clearly $f_{\nu} = f_{\nu}^{\triangleright} \circ h$ for every $\nu < \mathbf{c}$. To see that $f_{\nu}^{\triangleright} \in SZ$ first notice that $f_{\nu}^{\triangleright} \in \mathcal{R}_{1}$, since for every $y \in \mathbb{R}$ the set

$$(f_{\nu}^{\triangleright})^{-1}(y) = \{h(x): f_{\nu}^{\triangleright}(h(x)) = y\} \cup \{z \in \mathbb{R} \setminus \mathrm{rng}(h): f_{\nu}^{\triangleright}(z) = y\}$$
$$\subset h[f_{\nu}^{-1}(y)] \cup h^{-1}(y)$$

has cardinality less than **c** as $h, f_{\nu} \in \mathcal{R}_1$. Moreover, for every $\beta < \mathbf{c}$

$$\begin{split} [f_{\nu}^{\triangleright} &= g_{\beta}] = \left\{ h(x); \ f_{\nu}^{\triangleright}(h(x)) = g_{\beta}(h(x)) \right\} \cup \left\{ z \in \mathbb{R} \setminus \operatorname{rng}(h); \ f_{\nu}^{\triangleright}(z) = g_{\beta}(z) \right\} \\ &= h \big[\left\{ x; \ f_{\nu}(x) = g_{\beta}(h(x)) \right\} \big] \cup \big\{ z \in \mathbb{R} \setminus \operatorname{rng}(h); \ h(z) = g_{\beta}(z) \big\} \\ &= h \big[\left\{ x; \ h(x) \in g_{\beta}^{-1}(f_{\nu}(x)) \right\} \big] \cup \big[[h = g_{\beta}] \setminus \operatorname{rng}(h) \big) \\ &\subset h \big[\left\{ x_{\alpha}; \ \alpha < \max\{\beta, \nu\} \right\} \big] \cup [h = g_{\beta}]. \end{split}$$

Thus, $\operatorname{card}([f_{\nu}^{\triangleright} = g]) < \mathbf{c}$ for every $g \in \mathcal{C}_n$ and, by Lemma 4.24, $f_{\nu}^{\triangleright} \in SZ$. \Box

Lemma 4.22 together with Theorem 4.25 yield to the following result:

Corollary 4.26. Assume that the real line is not a union of less than **c** many meager sets and that **c** is a regular cardinal. For every $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent:

(i) there exist h, f[▷] ∈ SZ such that f = f[▷] ∘ h;
(ii) f ∈ R₁.

Note that Theorem 4.25 cannot be proved in ZFC since, as mentioned above, there exists a model V of ZFC in which no real function onto \mathbb{R} (including the identity function) is a composition of two SZ-functions. Nevertheless, we have the following example.

Example 4.27. There exists an SZ-function $h : \mathbb{R} \to \mathbb{R}$ such that its *n*th composition h^n is SZ for every n > 0.

Proof. Let $\{g_{\alpha}: \alpha < \mathbf{c}\} = C_{G_{\delta}}$ and $\{x_{\alpha}: \alpha < \mathbf{c}\} = \mathbb{R}$. For every $\gamma < \mathbf{c}$ choose $h(x_{\gamma}) \in \mathbb{R} \setminus (\{g_{\beta}(x_{\alpha}): \alpha, \beta \leq \gamma\} \cup \{x_{\alpha}: \alpha \leq \gamma\}).$

Observe that $h \in SZ$. We shall verify that $h^n \in SZ$ for n > 1. Suppose that $g_\beta(x_\alpha) = h^n(x_\alpha)$. Let $x_\gamma = h^{n-1}(x_\alpha)$. Note that $\gamma > \alpha$ and $g_\beta(x_\alpha) = h(x_\gamma)$, so $\gamma < \beta$. Therefore $\{x: h^n(x) = g_\beta(x)\} \subset \{x_\alpha: \alpha < \beta\}$, so $\operatorname{card}(h^n \cap g_\beta) < \mathfrak{c}$. \Box

