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Abstract. In this paper we show that if the real lineR is not a union of less than
continuum many of its meager subsets then there exists an almost continuous
Sierpínski–Zygmund function having a perfect road at each point. We also prove
that it is consistent with ZFC that every Darboux functionf : R → R is continuous
on some set of cardinality continuum. In particular, both these results imply
that the existence of a Sierpiński–Zygmund function which is either Darboux or
almost continuous is independent of ZFC axioms. This gives a complete solution
of a problem of Darji [4]. The paper contains also a construction (in ZFC) of an
additive Sierpínski–Zygmund function with a perfect road at each point.

1 Introduction

Our terminology is standard. In particular, the symbolsN, Z, Q andR stand for
the sets of all: positive integers, integers, rationals and reals, respectively. We
shall consider only real-valued functions of one real variable. No distinction is
made between a function and its graph. The family of all functions from a setX
into Y will be denoted byYX . The symbol card (X) will stand for the cardinality
of a setX. The cardinality ofR is denoted byc. If A is a planar set, we denote
its x-projection by dom (A). For f , g ∈ RR the notation [f = g] means the set
{x ∈ R: f (x) = g(x)}.

If J is an ideal of subsets ofR, then

cov (J ) = min{card (F ): F ⊂ J &
⋃

F = R}
non (J ) = min{card (A): A ⊂ R & A 6∈ J }.

(See [5].) The ideal of all meager subsets ofR is denoted byK . Recall also
the following definitions.
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– f : R → R is of Sierpínski-Zygmund type(shortly, f ∈ SZ, or f is of S-
Z type) if its restrictionf |M is discontinuous for each setM ⊂ R with
card (M ) = c [17].

– f : R → R has a perfect roadat x ∈ R if there exists a perfect setC such that
x is a bilateral limit point ofC and f |C is continuous atx. We say thatf is
of perfect road type(shortly, f ∈ PR, or f is of PR type) iff has a perfect
road at each point [13].

– f : R → R is said to bealmost continuous(in the sense of Stallings) if each
open subset of the plane containingf contains also a continuous function
g: R → R [18].

– F : R× [0, 1] → R is aconnectivity functionif the graph of its restrictionF |X
is connected (inR3) for every connectedX ⊂ R× [0, 1].

– f : R → R is extendableif there is a connectivity functionF : R× [0, 1] → R
such thatF (x, 0) = f (x) for everyx ∈ R.

Recall also that iff : R → R intersects everyblocking set, i.e., a closed set
K ⊂ R2 whose domain is a non-degenerate interval, thenf is almost continu-
ous [9]. It is also well-known that each almost continuous functionf : R → R is
connected [18] and therefore that it has the Darboux property.

In [4], Darji constructed (in ZFC) an example of an S-Z function of perfect
road type and asked whether there exists an almost continuous (or just Darboux)
S-Z function. Examples of such functions under additional set theoretical assump-
tions are known. For example, Ceder [2] showed that under the assumption of
the Continuum Hypothesis CH there exists a connectivity (hence Darboux) S-Z
function, and Kellum [10] noticed that Ceder’s function is in fact almost contin-
uous. In Section 2 we will generalize both constructions (Ceder’s and Darji’s) by
showing that under the assumption that cov (K ) = c (which is somewhat weaker
than CH or Martin’s Axiom MA [16, 5]) there exists an almost continuous S-Z
function of PR type. On the other hand, in Section 5 we will show that there is a
model of ZFC in which there is no Darboux S-Z function. Thus, some additional
set theoretical assumptions are necessary in all of the examples mentioned above.

Sections 3 and 4 contain the constructions related to that from Section 2. In
particular, Section 3 deals with the functionsf : R → R continuous with respect
to the qualitative topology on the domain and the natural topology on the range.
In Section 4 we give a ZFC example of an additive S-Z function of PR type,
generalizing the result of Darji from [4].

2 An almost continuous S-Z function of PR type

In our construction we will use the following easy and well known lemma.

Lemma 1. [8] Suppose U⊂ R and f: U → R is continuous. Then there exists a
Gδ set M containing U and a continuous functiong: M → R such thatg|U = f .

�

The next lemma is a modification of [4, Lemma 3].
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Lemma 2. There exists a sequence〈〈Hα, pα〉:α < c〉 such that

(1) Hα ∪ {pα} ⊂ R is a compact perfect set and pα is a bilaterally limit point
of Hα;

(2) H =
⋃
α<c Hα is linearly independent overQ;

(3) Hα ∩ Hβ = ∅ for everyα < β < c;
(4) for every x∈ R there exists continuum manyγ < c such that x= pγ .

