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CARDINAL INVARIANTS CONCERNING

BOUNDED FAMILIES OF EXTENDABLE

AND ALMOST CONTINUOUS FUNCTIONS

KRZYSZTOF CIESIELSKI AND ALEKSANDER MALISZEWSKI

(Communicated by J. Marshall Ash)

Abstract. In this paper we introduce and examine a cardinal invariant Ab

closely connected to the addition of bounded functions from R to R. It is analo-
gous to the invariant A defined earlier for arbitrary functions by T. Natkaniec.
In particular, it is proved that each bounded function can be written as the
sum of two bounded almost continuous functions, and an example is given
that there is a bounded function which cannot be expressed as the sum of two
bounded extendable functions.

1. Preliminaries

We will use the following terminology and notation. The letters N, Q, and R
denote the set of positive integers, the set of rationals, and the real line, respectively.
Functions will be identified with their graphs. The family of all functions from a
set X into Y will be denoted by Y X . The symbol |X | will stand for the cardinality
of a set X . We consider cardinals as ordinals not in one-to-one correspondence
with the smaller ordinals. For a cardinal number κ we will write cof(κ) for the
cofinality of κ. A cardinal number κ is called regular, if κ = cof(κ). We define
c = |R| and ω = |N|. For a set A ⊆ R its characteristic function is denoted by χA.
The projection of a set A ⊆ R2 onto the x-axis will be denoted by domA. For a
cardinal number κ ≤ c and an open set U ⊆ Rn we say that X ⊆ U is κ-dense in U
if |X ∩ V | ≥ κ for every nonempty open set V ⊆ U .

The symbols Bd and BD will denote the class of all bounded functions from
R to R and the class of all families A ⊆ RR of functions having common bound,
respectively. For F ⊆ RR we define two cardinal invariants (cf. [12] and [6]):

A(F) = min
{|A| : A ⊆ RR & ¬(∃g ∈ RR)(∀f ∈ A)(f + g ∈ F)

} ∪ {(2c)+}
= min

{|A| : A ⊆ RR & (∀g ∈ RR)(∃f ∈ A)(f + g /∈ F)
} ∪ {(2c)+},

and

Ab(F) = min
{|A| : A ∈ BD & ¬(∃g ∈ Bd)(∀f ∈ A)(f + g ∈ F)

} ∪ {(2c)+}
= min

{|A| : A ∈ BD & (∀g ∈ Bd)(∃f ∈ A)(f + g /∈ F)
} ∪ {(2c)+}.

Received by the editors March 28, 1996 and, in revised form, August 11, 1996.
1991 Mathematics Subject Classification. Primary 26A21; Secondary 54C08.
Key words and phrases. Peripheral continuity, almost continuity, connectivity, extendability.
This work was partially supported by NSF Cooperative Research Grant INT-9600548.

c©1998 American Mathematical Society

471



472 KRZYSZTOF CIESIELSKI AND ALEKSANDER MALISZEWSKI

The next proposition lists several basic properties of the function Ab. The similar
properties for the function A can be found in [6]. They will be left without proofs.
(Their easy proofs are analogous to those of Propositions 1.1 and 1.3 of [6].)

Proposition 1.1. Let F ⊆ RR. Then

(1): Ab(F) = Ab(F ∩ Bd);
(2): Ab(F) ≥ 1;
(3): if F ⊆ G ⊆ RR, then Ab(F) ≤ Ab(G);
(4): Ab(F) ≤ 2 if and only if {f1 − f2 : f1, f2 ∈ F ∩ Bd} 6= Bd;
(5): Ab(F) ≥ 2 if and only if F ∩ Bd 6= ∅;
(6): if F ⊇ Bd, then Ab(F) = (2c)+.

We will find the value of the function Ab for the following classes of functions,
where κ is a cardinal number ≤ c and X is an arbitrary topological space.

PCκ: of all functions f : R → R with the following property: for every x ∈ R
and every ε > 0 we have

∣∣f ∩ [
(x − ε, x) × (f(x) − ε, f(x) + ε)

]∣∣ ≥ κ and∣∣f ∩ [(x, x+ ε)× (f(x)− ε, f(x) + ε)
]∣∣ ≥ κ. In particular, PCω is the class of

peripherally continuous functions.
D: of all Darboux functions f : R → R, i.e., such that f [J ] is an interval for

every interval J ⊆ R.
Uκ: of all functions f : R→ R fulfilling the following condition: for all a < b and

each set A ⊆ [a, b] with |A| < κ+1, the set f [(a, b)\A] is dense in the interval(
min{f(a), f(b)},max{f(a), f(b)}). In particular, Uc is the uniform closure of

the class D [2], while the class U0 was examined earlier by T. Radakovič [14]
and H. W. Ellis [8]. Moreover Uc = PCc ∩ U0 [2, Theorem 3.2].

