Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road

Marek Balcerzak ${ }^{1}$, Krzysztof Ciesielski ${ }^{2}$, Tomasz Natkaniec ${ }^{3}$
${ }^{1}$ Institute of Mathematics, Iódź Technical University, Al. Politechniki 11, 90-924 Iódź, Poland (e-mail: mbalce@krysia.uni.lodz.pl)
2^{2} Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA (e-mail: kcies@wvnvms.wvnet.edu)
${ }^{3}$ Department of Mathematics, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland (e-mail: wspb11@vm.cc.uni.torun.pl)

Received February 28, 1996

Abstract

In this paper we show that if the real line \mathbb{R} is not a union of less than continuum many of its meager subsets then there exists an almost continuous Sierpiński-Zygmund function having a perfect road at each point. We also prove that it is consistent with ZFC that every Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on some set of cardinality continuum. In particular, both these results imply that the existence of a Sierpiński-Zygmund function which is either Darboux or almost continuous is independent of ZFC axioms. This gives a complete solution of a problem of Darji [4]. The paper contains also a construction (in ZFC) of an additive Sierpiński-Zygmund function with a perfect road at each point.

1 Introduction

Our terminology is standard. In particular, the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} stand for the sets of all: positive integers, integers, rationals and reals, respectively. We shall consider only real-valued functions of one real variable. No distinction is made between a function and its graph. The family of all functions from a set X into Y will be denoted by Y^{X}. The symbol card (X) will stand for the cardinality of a set X. The cardinality of \mathbb{R} is denoted by \mathfrak{c}. If A is a planar set, we denote its x-projection by $\operatorname{dom}(A)$. For $f, g \in \mathbb{R}^{\mathbb{R}}$ the notation $[f=g]$ means the set $\{x \in \mathbb{R}: f(x)=g(x)\}$.

If \mathscr{J} is an ideal of subsets of \mathbb{R}, then

$$
\begin{aligned}
\operatorname{cov}(\mathscr{J}) & =\min \{\operatorname{card}(\mathscr{F}): \mathscr{F} \subset \mathscr{J} \& \bigcup \mathscr{F}=\mathbb{R}\} \\
\operatorname{non}(\mathscr{J}) & =\min \{\operatorname{card}(A): A \subset \mathbb{R} \& A \notin \mathscr{J}\}
\end{aligned}
$$

(See [5].) The ideal of all meager subsets of \mathbb{R} is denoted by \mathscr{F}. Recall also the following definitions.

[^0]- $f: \mathbb{R} \rightarrow \mathbb{R}$ is of Sierpiński-Zygmund type (shortly, $f \in S Z$, or f is of SZ type) if its restriction $f \mid M$ is discontinuous for each set $M \subset \mathbb{R}$ with $\operatorname{card}(M)=\mathfrak{c}$ [17].
- $f: \mathbb{R} \rightarrow \mathbb{R}$ has a perfect road at $x \in \mathbb{R}$ if there exists a perfect set C such that x is a bilateral limit point of C and $f \mid C$ is continuous at x. We say that f is of perfect road type (shortly, $f \in P R$, or f is of PR type) if f has a perfect road at each point [13].
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be almost continuous (in the sense of Stallings) if each open subset of the plane containing f contains also a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}[18]$.
- $F: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ is a connectivity function if the graph of its restriction $F \mid X$ is connected (in \mathbb{R}^{3}) for every connected $X \subset \mathbb{R} \times[0,1]$.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is extendable if there is a connectivity function $F: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ such that $F(x, 0)=f(x)$ for every $x \in \mathbb{R}$.

Recall also that if $f: \mathbb{R} \rightarrow \mathbb{R}$ intersects every blocking set, i.e., a closed set $K \subset \mathbb{R}^{2}$ whose domain is a non-degenerate interval, then f is almost continuous [9]. It is also well-known that each almost continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is connected [18] and therefore that it has the Darboux property.

In [4], Darji constructed (in ZFC) an example of an S-Z function of perfect road type and asked whether there exists an almost continuous (or just Darboux) S-Z function. Examples of such functions under additional set theoretical assumptions are known. For example, Ceder [2] showed that under the assumption of the Continuum Hypothesis CH there exists a connectivity (hence Darboux) S-Z function, and Kellum [10] noticed that Ceder's function is in fact almost continuous. In Section 2 we will generalize both constructions (Ceder's and Darji's) by showing that under the assumption that $\operatorname{cov}(\mathscr{H})=\mathfrak{c}$ (which is somewhat weaker than CH or Martin's Axiom MA $[16,5]$) there exists an almost continuous S-Z function of PR type. On the other hand, in Section 5 we will show that there is a model of ZFC in which there is no Darboux S-Z function. Thus, some additional set theoretical assumptions are necessary in all of the examples mentioned above.