Now, we consider the following cardinals. (See [4].)

$$c_r(SZ) = \min\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathcal{R}_1 \ \& \ \neg \exists h \in SZ \ \forall f \in \mathcal{F} \ \exists f^{\triangleright} \in SZ \ f = f^{\triangleright} \circ h\}$$
$$= \min\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathcal{R}_1 \ \& \ \forall h \in SZ \ \exists f \in \mathcal{F} \ \forall f^{\triangleright} \in SZ \ f \neq f^{\triangleright} \circ h\}$$

and

$$c_l(SZ) = \min\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathcal{R}_1 \ \& \ \neg \exists h \in SZ \ \forall f \in \mathcal{F} \ \exists f^{\triangleleft} \in SZ \ f = h \circ f^{\triangleleft} \}$$
$$= \min\{\operatorname{card}(\mathcal{F}): \ \mathcal{F} \subset \mathcal{R}_1 \ \& \ \forall h \in SZ \ \exists f \in \mathcal{F} \ \forall f^{\triangleleft} \in SZ \ f \neq h \circ f^{\triangleleft} \}.$$

(We will assign the value $(2^{c})^{+}$ in case when the minimum is run over the empty set.)

Note, that by the remark above in the iterated perfect set model the following corollary holds.

94

Corollary 4.28. It is consistent with ZFC that $\mathbf{c} = \omega_2$ and $c_r(SZ) = c_l(SZ) = 1$.

Theorem 4.29. Assume that the real line is not a union of less than c many meager sets and that c is a regular cardinal. Then

$$\mathbf{c} < c_r(SZ) \leqslant 2^{\mathbf{c}}.$$

Proof. The inequality $\mathbf{c} < c_r(SZ)$ follows from Theorem 4.25. To prove the inequality $c_r(SZ) \leq 2^{\mathbf{c}}$ it is enough to show that for every $h \in SZ$ there exists $f \in SZ$ such that $g \circ h = f$ for no $g \in SZ$. Fix $h \in SZ$ and recall that $\operatorname{card}(\operatorname{rng}(h)) = \mathbf{c}$.

Set f = h and suppose that $g \circ h = h$ for some $g \in \mathbb{R}^{\mathbb{R}}$. Then g(h(x)) = h(x), so $\operatorname{rng}(h) \subset [g = \operatorname{id}]$ and consequently, $\operatorname{card}(g \cap \operatorname{id}) = \mathbf{c}$, hence $g \notin SZ$. \Box

To determine how big can be the cardinal $c_r(SZ)$ we shall use the following poset:

$$\mathbb{P}^{\triangleright} = \left\{ \langle p, E, G \rangle: \ p \in \mathbb{P} \& G \subseteq \mathcal{C}_n \& E \subseteq \mathbb{R}^{\mathbb{R}} \& \operatorname{card}(E) + \operatorname{card}(G) < \mathbf{c} \right\}$$

ordered by

 $\langle p, E, G \rangle \leqslant \langle q, F, H \rangle$ iff $p \supseteq q$ and $E \supseteq F$ and $G \supseteq H$ and $\forall x \in \operatorname{dom}(p) \setminus \operatorname{dom}(q) \ \forall f \in F \ \forall g \in H \ p(x) \notin g^{-1}(f(x)),$

where C_n is formed by nowhere constant $C_{G_{\delta}}$ functions.

The following theorem can be proved analogously to [3, Theorem 3.4].

Theorem 4.30. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC + CH that $2^{\mathbf{c}} = \lambda$ and $Lus_{\kappa}(\mathbb{P}^{\diamond})$ holds.

We will prove the following theorem.

Theorem 4.31. If $\mathbf{c} = \omega_1$ and $\kappa > \mathbf{c}$ is a regular cardinal then $\operatorname{Lus}_{\kappa}(\mathbb{P}^{\triangleright})$ implies that $c_r(SZ) = \kappa$.

This and Theorem 4.30 will immediately imply the following corollary.