Proof. Let K be a linearly independent perfect set. (See [7] or [11, p. 270].)
Pick a proper perfect subsetP of K , and let{sα,n:α < c & n ∈ Z \ {0}} be a
one-to-one enumeration ofK \ P. Moreover, let{pα:α < c} be an enumeration
of R such that for everyx ∈ R there exists continuum manyγ < c with pγ = x.
By induction onα < c choose sequences〈qα,n:α < c & n ∈ Z\{0}〉 of non-zero
rationals and〈Cα,n:α < c & n ∈ Z \ {0}〉 of perfect sets such that for every
α < c andn ∈ Z \ {0}

Cα,n ⊂
(

pα, pα +
1
n

)
∩ (qα,nsα,n + P),

where forb < a we will understand (a, b) as the interval (b, a). Next, for each
α < c define Hα =

⋃{Cα,n: n ∈ Z \ {0}}. It is easy to see that the family
{Hα ⊂ R:α < c} has the desired properties. �

Theorem 1. Assumingcov (K ) = c, there exists an almost continuous S-Z func-
tion f : R → R which has a perfect road at each point.

Proof. For A ⊂ R we denoteL(A) = A× R. Let {xα:α < c} be a one-to-one
enumeration ofR and {gα:α < c} an enumeration of all continuous functions
defined onGδ subsets ofR.

Construct, by induction onα < c, a sequence〈〈Cα,Dα〉:α < c〉 such that
for everyα < c

(1) Dα ⊂ dom (gα)\⋃β<α(Cβ∪Dβ) is an at most countable set such thatgα|Dα

is a dense subset ofgα \
⋃
β<α(gβ ∪ L(Cβ ∪ Dβ));

(2) Cα is equal to a setHγ from Lemma 2 such thatxα = pγ andCα is disjoint
from {xβ :β ≤ α} ∪⋃β≤α Dβ ∪

⋃
β<α Cβ .

The choice as in (2) can be made, since the set{xβ :β ≤ α} ∪ ⋃β≤α Dβ has
cardinality less than continuum, and there are continuum many pairwise disjoint
setsHγ with pγ = xα.

Now, define the valuesf (xα) of the function f by induction onα < c as
follows.

(a) f (xα) = gβ(xα) providedxα ∈ Dβ for someβ < c.
(b) f (xα) ∈ {y ∈ R: |y−f (xβ)| < |xα−xβ |}\{gγ(xα): γ ≤ α} providedxα ∈ Cβ

for someβ < c. (Note thatf (xβ) is already defined since, by (2),β < α.)
(c) f (xα) ∈ R \ {gγ(xα): γ ≤ α} otherwise.

We will show thatf has the desired properties.
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First notice that, by (b),f |(Cβ ∪ {xβ}) is continuous atxβ for everyβ < c.
Therefore,f ∈ PR.

To prove thatf ∈ SZ, by Lemma 1 it is enough to show that card ([f = gβ ]) <
c for eachβ < c. But [f = gβ ] ⊂ ⋃

α≤β Dα∪{xα:α < β}), so card ([f = gβ ]) < c.
Hence,f ∈ SZ.

To verify that f is almost continuous choose a blocking setF ⊂ R2. It is
enough to show thatf ∩F /= ∅. To see this, note that there exist a non-degenerate
interval J ⊂ dom (F ) and an upper semicontinuous functionh: J → R such that
h ⊂ F . (See [10, Lemma 1].) Thus there exists anα0 < c such thatgα0 = h|C(h),
whereC(h) denotes the set of all points at whichh is continuous. Then domgα0

is residual inJ andgα0 ⊂ F . In particular, ifS is the set of allα < c such that
dom (gα ∩ F ) is residual in some non-degenerate intervalI thenS /= ∅.