Sections 3 and 4 contain the constructions related to that from Section 2. In particular, Section 3 deals with the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous with respect to the qualitative topology on the domain and the natural topology on the range. In Section 4 we give a ZFC example of an additive S-Z function of PR type, generalizing the result of Darji from [4].

2 An almost continuous S-Z function of PR type

In our construction we will use the following easy and well known lemma.
Lemma 1. [8] Suppose $U \subset \mathbb{R}$ and $f: U \rightarrow \mathbb{R}$ is continuous. Then there exists a G_{δ} set M containing U and a continuous function $g: M \rightarrow \mathbb{R}$ such that $g \mid U=f$.

The next lemma is a modification of [4, Lemma 3].

Lemma 2. There exists a sequence $\left\langle\left\langle H_{\alpha}, p_{\alpha}\right\rangle: \alpha<\mathfrak{c}\right\rangle$ such that
(1) $H_{\alpha} \cup\left\{p_{\alpha}\right\} \subset \mathbb{R}$ is a compact perfect set and p_{α} is a bilaterally limit point of H_{α};
(2) $H=\bigcup_{\alpha<\mathfrak{c}} H_{\alpha}$ is linearly independent over \mathbb{Q};
(3) $H_{\alpha} \cap H_{\beta}=\emptyset$ for every $\alpha<\beta<\mathfrak{c}$;
(4) for every $x \in \mathbb{R}$ there exists continuum many $\gamma<\mathfrak{c}$ such that $x=p_{\gamma}$.

Proof. Let K be a linearly independent perfect set. (See [7] or [11, p. 270].) Pick a proper perfect subset P of K, and let $\left\{s_{\alpha, n}: \alpha<\mathfrak{c} \& n \in \mathbb{Z} \backslash\{0\}\right\}$ be a one-to-one enumeration of $K \backslash P$. Moreover, let $\left\{p_{\alpha}: \alpha<\mathfrak{c}\right\}$ be an enumeration of \mathbb{R} such that for every $x \in \mathbb{R}$ there exists continuum many $\gamma<\mathfrak{c}$ with $p_{\gamma}=x$. By induction on $\alpha<\mathfrak{c}$ choose sequences $\left\langle q_{\alpha, n}: \alpha<\mathfrak{c} \& n \in \mathbb{Z} \backslash\{0\}\right\rangle$ of non-zero rationals and $\left\langle C_{\alpha, n}: \alpha<\mathfrak{c} \& n \in \mathbb{Z} \backslash\{0\}\right\rangle$ of perfect sets such that for every $\alpha<\mathfrak{c}$ and $n \in \mathbb{Z} \backslash\{0\}$

$$
C_{\alpha, n} \subset\left(p_{\alpha}, p_{\alpha}+\frac{1}{n}\right) \cap\left(q_{\alpha, n} s_{\alpha, n}+P\right)
$$

where for $b<a$ we will understand (a, b) as the interval (b, a). Next, for each $\alpha<\mathfrak{c}$ define $H_{\alpha}=\bigcup\left\{C_{\alpha, n}: n \in \mathbb{Z} \backslash\{0\}\right\}$. It is easy to see that the family $\left\{H_{\alpha} \subset \mathbb{R}: \alpha<\mathfrak{c}\right\}$ has the desired properties.

Theorem 1. Assuming $\operatorname{cov}(\mathscr{H})=\mathfrak{c}$, there exists an almost continuous $S-Z$ function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has a perfect road at each point.

Proof. For $A \subset \mathbb{R}$ we denote $L(A)=A \times \mathbb{R}$. Let $\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a one-to-one enumeration of \mathbb{R} and $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ an enumeration of all continuous functions defined on G_{δ} subsets of \mathbb{R}.