Corollary 4.32. Let $\lambda \ge \kappa \ge \omega_2$ be cardinals such that $cf(\lambda) > \omega_1$ and κ is regular. Then it is relatively consistent with ZFC + CH that $2^c = \lambda$ and $c_r(SZ) = \kappa$.

The proof of Theorem 4.31 will be split into three lemmas.

Lemma 4.33.

- (i) Assume that a union of less than continuum many meager sets is meager again. Then Lus_κ(ℙ[▷]) ⇒ Lus_κ(ℙ).
- (ii) For any regular κ we have $\operatorname{Lus}_{\kappa}(\mathbb{P}^{\triangleright}) \Rightarrow \operatorname{MA}_{\kappa}(\mathbb{P}^{\triangleright})$.

Proof. The proof is similar to the proof of Lemma 2.7. The only modification is that in the proof of (i) we must replace the condition "card $(r^{-1}(y)) = \mathbf{c}$ for every $y \in \mathbb{R}$ " by "for every $y \in \mathbb{R}$ the level set $r^{-1}(y)$ is not meager" and that we choose

$$s(x) \in r^{-1}(q(x)) \setminus \bigcup \left\{ g^{-1}(f(x)) \colon f \in E \& g \in G \right\}.$$

Lemma 4.34. Assume that **c** and κ are regular cardinals and $\kappa > \mathbf{c}$. Then $\operatorname{Lus}_{\kappa}(\mathbb{P})$ implies that $c_r(SZ) \leq \kappa$.

Proof. Let $\langle G_{\alpha}: \alpha < \kappa \rangle$ be a κ -Lusin sequence of \mathbb{P} -filters and define

$$g_{\alpha} = \bigcup G_{\alpha}$$

Then similarly as in the proof of Lemma 2.8 we can assume that each g_{α} is a total function from \mathbb{R} into \mathbb{R} . Let $\{x_{\xi}: \xi < \mathbf{c}\}$ be an enumeration of \mathbb{R} . For every $\alpha < \kappa$ put

$$X_{\alpha} = \left\{ x_{\xi} : g_{\alpha}(x_{\xi}) \neq g_{\alpha}(x_{\eta}) \text{ for every } \eta < \xi \right\}$$

and let $f_{\alpha} \in \mathcal{R}_1$ be an extension of $g_{\alpha} \upharpoonright X_{\alpha}$. We will show that for an arbitrary $h \in \mathbb{R}^{\mathbb{R}}$ there is an $\alpha < \kappa$ such that $f_{\alpha} = f_{\alpha}^{\triangleright} \circ h$ for no $f_{\alpha}^{\triangleright} \in SZ$.

If $h \notin \mathcal{R}_1$ then $f_{\alpha}^{\triangleright} \circ h \notin \mathcal{R}_1$ for each $f_{\alpha}^{\triangleright} \in \mathbb{R}^{\mathbb{R}}$ and, since $f_{\alpha} \in \mathcal{R}_1$, $f_{\alpha} \neq f_{\alpha}^{\triangleright} \circ h$. So, assume that $h \in \mathcal{R}_1$. Then $\operatorname{card}(\operatorname{rng}(h)) = \mathbf{c}$, because \mathbf{c} is a regular cardinal. For $\xi < \mathbf{c}$ let D_{ξ} be the set of all $p \in \mathbb{P}$ such that

$$\exists \gamma \geqslant \xi \big[(\forall \alpha \leqslant \gamma) \big(x_{\alpha} \in \operatorname{dom}(p) \big) \And (\forall \alpha < \gamma) \big(p(x_{\alpha}) \neq p(x_{\gamma}) \big) \And p(x_{\gamma}) = h(x_{\gamma}) \big]$$

and observe that every D_{ξ} is dense in \mathbb{P} .