AC: of all almost continuous functions f : R→ R, i.e., such that for every open
set U ⊆ R2 containing f there is a continuous function h : R→ R with h ⊆ U .

Conn(X): of all connectivity functions f : X → R, i.e., such that the restric-
tion f � C

(
that is f ∩ [C × R]) is connected in X × R whenever C ⊆ X is

connected.1

Ext: of all extendable functions f : R→ R, i.e., such that there exists a function
g ∈ Conn(R× [0, 1]) with f(x) = g(x, 0) for every x ∈ R.

PR: of all functions f : R→ R with perfect road, i.e., such that for every x ∈ R
there exists a perfect set P ⊆ R having x as a bilateral limit point for which
the restriction f � P is continuous at x.

For the above classes of functions we have the following proper inclusions, marked
by arrows.

Ext AC Conn D

Uc · · · Uω = · · · = U0

PR PCc · · · PCω = · · ·=PC1 PC0 =RR
? ? ?

- - -

- -

- - -
?

J
Ĵ

-

For the upper row inclusions see, e.g., [1]. The inclusion Ext  PR follows from [9].
The other relations are more or less evident.

1Actually we will study only the class Conn = Conn(R), but we need the class Conn(R× [0, 1])
to define the class Ext.
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The values of the function A for most of these classes have been established in
several papers, as quoted below.

Theorem 1.2 ([6]). A(PCω) = 2c and A(Ext) = A(PR) = c+.

Theorem 1.3 ([5]). c+ ≤ A(AC) = A(Conn) = A(D) ≤ 2c, cof(A(D)) > c, and it
is pretty much all that can be shown in ZFC. More precisely, the assertion A(D) = 2c

is independent of the cofinality of 2c, and for each regular cardinal λ between c+

and 2c it is consistent with ZFC that A(D) = λ.

The values of the function A for the other classes have not been considered so
far. However, it is not difficult to find them.

Theorem 1.4. A(PC0) = (2c)+ and A(Uκ) = A(PCκ) = 2c for every infinite
cardinal number κ ≤ c.

The equality A(PC0) = (2c)+ is obvious. The other part will be proved in the
next section.

It follows from Proposition 1.1(6) that Ab(PC0) = (2c)+. It has been proved
in [11] that Ab(D) = cof(c). The goal of this paper is to establish the values of Ab

for all other classes by proving the following theorem.

Theorem 1.5. (1): Ab(Ext) = Ab(PR) = 2.
(2): Ab(AC) = Ab(Conn) = Ab(D) = Ab(Uc) = Ab(PCc) = cof(c).
(3): Ab(Uκ) = Ab(PCκ) = c for every infinite cardinal number κ < c.

In particular, the equality Ab(AC) = cof(c) solves Problem 2 of [10]. (This
problem was restated in [11, p. 679].) Notice also that Theorem 1.5 and Proposi-
tion 1.1(4) imply immediately the following corollaries.

Corollary 1.6. Every bounded function f : R → R is the sum of two bounded
almost continuous functions.

Corollary 1.7. There exists a bounded function f : R → R which is not the sum
of two bounded functions with perfect road.

Notice that Corollary 1.6 generalizes the theorem of U. B. Darji and P. D. Humke
that every bounded function is the sum of three bounded almost continuous func-
tions [7]. On the other hand, by Corollary 1.7, T. Natkaniec’s result asserting
that every bounded function is the sum of three bounded extendable functions [13,
Theorem 1] cannot be improved.

In what follows we will use a generalization of [4, Lemma 4, p. 285] and [3,
Lemma 1]. We will need the following notation. For every λ > ω and every
function f : R→ R let

A−
λ (f) =

{
x ∈ R : (∃ε > 0)(|f ∩ [(x− ε, x)× (f(x) − ε, f(x) + ε)]| < λ)

}
,

A+
λ (f) =

{
x ∈ R : (∃ε > 0)(|f ∩ [(x, x + ε)× (f(x) − ε, f(x) + ε)]| < λ)

}
,

and Aλ(f) = A−
λ (f) ∪A+

λ (f).