Let α = minS and I be a non-degenerate interval such that dom (gα ∩ F ) is
residual inI . But F is closed andgα is continuous. So,gα|I ⊂ F . Moreover,
by the minimality ofα, for eachβ < α the setI ∩ [gβ = gα] ⊂ dom (gβ ∩ F ) is
nowhere dense inI . Consequently,

I ∩ dom
[
gα \

⋃
β<α

(gβ ∪ L(Cβ ∪ Dβ))
]

= (I ∩ dom (gα)) \
⋃
β<α

(
I ∩ ([gβ = gα] ∪ Cβ ∪ Dβ)

)
/= ∅,

since cov (K ) = c. Thus, by (1),I ∩ Dα /= ∅. Let x ∈ I ∩ Dα. Then, by (a),
〈x, f (x)〉 = 〈x, gα(x)〉 ∈ f ∩ F . �

Remark.Note that an S-Z function of perfect road type is not extendable.
(See [4].) So, Theorem 1 gives a new and easy example of an almost con-
tinuous function that has a perfect road at each point and is not an extendable
function. The first example of such a function was constructed (in ZFC) in [15].

3 The qualitative case

Now we shall considerR with the fine topologyq generated by the idealK .
This topology is called thequalitative topology. Recall that a setG is open in the
qualitative topology if it can be written in the formU \ P, whereU is open in
the Euclidean topology andP is of the first category. (Note that it is an example
of a ∗-topology in the sense of Hashimoto [6] orJ -topology in the sense of
Vaidyanathaswamy [19] with respect to the idealK of meager sets.)

For a setA ⊂ R and a functionf : A → R we say thatf is q-continuousat a
point x0 ∈ A if f is continuous atx0 as a real function defined on the subspace
A of the space〈R, q〉.
Lemma 3. For every set A⊂ R and a function f: A → R,

(1) if A ∈ K , then f is q-continuous;
(2) if f is continuous, then it is q-continuous;



Sierpínski-Zygmund functions 33

(3) if A is q-dense in itself and f is q-continuous, then f is continuous.

Proof. Statements (1) and (2) are evident. For (3), see [12, Th. 4] or [3,
Cor. 1.1.8]. �

Proposition 1. If cov (K ) = non (K ) = c then there exists an almost continuous
function f: R → R of perfect road type such that f|M is not q-continuous for every
M 6∈ K .

Proof. AssumeM 6∈ K . ThenM is not q-nowhere dense. So, there exists an
interval I such thatM ∩ I is q-dense in itself. In particular,M ∩ I 6∈ K , so
card (M ∩ I ) = c. Let f be the function constructed in Theorem 1. Thenf |(M ∩ I )
is discontinuous so, by Lemma 3,f |(M ∩ I ) is not q-continuous. Therefore,f |M
also is notq-continuous. �

4 An additive S-Z function of PR type

Theorem 2. There exists an additive Sierpiński–Zygmund function f: R → R of
perfect road type.

Proof. Let Ĥ = {hα:α < c} be a Hamel basis which contains the setH con-
structed in Lemma 2 and let{gα:α < c} be a well-ordering of all continuous
functions defined onGδ subsets ofR. For eachα < c choose a set̂Hα and an
f̂ (hα) such that

(a) Ĥα is equal to a setHγ from Lemma 2 such thathα = pγ andĤα is disjoint
from {hβ :β ≤ α};

(b) f̂ (hα) /= qgβ(x) − fα(t) for all β ≤ α, q ∈ Q, x ∈ lin ({hβ :β ≤ α}) and
t ∈ lin ({hβ :β < α}), where lin (A) denotes the linear subspace ofR overQ
generated byA, andfα is the additive extension of̂f |{hβ :β < α}.

Moreover, ifhα ∈ Ĥβ for someβ < c then, by (a),β < α and we will additionally
require that

(c) |f̂ (hα) − f̂ (hβ)| ≤ |hα − hβ |.
Let f : R → R be the additive extension off̂ : Ĥ → R.
To prove thatf is a function of S-Z type it is enough to verify that card (f ∩

gα) < c for everyα < c. So, fixα < c and assume thatf (x) = gα(x). Let γ be the
first ordinal such thatx ∈ lin ({hβ :β ≤ γ}). Thenx = phγ+t0, wherep ∈ Q\{0}
and t0 ∈ lin ({hβ :β < γ}). So hγ = qx − t , whereq = p−1 ∈ Q and t = qt0 ∈
lin ({hβ :β < γ}). Moreover, f̂ (hγ) = f (hγ) = qf (x) − f (t) = qgα(x) − f (t), so
γ < α. Thus, by (b), [f = gα] ⊂ lin ({hβ :β < α}) and card (f ∩ gα) < c.