Indeed, for every $p \in \mathbb{P}$ there is $\gamma \ge \xi$ with $x_{\gamma} \notin \text{dom}(p)$ and $h(x_{\gamma}) \notin \text{rng}(p)$. Choose $y \neq h(x_{\gamma})$ and set

$$q = p \cup \left\{ \left(x_{\gamma}, h(x_{\gamma}) \right) \right\} \cup \left\{ \left(x_{\eta}, y \right) \colon \eta < \gamma \& x_{\eta} \notin \operatorname{dom}(p) \right\}.$$

Then $q \in D_{\xi}$ and $q \leq p$.

By the regularity of κ , there exists $\alpha < \kappa$ such that G_{α} intersects every set D_{ξ} with $\xi < \mathbf{c}$. Note that this implies that $\operatorname{card}(X_{\alpha}) = \mathbf{c}$. Now, suppose that $f_{\alpha} = f_{\alpha}^{\triangleright} \circ h$. We will show that $f_{\alpha}^{\triangleright} \notin SZ$.

To see it note first that if $Y_{\alpha} = \{x \in X_{\alpha}: f_{\alpha}(x) = h(x)\}$, then $\operatorname{card}(Y_{\alpha}) = \mathbf{c}$, since G_{α} intersects every set D_{ξ} . So, $h \in \mathcal{R}_1$ and the regularity of \mathbf{c} imply that

$$\operatorname{card}(\operatorname{rng}(h \upharpoonright Y_{\alpha})) = \mathbf{c}.$$

Finally, observe that $f^{\triangleright}_{\alpha}(h(x)) = h(x)$ when $f_{\alpha}(x) = h(x)$, so $\operatorname{rng}(h \upharpoonright Y_{\alpha}) \subset [f^{\triangleright}_{\alpha} = \operatorname{id}]$. Therefore $\operatorname{card}(f^{\triangleright}_{\alpha} \cap \operatorname{id}) = \mathbf{c}$ and consequently, $f^{\triangleright}_{\alpha} \notin SZ$. \Box

Lemma 4.35. If $\kappa > \mathbf{c} = \omega_1$ then $MA_{\kappa}(\mathbb{P}^{\triangleright})$ implies that $c_r(SZ) \ge \kappa$.

Proof. Let $\mathcal{F} \subseteq \mathcal{R}_1$ be such that $\operatorname{card}(\mathcal{F}) < \kappa$. We shall find $h \in SZ$ such that for every $f \in \mathcal{F}$ there exists $f^{\triangleright} \in SZ$ with $f = f^{\triangleright} \circ h$.

Observe that for any $x \in \mathbb{R}$ the set

$$D_x = ig \langle p, E, H
angle \in \mathbb{P}^{
ho} \colon x \in \operatorname{dom}(p) ig \}$$

is dense in $\mathbb{P}^{\triangleright}$.

Indeed, for $\langle q, E, H \rangle \in \mathbb{P}^{\triangleright} \setminus D_x$ choose

$$y \in \mathbb{R} \setminus \bigcup \left\{ g^{-1} (f(x)) \colon g \in H \ \& \ f \in E \right\}.$$

The choice is possible since, by CH, the set $\bigcup \{g^{-1}(f(x)): g \in H \& f \in E\}$ is meager as a countable union of nowhere dense sets. Put $p = q \cup \{\langle x, y \rangle\}$. Then $\langle p, E, H \rangle \leq \langle q, E, H \rangle$ and $\langle p, E, H \rangle \in D_x$.

Note also that for any $f \in \mathbb{R}^{\mathbb{R}}$ and $g \in \mathcal{C}_n$ the set

 $E_{f,g} = \left\{ \langle p, E, H \rangle : \ f \in E \ \& \ g \in H \right\}$

is dense in $\mathbb{P}^{\triangleright}$, because $\langle p, E \cup \{f\}, H \cup \{g\} \rangle$ extends $\langle p, E, H \rangle$. Let

$$\mathcal{D} = \{D_x: x \in \mathbb{R}\} \cup \{E_{\bar{g}, \mathrm{id}}: g \in \mathcal{C}_{G_{\delta}}\} \cup \{E_{f, k}: f \in \mathcal{F} \And k \in \mathcal{C}_n\},$$

where $\bar{g} \in \mathbb{R}^{\mathbb{R}}$ extends $g \in C_{G_{\delta}}$ by associating 0 at all undefined places. Then \mathcal{D} is a family of less than κ many dense subsets of $\mathbb{P}^{\triangleright}$. Let G be a \mathcal{D} -generic filter in $\mathbb{P}^{\triangleright}$ and let

$$\hat{h} = \bigcup \{ p: \exists E \subset \mathbb{R}^{\mathbb{R}} \exists H \subset \mathcal{C}_n \langle p, E, H \rangle \in G \}.$$