Lemma 1.8. If λ is a cardinal number with cof(λ) > ω, then |Aλ(f)| < λ for every
function f : R→ R.

Proof. Assume, by way of contradiction, that |Aλ(f)| ≥ λ. Suppose that |A−
λ (f)| ≥

λ, the case |A+
λ (f)| ≥ λ being similar. Since cof(λ) > ω and

A−
λ (f) =

⋃
n∈N

{
x ∈ R :

∣∣f ∩ [(x− n−1, x)× (f(x)− n−1, f(x) + n−1)
]∣∣ < λ

}
,
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there exist an ε > 0 and a subset B of A−
λ (f) of cardinality ≥ λ such that∣∣f∩[(x−ε, x)×(f(x)−ε, f(x)+ε)

]∣∣ < λ for every x ∈ B. Choose an open interval J

of length ε such that the set C =
{
x ∈ B : f(x) ∈ J

}
has cardinality greater than or

equal to λ. Then, there is an x0 ∈ C with |(x0 − ε/2, x0)∩C| ≥ λ. But f(x0) ∈ J ,
so J ⊆ (f(x0) − ε, f(x0) + ε) and

∣∣f∩[(x0 − ε, x0) × (f(x0) − ε, f(x0) + ε)
]∣∣ ≥ λ,

contradicting the fact that x0 ∈ B.

2. Proof of Theorem 1.4

Let κ ≤ c be an infinite cardinal. It follows from the monotonicity of the func-
tion A and Theorem 1.2 that A(Uc) ≤ A(Uκ) ≤ A(PCκ) ≤ A(PCω) = 2c. Thus, it
is enough to show that A(Uc) ≥ 2c. This can be established by the following minor
modification of the proof of [6, Theorem 1.7(3)].

Let F ⊆ RR be such that |F| < 2c. We will find a function g : R→ R such that
f + g ∈ Uc for every f ∈ F .

Let G be the family of all pairs 〈I, J〉, where I and J are nonempty open intervals
with rational end points. Let {〈Iξ, Jξ〉 : ξ < c} be an enumeration of G with each
pair appearing c many times. For each ξ < c define a set Bξ ⊆ Iξ of cardinality c
such that Bξ ∩Bη = ∅ for any ξ < η < c. (See, e.g., [11, Lemma 5].)

Next, fix a ξ < c. For each f ∈ F construct a function hξ,f : Bξ → Q such that

f(x) + hξ,f (x) ∈ Jξ for every x ∈ Bξ.

Then, by [6, Lemma 2.2] (used with B = Bξ and H = {hξ,f : f ∈ F}), there exists
a function gξ : Bξ → Q such that hξ,f ∩ gξ 6= ∅ for every f ∈ F .

Let g : R → Q be a common extension of all functions gξ. Then for every ξ < c
and every f ∈ F there exists an x ∈ Bξ such that f(x) + g(x) ∈ Jξ. So, for every
f ∈ F the graph of f + g is c-dense in R2. Thus, f + g ∈ Uc.

3. Proof of Theorem 1.5(1)

By Proposition 1.1(5) and (3), we have 2 ≤ Ab(Ext) ≤ Ab(PR). Thus, it is
enough to prove that Ab(PR) ≤ 2, i.e., by Proposition 1.1(4), that {f1−f2 : f1, f2 ∈
PR ∩ Bd} 6= Bd. This follows immediately from the next example.

Example 3.1. Let B ⊆ R be a Bernstein set and f = χB − χR\B. If f = g0 − g1
and g0, g1 ∈ PR, then both g0 and g1 are bilaterally unbounded.

Proof. By way of contradiction assume that there are g0, g1 ∈ PR such that f = g0−
g1 and g0 is not bilaterally unbounded. We will assume that m0 = inf g0[R] > −∞.
(The other case is analogous.) Put m1 = inf g1[R] and notice that m1 ≥ m0 − 1 >
−∞.