Now we shall verify thatf has a perfect road at eachx ∈ R. For x = hα ∈ Ĥ
it is obvious by (c), sincef |(Ĥα ∪ {hα}) is continuous athα. So, assume that
x =

∑n
i =1 qi hαi , where allqi are rationals. Thenx is a bilaterally limit point of

a perfect set̂Hx =
∑n

i =1 qi Ĥαi ∪ {x} and f |Ĥx is continuous atx. �
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5 A model with no Darboux S-Z function

In this section we will show that in the iterated perfect set (Sacks) model there
is no Darboux Sierpiński-Zygmund function. We will describe here only those
properties of this model that are necessary to follow the argument. More details
can be found in [14] and [1].

Let V be a model of ZFC+CH and letV [Gω2] be a model of ZFC+c = ω2

obtained as a generic extension ofV over the forcingP, which is a countable
support iteration of the perfect set (Sacks) forcing. ThenV and V [Gω2] have
the same cardinals. Moreover, inV [Gω2] there exists an increasing sequence
〈V [Gα]: α ≤ ω2〉 (of proper classes inV [Gω2], given by a formula) with the
following properties. (V [Gα] is a generic extension ofV obtained by extending
V with the partGα of Gω2 which belongs to theα-iteration of Sacks forcing.)

(A) CH holds inV [Gα] for everyα < ω2.
(B) For everyα < ω2 of uncountable cofinality and everys ∈ 2ω ∩V [Gα] there

existsβ < α such thats ∈ V [Gβ ].
(C) For everyα < ω2 anda, b ∈ R, a < b , there existss ∈ (a, b) ∩ (V [Gω2] \

V [Gα]) (a Sacks number overV [Gα]) such that for everyx ∈ R∩(V [Gω2] \
V [Gα]) there exists a continuous functiong ∈ RR∩V [Gω2] coded inV [Gα]
(i.e., such thatg|Q ∈ V [Gα]) with the property thatg(x) = s.

Property (A) follows immediately from the fact that CH holds inV and we iterate
forcings of cardinalityc. Properties (B) and (C) can be found in [1, Thm. 3.3(a)]
and in [14, Sec. 4, p. 581], respectively.

Note also, that property (B) can be modified as follows.

(B′) For everyα < ω2 of uncountable cofinality and everyp ∈ (RQ∪R)∩V [Gα]
there existsβ < α such thatp ∈ V [Gβ ].

The part concerningp ∈ R follows from the fact that a real number can be
identified with its binary representation, i.e., a functions:ω → 2. This also
implies the part forp ∈ RQ, since any suchp can be identified with ˆp: Q×ω → 2,
p̂(q, n) = p(q)(n), and further, with a function from 2ω by identifying Q × ω
with ω via bijection fromV .

Now, let h ∈ RR ∩ V [Gω2] be an SZ function and leta = inf h[R], b =
suph[R]. Then−∞ ≤ a < b ≤ ∞. We will show that (a, b) 6⊂ h[R].

To prove this letC(R) stand for the set of all continuous functions fromR
to R and define, forβ < ω2,

Sβ = h
[
R ∩ V [Gβ ]

]
∪
⋃{

{x, y}: (∃g ∈ C(R) ∩ V [Gω2])(g|Q ∈ V [Gβ ] & 〈x, y〉 ∈ g ∩ h)
}
.

Note that, by (A), the set (R ∪ RQ) ∩ V [Gβ ] has cardinality≤ ω1 and that
card (h ∩ g) ≤ ω1 for every g ∈ C(R) ∩ V [Gω2]. So, card (Sβ) ≤ ω1 for every
β < ω2. Define Γ :ω2 → ω2 by putting Γ (β) = sup{γ(x): x ∈ Sβ}, where
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γ(x) = min{β: x ∈ V [Gβ ]}, and letα < ω2 be of uncountable cofinality such
thatΓ (β) < α for everyβ < α. Then, by (B′),

(i) h(x) ∈ V [Gα] for every x ∈ R ∩ V [Gα];
(ii) h ∩ g ⊂ V [Gα] for every g ∈ C(R) coded inV [Gα].

Now, let s ∈ (a, b) ∩ (V [Gω2] \ V [Gα]) be a number from (C). It is enough
to prove thats 6∈ h[R].

But s 6∈ h
[
R∩V [Gα]

]
by (i). So, letx ∈ R∩ (V [Gω2] \V [Gα]). It is enough

to show thath(x) /= s. But, by (C), there exists a continuous functiong: R → R
coded inV [Gα] such thatg(x) = s. So,h(x) /= s, since otherwise〈x, s〉 ∈ h ∩ g
and, by (ii),s ∈ V [Gα]. This contradiction finishes the proof. �
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