Since $G \cap D_x \neq \emptyset$ for every $x \in \mathbb{R}$, \hat{h} is a total function from \mathbb{R} into \mathbb{R} .

Observe that $\hat{h} \in SZ$. Indeed, fix $g \in C_{G_{\delta}}$ and $\langle p, E, H \rangle \in E_{\overline{g}, id} \cap G$. Then

$$\left\{x:\ \hat{h}(x) = g(x)\right\} \subset \left\{x:\ \hat{h}(x) = \bar{g}(x)\right\} \subset \mathsf{dom}(p)$$

so card $(\hat{h} \cap g) < \mathbf{c}$.

To define h note that by CH all level sets of \hat{h} are countable. In particular, the set $\hat{h}^{-1}(\mathbb{Q})$ is also countable. For every $y \in \operatorname{rng}(h) \cap \mathcal{N}$ let $\hat{h}^{-1}(y) = \{x_{y,n}: n < \omega\}$. Choose a one-to-one sequence $\langle s_n: n < \omega \rangle$ of irrationals and define a function $h^*: \mathbb{R} \setminus h^{-1}(\mathbb{Q}) \to \mathcal{N}$ by $h^*(x_{y,n}) = \langle s_n, y \rangle$, where we identify $\mathcal{N} = \mathbb{R} \setminus \mathbb{Q}$ with $\mathcal{N} \times \mathcal{N}$ via natural homeomorphism. Note that h^* is one-to-one. Let $h: \mathbb{R} \to \mathbb{R}$ be a one-to-one extension of h^* . Then $h \in SZ$. Indeed, suppose that $h \upharpoonright X \in \mathcal{C}$ for some $X \in [\mathbb{R}]^c$. Then $X_0 = X \setminus \hat{h}^{-1}(\mathbb{Q}) \in [\mathbb{R}]^c$ and $h^* \upharpoonright X_0 = h \upharpoonright X_0 \in \mathcal{C}$, so

$$\hat{h} \upharpoonright X_0 = \operatorname{pr}_{y} \circ h^* \upharpoonright X_0 \in \mathcal{C},$$

contrary to $\hat{h} \in SZ$.

Now, for arbitrary $f \in \mathcal{F}$ define $\tilde{f}: \operatorname{rng}(h) \to \mathbb{R}$ by $\tilde{f}(y) = f(x)$ for $x = h^{-1}(y)$. We shall verify that $\tilde{f} \in SZ$.

First, note that $\tilde{f} \in \mathcal{R}_1$, because $f \in \mathcal{R}_1$. So, by Lemma 4.24, it is enough to verify that $\operatorname{card}(\tilde{f} \cap g) < \mathbf{c}$ for every $g \in \mathcal{C}_n$.

So, fix $g \in C_n$ and suppose that $X = [\tilde{f} = g] \in [\operatorname{rng}(h)]^{\mathfrak{c}}$. Then there exists $X_0 \in [\operatorname{rng}(h^*)]^{\mathfrak{c}}$ such that $X_0 \subset [\tilde{f} = g]$. Therefore there are $n < \omega$ and $Z \in [\operatorname{rng}(\hat{h}) \cap \mathcal{N}]^{\mathfrak{c}}$ such that $\{s_n\} \times Z \subset X_0$, so

$$Z \subset \left\{ \hat{h}(x): \left\langle s_n, \hat{h}(x) \right\rangle \in g^{-1}(f(x)) \right\}.$$