For i < 2 choose a nonempty perfect set Pi such that gi < mi+2−1 on Pi. Then

m0 ≤ inf g0[P1] = inf(g1 + f)[P1] ≤ (m1 + 2−1 − 1) = m1 − 2−1 < m1

and

m1 ≤ inf g1[P0] = inf(g0 − f)[P0] ≤ (m0 + 2−1 − 1) = m0 − 2−1 < m0,

an impossibility. This completes the proof.
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4. Proof of Theorem 1.5(2)

By Proposition 1.1(3), Ab(AC) ≤ Ab(Conn) ≤ Ab(D) ≤ Ab(Uc) ≤ Ab(PCc). So,
it is enough to prove that Ab(PCc) ≤ cof(c) and Ab(AC) ≥ cof(c). The first of these
inequalities follows from the next example, and the second one follows immediately
from Theorem 4.1.

Example 4.1. There is a family A ∈ BD with |A| = cof(c) such that for every
function g bounded above we have f + g /∈ PCc for some f ∈ A.

Proof. Let A be a family of sets such that |A| = cof(c), |A| < c for every A ∈ A,
and

∣∣⋃A∣∣ = c. Clearly we may assume that the sets in A are nonempty, pairwise
disjoint, and that

⋃A = R. Put A = {χA : A ∈ A}.
Let g : R→ R be bounded above. Define M = sup g[R] and choose an x ∈ R with

g(x) > M − 1. Then x ∈ A for some A ∈ A. Consequently, (g+χA)(t) = g(t) ≤M
for every t /∈ A and (g + χA)(x) > M . Thus

1 ≤ ∣∣{t ∈ R : (g + χA)(t) > M
}∣∣ ≤ |A| < c

and g + χA /∈ PCc.

Theorem 4.1. If A ⊆ (−1, 1)R and |A| < cof(c), then there is a function g ∈
(−2, 2)R such that f + g ∈ AC for every f ∈ A.

Proof. For each f ∈ A let

Uf =
{〈x, y〉 : x ∈ R & f(x)− 2 < y < f(x) + 2

}
=
⋃
x∈R

[{x} × (f(x)− 2, f(x) + 2)
]

and

Kf =
{
K ⊆ R2 : K is closed & |dom(K ∩ Uf )| = c

}
.

Clearly, |Kf | = c. Also, by Lemma 1.8, |Ac(f)| < c for every f ∈ A. So, since
|A| < cof(c), we obtain

the set A =
⋃
f∈A Ac(f) has cardinality less than c.(1)

Let
{〈fξ, Kξ〉 : ξ < c

}
be a transfinite sequence consisting of all pairs 〈f,K〉 such

that f ∈ A and K ∈ Kf . We will construct by transfinite induction a sequence{〈xξ, yξ〉 : ξ < c
}

such that for every ξ < c the following conditions hold:

(i) xξ /∈ {xζ : ζ < ξ} ∪A;
(ii) 〈xξ, fξ(xξ) + yξ〉 ∈ Kξ ∩ Ufξ .

So, assume that {〈xζ , yζ〉 : ζ < ξ} have been already defined for some ξ < c. By
the definition of Kfξ and condition (1), we can choose

xξ ∈ dom(Kξ ∩ Ufξ) \
({xζ : ζ < ξ} ∪A).

Let zξ be such that 〈xξ, zξ〉 ∈ Kξ ∩Ufξ and put yξ = zξ − fξ(xξ). Then (i) and (ii)
are obviously satisfied. This completes the inductive construction.

Notice that yξ ∈ (−2, 2) for every ξ < c since zξ ∈
(
fξ(xξ)−2, fξ(xξ)+2

)
. Define

the function g : R→ (−2, 2) by

g(x) =

{
yξ if x = xξ for some ξ < c,

0 otherwise.
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Fix an f ∈ A. We will prove that f + g ∈ AC. Let V ⊆ R2 be an open set
containing f + g. First notice that if

E = dom(Uf \ V ) =
{
x ∈ R :

[{x} × (f(x)− 2, f(x) + 2)
]
* V

}
,

then |E| < c. Indeed, otherwise K = R2 \ V ∈ Kf , so there exists a ξ < c with
〈fξ, Kξ〉 = 〈f,K〉. By (ii), we obtain

〈xξ, (f + g)(xξ)〉 = 〈xξ, fξ(xξ) + yξ〉 ∈ Kξ = K,

contradicting the fact that f + g ⊆ V .
Define

F = dom
([
R× [−1, 1]

] \ V ) =
{
x ∈ R :

[{x} × [−1, 1]
]
* V

}
.

Since [−1, 1] ⊆ (
f(x) − 2, f(x) + 2

)
for every x ∈ R, so

[
R× [−1, 1]

] ⊆ Uf . Hence

F ⊆ E and |F | < c. But
[
R × [−1, 1]

] \ V is a closed subset of R × [−1, 1]. Thus
F is closed in R and it is at most countable.