Construct, by induction on $\alpha<\mathfrak{c}$, a sequence $\left\langle\left\langle C_{\alpha}, D_{\alpha}\right\rangle: \alpha<\mathfrak{c}\right\rangle$ such that for every $\alpha<\mathfrak{c}$
(1) $D_{\alpha} \subset \operatorname{dom}\left(g_{\alpha}\right) \backslash \bigcup_{\beta<\alpha}\left(C_{\beta} \cup D_{\beta}\right)$ is an at most countable set such that $g_{\alpha} \mid D_{\alpha}$ is a dense subset of $g_{\alpha} \backslash \bigcup_{\beta<\alpha}\left(g_{\beta} \cup L\left(C_{\beta} \cup D_{\beta}\right)\right)$;
(2) C_{α} is equal to a set H_{γ} from Lemma 2 such that $x_{\alpha}=p_{\gamma}$ and C_{α} is disjoint from $\left\{x_{\beta}: \beta \leq \alpha\right\} \cup \bigcup_{\beta \leq \alpha} D_{\beta} \cup \bigcup_{\beta<\alpha} C_{\beta}$.
The choice as in (2) can be made, since the set $\left\{x_{\beta}: \beta \leq \alpha\right\} \cup \bigcup_{\beta \leq \alpha} D_{\beta}$ has cardinality less than continuum, and there are continuum many pairwise disjoint sets H_{γ} with $p_{\gamma}=x_{\alpha}$.

Now, define the values $f\left(x_{\alpha}\right)$ of the function f by induction on $\alpha<\mathfrak{c}$ as follows.
(a) $f\left(x_{\alpha}\right)=g_{\beta}\left(x_{\alpha}\right)$ provided $x_{\alpha} \in D_{\beta}$ for some $\beta<\mathfrak{c}$.
(b) $f\left(x_{\alpha}\right) \in\left\{y \in \mathbb{R}:\left|y-f\left(x_{\beta}\right)\right|<\left|x_{\alpha}-x_{\beta}\right|\right\} \backslash\left\{g_{\gamma}\left(x_{\alpha}\right): \gamma \leq \alpha\right\}$ provided $x_{\alpha} \in C_{\beta}$ for some $\beta<\mathfrak{c}$. (Note that $f\left(x_{\beta}\right)$ is already defined since, by (2), $\beta<\alpha$.)
(c) $f\left(x_{\alpha}\right) \in \mathbb{R} \backslash\left\{g_{\gamma}\left(x_{\alpha}\right): \gamma \leq \alpha\right\}$ otherwise.

We will show that f has the desired properties.

First notice that, by (b), $f \mid\left(C_{\beta} \cup\left\{x_{\beta}\right\}\right)$ is continuous at x_{β} for every $\beta<\mathfrak{c}$. Therefore, $f \in P R$.

To prove that $f \in S Z$, by Lemma 1 it is enough to show that $\operatorname{card}\left(\left[f=g_{\beta}\right]\right)<$ \mathfrak{c} for each $\beta<\mathfrak{c}$. But $\left.\left[f=g_{\beta}\right] \subset \bigcup_{\alpha \leq \beta} D_{\alpha} \cup\left\{x_{\alpha}: \alpha<\beta\right\}\right)$, so $\operatorname{card}\left(\left[f=g_{\beta}\right]\right)<\mathfrak{c}$. Hence, $f \in S Z$.

To verify that f is almost continuous choose a blocking set $F \subset \mathbb{R}^{2}$. It is enough to show that $f \cap F \neq \emptyset$. To see this, note that there exist a non-degenerate interval $J \subset \operatorname{dom}(F)$ and an upper semicontinuous function $h: J \rightarrow \mathbb{R}$ such that $h \subset F$. (See [10, Lemma 1].) Thus there exists an $\alpha_{0}<\mathfrak{c}$ such that $g_{\alpha_{0}}=h \mid C(h)$, where $C(h)$ denotes the set of all points at which h is continuous. Then dom $g_{\alpha_{0}}$ is residual in J and $g_{\alpha_{0}} \subset F$. In particular, if S is the set of all $\alpha<\mathfrak{c}$ such that $\operatorname{dom}\left(g_{\alpha} \cap F\right)$ is residual in some non-degenerate interval I then $S \neq \emptyset$.

Let $\alpha=\min S$ and I be a non-degenerate interval such that $\operatorname{dom}\left(g_{\alpha} \cap F\right)$ is residual in I. But F is closed and g_{α} is continuous. So, $g_{\alpha} \mid I \subset F$. Moreover, by the minimality of α, for each $\beta<\alpha$ the set $I \cap\left[g_{\beta}=g_{\alpha}\right] \subset \operatorname{dom}\left(g_{\beta} \cap F\right)$ is nowhere dense in I. Consequently,

$$
\begin{aligned}
I \cap \operatorname{dom}\left[g_{\alpha} \backslash\right. & \left.\bigcup_{\beta<\alpha}\left(g_{\beta} \cup L\left(C_{\beta} \cup D_{\beta}\right)\right)\right] \\
& =\left(I \cap \operatorname{dom}\left(g_{\alpha}\right)\right) \backslash \bigcup_{\beta<\alpha}\left(I \cap\left(\left[g_{\beta}=g_{\alpha}\right] \cup C_{\beta} \cup D_{\beta}\right)\right) \neq \emptyset
\end{aligned}
$$

since $\operatorname{cov}(\mathscr{H})=\mathfrak{c}$. Thus, by (1), $I \cap D_{\alpha} \neq \emptyset$. Let $x \in I \cap D_{\alpha}$. Then, by (a), $\langle x, f(x)\rangle=\left\langle x, g_{\alpha}(x)\right\rangle \in f \cap F$.