Let $\varphi : \mathcal{N} \to \{s_n\} \times \mathcal{N}$ be a function defined by $\varphi(y) = \langle s_n, y \rangle$. Then φ is a homeomorphism, so $k = g \circ \varphi \upharpoonright \varphi^{-1}(\operatorname{dom}(g)) \in \mathcal{C}_n$. Let $\langle p, E, H \rangle \in G \cap E_{f,k}$. Then

$$Y = \left\{ x: \ \hat{h}(x) \in k^{-1}(f(x)) \right\} \subset \operatorname{dom}(p),$$

so card(Y) < c. But $Z \subset h(Y)$, contrary to card(Z) = c. Finally, let $f^{\triangleright} : \mathbb{R} \to \mathbb{R}$ be an SZ-extension of \tilde{f} . Then $f = f^{\triangleright} \circ h$. \Box

Theorem 4.36. Assume that the real line is not a union of less than c many meager sets and that c is a regular cardinal. Then

$$c_l(SZ) > \mathbf{c}.$$

Proof. To see it take $\{f_{\beta}: \beta < \mathbf{c}\} \subset \mathcal{R}_1$. We will construct an $h \in SZ$ and a family $\{f_{\beta}^{\triangleleft}: \beta < \mathbf{c}\}$ of SZ-functions such that $f_{\beta} = h \circ f_{\beta}^{\triangleleft}$ for each $\beta < \mathbf{c}$.

Let $C_n = \{g_{\alpha}: \alpha < \mathbf{c}\}$ be an enumeration of all nowhere constant $g \in C_{G_{\delta}}$ and $\{z_{\xi}: \xi < \mathbf{c}\}$ be a one-to-one enumeration of $Z = \bigcup_{\xi < \mathbf{c}} \operatorname{rng}(f_{\xi})$. Define inductively a sequence $\langle y_{\xi}: \xi < \mathbf{c} \rangle$ by choosing for every $\xi < \mathbf{c}$

$$y_{\xi} \in \mathbb{R} \setminus \left(\{ y_{\zeta} \colon \zeta < \xi \} \cup \bigcup \{ g_{\alpha}^{-1}(z_{\xi}) \colon \alpha \leqslant \xi \} \cup \bigcup \{ g_{\alpha}[f_{\beta}^{-1}(z_{\xi})] \colon \alpha, \beta \leqslant \xi \} \right).$$

The choice can be made, since the exceptional set is a union of less than **c** many meager sets.

Now, let $Y = \{y_{\xi}: \xi < \mathbf{c}\}$, and define $h: Y \to \mathbb{R}$ by putting

$$h(y_{\xi}) = z_{\xi}$$

for every $\xi < \mathbf{c}$. Moreover, for every $\beta < \mathbf{c}$ define $f_{\beta}^{\triangleleft} \colon \mathbb{R} \to \mathbb{R}$ by a formula

$$f^{\triangleleft}_{\beta}(x) = y_{\xi} \quad \text{iff} \quad x \in f^{-1}_{\beta}(z_{\xi}).$$

Note that $f_{\beta}^{\triangleleft}$ is defined on \mathbb{R} since $\operatorname{rng}(f_{\beta}) \subset Z$. Also, $f_{\beta} = h \circ f_{\beta}^{\triangleleft}$ for every $\beta < \mathbf{c}$, since for every $x \in \mathbb{R}$ there exists $\xi < \mathbf{c}$ such that $f_{\beta}(x) = z_{\xi}$, and $f_{\beta}(x) = z_{\xi} = h(y_{\xi}) = h(f_{\beta}^{\triangleleft}(x))$, as $x \in f_{\beta}^{-1}(z_{\xi})$.

To see that $h \in SZ$ note first that h is one-to-one, so $h \in \mathcal{R}_1$. Thus, by Lemma 4.24, it is enough to show that $\operatorname{card}([h = g_{\alpha}]) < \mathbf{c}$ for every $\alpha < \mathbf{c}$. But if $g_{\alpha}(y_{\xi}) = h(y_{\xi}) = z_{\xi}$ then $y_{\xi} \in g_{\alpha}^{-1}(z_{\xi})$ and, by the choice of y_{ξ} , $\alpha > \xi$. So, $[h = g_{\alpha}] \subseteq \{y_{\xi}: \xi < \alpha\}$ has cardinality less than \mathbf{c} , and $h \in SZ$.