Let J be the family of all compact intervals J = [a, b] for which there exists a
continuous function h : J → R with h ⊆ V and h(a) = h(b) = 0. Moreover let G be
the set of all x ∈ R for which there exists a δx > 0 such that [a, b] ∈ J whenever
a, b ∈ (x − δx, x+ δx) \ F and a < b. The first claim is obvious.

Claim 1. If [a0, a1] ∈ J and [a1, a2] ∈ J , then [a0, a2] ∈ J .

Claim 2. If J = [a, b] ⊆ G and a, b /∈ F , then J ∈ J .

Indeed, the compactness of J and the relation J ⊆ ⋃
x∈J(x − δx, x + δx) imply

that there exist x0, . . . , xp ∈ J such that J ⊆ ⋃p
i=0(xi − δxi , xi + δxi). Hence we

can find nonoverlapping compact intervals J0, . . . , Jl ∈ J with J =
⋃l
j=0 Jj . By

Claim 1, we obtain J ∈ J .

Claim 3. We have G = R.

First notice that G is open and that R\F ⊆ G. By way of contradiction suppose
that the set P = R \G ⊆ F is nonempty. Thus, P is scattered and so, it contains
an isolated point s. Let δ > 0 be such that [s − δ, s + δ] ∩ P = {s}. To get a
contradiction it is enough to show that s ∈ G.

Let a, b ∈ (s − δ, s + δ) \ F and a < b. If a > s or b < s, then, by Claim 2,
we obtain [a, b] ∈ J . So we may assume that a < s < b. Let ε > 0 be such that
a < s− ε < s+ ε < b and

R =
[
(s− ε, s+ ε)× ((f + g)(s)− ε, (f + g)(s) + ε)

] ⊆ V.

(Such an ε exists, since V is open and 〈s, (f + g)(s)〉 ∈ V .)
Notice that there exist 〈q0, y0〉, 〈q1, y1〉 ∈ Uf ∩R such that q0 ∈ (s− ε, s) \E and

q1 ∈ (s, s+ ε) \ E. We will prove it for i = 0, the other case being similar.
First suppose s ∈ A. Take an arbitrary q0 ∈ (s − ε, s) \ E. Then g(s) = 0, so

(f + g)(s) = f(s) ∈ (−1, 1) ⊆ (
f(q0)− 2, f(q0) + 2

)
. Consequently, the interval

D =
(
f(q0)− 2, f(q0) + 2

) ∩ ((f + g)(s)− ε, (f + g)(s) + ε
)

is nonempty. So every point 〈q0, y0〉 with y0 ∈ D has the required properties.
Otherwise by the definition of A−

c (f), there is a q0 ∈ (s− ε, s) \ E with f(q0) ∈(
f(s)− ε, f(s) + ε

)
. Then |f(s)− f(q0)| < ε and

|(f + g)(s)− f(q0)| ≤ |g(s)|+ |f(s)− f(q0)| < 2 + ε.
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Define the set D as above. Observe that D 6= ∅ and every point 〈q0, y0〉 with y0 ∈ D
has the required properties.

Fix an i < 2. Put ci = min{yi,−1} and di = max{yi, 1}. Since qi /∈ E, we see
that

[{qi}× [ci, di]
] ⊆ [{qi}× (f(qi)−2, f(qi)+2)

] ⊆ V . Since the set {qi}× [ci, di]
is compact, we can find ai, bi ∈ (s− ε, s+ ε) \ E such that qi ∈ (ai, bi) and

Ri =
[
(ai, bi)× [ci, di]

] ⊆ V.

Construct continuous functions h0 : [a, a0] → R and h1 : [b1, b] → R such that
h0 ∪ h1 ⊆ V and h0(a) = h0(a0) = h1(b1) = h1(b) = 0. (We use Claim 2.) Extend
h0 ∪ h1 to h : [a, b] → R by connecting the following pairs of points by straight line
segments: 〈a0, 0〉 with 〈q0, y0〉, 〈q0, y0〉 with 〈q1, y1〉, and 〈q1, y1〉 with 〈b1, 0〉. Notice
that these segments are contained in rectangles R0, R, and R1, respectively. Thus
h ⊆ V . Clearly h(a) = h(b) = 0 and h is continuous, so [a, b] ∈ J . Hence s ∈ G,
an impossibility. Claim 3 has been proved.