Remark. Note that an S-Z function of perfect road type is not extendable. (See [4].) So, Theorem 1 gives a new and easy example of an almost continuous function that has a perfect road at each point and is not an extendable function. The first example of such a function was constructed (in ZFC) in [15].

3 The qualitative case

Now we shall consider \mathbb{R} with the fine topology q generated by the ideal \mathscr{K}. This topology is called the qualitative topology. Recall that a set G is open in the qualitative topology if it can be written in the form $U \backslash P$, where U is open in the Euclidean topology and P is of the first category. (Note that it is an example of a *-topology in the sense of Hashimoto [6] or \mathscr{J}-topology in the sense of Vaidyanathaswamy [19] with respect to the ideal $\mathscr{\mathscr { H }}$ of meager sets.)

For a set $A \subset \mathbb{R}$ and a function $f: A \rightarrow \mathbb{R}$ we say that f is q-continuous at a point $x_{0} \in A$ if f is continuous at x_{0} as a real function defined on the subspace A of the space $\langle\mathbb{R}, q\rangle$.

Lemma 3. For every set $A \subset \mathbb{R}$ and a function $f: A \rightarrow \mathbb{R}$,
(1) if $A \in \mathscr{H}$, then f is q-continuous;
(2) iff is continuous, then it is q-continuous;
(3) if A is q-dense in itself and f is q-continuous, then f is continuous.

Proof. Statements (1) and (2) are evident. For (3), see [12, Th. 4] or [3, Cor. 1.1.8].

Proposition 1. If $\operatorname{cov}(\mathscr{H})=\operatorname{non}(\mathscr{H})=\mathfrak{c}$ then there exists an almost continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ of perfect road type such that $f \mid M$ is not q-continuous for every $M \notin \mathscr{F}$.

Proof. Assume $M \notin \mathscr{F}$. Then M is not q-nowhere dense. So, there exists an interval I such that $M \cap I$ is q-dense in itself. In particular, $M \cap I \notin \mathscr{H}$, so $\operatorname{card}(M \cap I)=\mathfrak{c}$. Let f be the function constructed in Theorem 1. Then $f \mid(M \cap I)$ is discontinuous so, by Lemma 3, $f \mid(M \cap I)$ is not q-continuous. Therefore, $f \mid M$ also is not q-continuous.