Next fix $\beta < \mathbf{c}$ and notice that $f_{\beta}^{\triangleleft} \in \mathcal{R}_1$. To see that $f_{\beta}^{\triangleleft} \in SZ$ fix $\alpha < \mathbf{c}$. We will show that $\operatorname{card}([f_{\beta}^{\triangleleft} = g_{\alpha}]) < \mathbf{c}$. So, let $g_{\alpha}(x) = f_{\beta}^{\triangleleft}(x) = y_{\xi}$. Then $x \in f_{\beta}^{-1}(z_{\xi})$ and

$$y_{\xi}=g_{lpha}(x)\in g_{lpha}ig[f_{eta}^{-1}(z_{\xi})ig].$$

So, by the choice of y_{ξ} , $\alpha > \xi$ or $\beta > \xi$. In particular, $[f_{\beta}^{\triangleleft} = g_{\alpha}] \subseteq \{y_{\xi}: \xi < \max(\alpha, \beta)\}$ has cardinality less than c. \Box

Problem 4.37. Can it be proved in ZFC that $c_l(SZ) \leq 2^{\circ}$? What about under CH?

5. Final remarks

Proofs of the following statements are left to the reader.

- (1) Every function $f \in \mathbb{R}^{\mathbb{R}}$ is the uniform limit of a sequence of SZ-functions.
- Assuming cf(c) = ω₁, every function f ∈ ℝ^ℝ is the transfinite limit of a sequence of SZ-functions (cf. [14]).
- (3) Assuming c is a regular cardinal, the discrete limits of sequences of SZ-functions are in the class SZ (cf. [5]).
- (4) If $f,g \in SZ$, then $\max(f,g) \in SZ$ and $\min(f,g) \in SZ$ (hence the family SZ forms a lattice of functions).

References

- [1] M. Balcerzak, K. Ciesielski and T. Natkaniec, Sierpiński–Zygmund functions that are Darboux, almost continuous or have a perfect road, Arch. Math. Logic, to appear.
- [2] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987) 225–239.
- [3] K. Ciesielski and A.W. Miller, Cardinal invariants concerning functions, whose sum is almost continuous, Real Anal. Exchange 20 (1994–95) 657–673.
- [4] K. Ciesielski and I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange 21 (1995–96) 459–472.
- [5] A. Csaszár and M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975) 463–472.
- [6] U. Darji, Decomposition of functions, Invited talk during the 19th Summer Symposium in Real Analysis, Real Anal. Exchange 21(1) (1995–96) 19–25.
- [7] E. van Douwen and W. Fleissner, Definable forcing axiom: an alternative to Martin's axiom, Topology Appl. 35 (1990) 277–289.
- [8] A. Landver, Baire numbers, uncountable Cohen sets and perfect-set forcing, J. Symbolic Logic 57 (1992) 1086–1107.
- [9] A. Miller, Special sets of reals, in: H. Judah, ed., Set Theory of the Reals, Israel Math. Conf. Proc. 6 (1993) 415–432.
- [10] A. Miller and K. Prikry, When the continuum has cofinality ω_1 , Pacific J. Math. 115 (1984) 399–407.
- [11] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991-92) 462-520.
- [12] T. Natkaniec, New cardinal invariants in real analysis, Bull. Polish Acad. Sci. 44 (1996) 251-256.
- [13] T. Natkaniec and I. Recław, Cardinal invariants concerning functions whose product is almost continuous, Real Anal. Exchange 20 (1994–95) 281–285.
- [14] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1 (1920) 132–141.
- [15] W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923) 316–318.
- [16] S. Todorcevic, Remarks on Martin's axiom and the continuum hypothesis, Canad. J. Math. 43 (1991) 832–851.