Using Claims 1–3 it is easy to show that there exists a continuous function
h : R→ R with h ⊆ V . So f + g ∈ AC.

5. Proof of Theorem 1.5(3)

Let κ < c be an infinite cardinal number. By Proposition 1.1(3), we have
Ab(Uκ) ≤ Ab(PCκ) ≤ Ab(PCω). So, it is enough to prove that Ab(PCω) ≤ c
and Ab(Uκ) ≥ c. The first of these inequalities follows from Proposition 5.1, and
the second one from Theorem 5.2.

Proposition 5.1. If a function g is bounded above, then g+χ{x} /∈ PCω for some
x ∈ R.

Proof. Define M = sup g[R] and choose an x ∈ R with g(x) > M − 1. Then
(g + χ{x})(t) = g(t) ≤M for t 6= x and (g + χ{x})(x) > M . Thus∣∣{t ∈ R : (g + χ{x})(t) > M

}∣∣ = 1

and g + χ{x} /∈ PCω.

Theorem 5.2. If κ < c, A ⊆ (−1, 1)R, and |A| < c, then there is a function
g ∈ (−2, 2)R such that f + g ∈ Uκ for each f ∈ A.

Proof. The proof is a modification and simplification of that of Theorem 4.1.
Without loss of generality we may assume that κ ≥ |A|+ω. Let D be a κ-dense

subset of R with |D| = κ, and let

K =
{
(p, q)× {d} : p, q, d ∈ D & p < q

}
.

For each f ∈ A let

Uf =
{〈x, y〉 : x ∈ R & f(x)− 2 < y < f(x) + 2

}
and

Kf =
{
K ∈ K : |dom(K ∩ Uf)| > κ

}
.

Clearly, |Kf | = κ. Also, by Lemma 1.8,

the set A =
⋃
f∈A Aκ+(f) has cardinality ≤ κ.

Let {〈fξ, Kξ〉 : ξ < κ} be a transfinite sequence consisting of all pairs 〈f,K〉
such that f ∈ A and K ∈ Kf . As in Theorem 4.1 we can construct by transfinite
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induction a sequence {〈xξ, yξ〉 : ξ < κ} such that for every ξ < κ the following
conditions hold:

(i) xξ /∈ {xζ : ζ < ξ} ∪A;
(ii) 〈xξ, fξ(xξ) + yξ〉 ∈ Kξ ∩ Ufξ .

Notice that yξ ∈ (−2, 2) for every ξ < κ. Define g : R→ (−2, 2) by

g(x) =

{
yξ if x = xξ for some ξ < κ,

0 otherwise.

Fix an f ∈ A. We will prove that f +g ∈ Uκ. Let a < b and define c = (f +g)(a)
and d = (f + g)(b). Clearly we may assume that c 6= d. We will assume that c < d,
the case d < c being similar.

Let y ∈ (c, d) ∩D. We will find p, q ∈ (a, b) ∩D such that p < q and

K = (p, q)× {y} ∈ Kf .(2)

Indeed, if y ∈ (−1, 1), then
[
R × {y}] ⊆ Uf and the relation (2) holds for any

p, q ∈ (a, b) ∩ D with p < q. So, suppose that y /∈ (−1, 1). We will assume that
y ≥ 1, the case y ≤ −1 being essentially the same.

Then f(b) + g(b) = d > y ≥ 1 > f(b), so g(b) 6= 0. In particular, b /∈ A−
f .

So, there exist an ε ∈ (0, d − y) and p, q ∈ (a, b) ∩ D such that the set S =
{x ∈ (p, q) : f(x) > f(b) − ε} has cardinality greater than κ. But for every x ∈ S
we have

f(x) + 2 > f(x) + g(b) > f(b)− ε+ g(b) = d− ε > y ≥ 1 > f(x)− 2.

Thus S × {y} ⊆ Uf and (p, q)× {y} ∈ Kf .
Let ξ < κ be such that 〈f,K〉 = 〈fξ, Kξ〉. Then xξ ∈ (p, q) ⊆ (a, b) and

(f + g)(xξ) = fξ(xξ) + yξ = y. It follows that (c, d) ∩D ⊆ (f + g)[(a, b)], i.e., that
(f + g)[(a, b)] is κ-dense in (c, d). This completes the proof.
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