4 An additive S-Z function of PR type

Theorem 2. There exists an additive Sierpinski-Zygmund function $f: \mathbb{R} \rightarrow \mathbb{R}$ of perfect road type.
Proof. Let $\widehat{H}=\left\{h_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a Hamel basis which contains the set H constructed in Lemma 2 and let $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a well-ordering of all continuous functions defined on G_{δ} subsets of \mathbb{R}. For each $\alpha<\mathfrak{c}$ choose a set \widehat{H}_{α} and an $\hat{f}\left(h_{\alpha}\right)$ such that
(a) \widehat{H}_{α} is equal to a set H_{γ} from Lemma 2 such that $h_{\alpha}=p_{\gamma}$ and \widehat{H}_{α} is disjoint from $\left\{h_{\beta}: \beta \leq \alpha\right\}$;
(b) $\hat{f}\left(h_{\alpha}\right) \neq q g_{\beta}(x)-f_{\alpha}(t)$ for all $\beta \leq \alpha, q \in \mathbb{Q}, x \in \operatorname{lin}\left(\left\{h_{\beta}: \beta \leq \alpha\right\}\right)$ and $t \in \operatorname{lin}\left(\left\{h_{\beta}: \beta<\alpha\right\}\right)$, where $\operatorname{lin}(A)$ denotes the linear subspace of \mathbb{R} over \mathbb{Q} generated by A, and f_{α} is the additive extension of $\hat{f} \mid\left\{h_{\beta}: \beta<\alpha\right\}$.
Moreover, if $h_{\alpha} \in \widehat{H}_{\beta}$ for some $\beta<\mathfrak{c}$ then, by (a), $\beta<\alpha$ and we will additionally require that
(c) $\left|\hat{f}\left(h_{\alpha}\right)-\hat{f}\left(h_{\beta}\right)\right| \leq\left|h_{\alpha}-h_{\beta}\right|$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the additive extension of $\hat{f}: \widehat{H} \rightarrow \mathbb{R}$.
To prove that f is a function of S-Z type it is enough to verify that $\operatorname{card}(f \cap$ $\left.g_{\alpha}\right)<\mathfrak{c}$ for every $\alpha<\mathfrak{c}$. So, fix $\alpha<\mathfrak{c}$ and assume that $f(x)=g_{\alpha}(x)$. Let γ be the first ordinal such that $x \in \operatorname{lin}\left(\left\{h_{\beta}: \beta \leq \gamma\right\}\right)$. Then $x=p h_{\gamma}+t_{0}$, where $p \in \mathbb{Q} \backslash\{0\}$ and $t_{0} \in \operatorname{lin}\left(\left\{h_{\beta}: \beta<\gamma\right\}\right)$. So $h_{\gamma}=q x-t$, where $q=p^{-1} \in \mathbb{Q}$ and $t=q t_{0} \in$ $\operatorname{lin}\left(\left\{h_{\beta}: \beta<\gamma\right\}\right)$. Moreover, $\hat{f}\left(h_{\gamma}\right)=f\left(h_{\gamma}\right)=q f(x)-f(t)=q g_{\alpha}(x)-f(t)$, so $\gamma<\alpha$. Thus, by (b), $\left[f=g_{\alpha}\right] \subset \operatorname{lin}\left(\left\{h_{\beta}: \beta<\alpha\right\}\right)$ and $\operatorname{card}\left(f \cap g_{\alpha}\right)<\mathfrak{c}$.

Now we shall verify that f has a perfect road at each $x \in \mathbb{R}$. For $x=h_{\alpha} \in \widehat{H}$ it is obvious by (c), since $f \mid\left(\widehat{H}_{\alpha} \cup\left\{h_{\alpha}\right\}\right)$ is continuous at h_{α}. So, assume that $x=\sum_{i=1}^{n} q_{i} h_{\alpha_{i}}$, where all q_{i} are rationals. Then x is a bilaterally limit point of a perfect set $\widehat{H}_{x}=\sum_{i=1}^{n} q_{i} \widehat{H}_{\alpha_{i}} \cup\{x\}$ and $f \mid \widehat{H}_{x}$ is continuous at x.

5 A model with no Darboux S-Z function

In this section we will show that in the iterated perfect set (Sacks) model there is no Darboux Sierpiński-Zygmund function. We will describe here only those properties of this model that are necessary to follow the argument. More details can be found in [14] and [1].

Let V be a model of $\mathrm{ZFC}+\mathrm{CH}$ and let $V\left[G_{\omega_{2}}\right]$ be a model of $\mathrm{ZFC}+\mathfrak{c}=\omega_{2}$ obtained as a generic extension of V over the forcing \mathbb{P}, which is a countable support iteration of the perfect set (Sacks) forcing. Then V and $V\left[G_{\omega_{2}}\right]$ have the same cardinals. Moreover, in $V\left[G_{\omega_{2}}\right]$ there exists an increasing sequence $\left\langle V\left[G_{\alpha}\right]: \alpha \leq \omega_{2}\right\rangle$ (of proper classes in $V\left[G_{\omega_{2}}\right]$, given by a formula) with the following properties. ($V\left[G_{\alpha}\right]$ is a generic extension of V obtained by extending V with the part G_{α} of $G_{\omega_{2}}$ which belongs to the α-iteration of Sacks forcing.)
(A) CH holds in $V\left[G_{\alpha}\right]$ for every $\alpha<\omega_{2}$.
(B) For every $\alpha<\omega_{2}$ of uncountable cofinality and every $s \in 2^{\omega} \cap V\left[G_{\alpha}\right]$ there exists $\beta<\alpha$ such that $s \in V\left[G_{\beta}\right]$.
(C) For every $\alpha<\omega_{2}$ and $a, b \in \mathbb{R}, a<b$, there exists $s \in(a, b) \cap\left(V\left[G_{\omega_{2}}\right] \backslash\right.$ $\left.V\left[G_{\alpha}\right]\right)$ (a Sacks number over $\left.V\left[G_{\alpha}\right]\right)$ such that for every $x \in \mathbb{R} \cap\left(V\left[G_{\omega_{2}}\right] \backslash\right.$ $\left.V\left[G_{\alpha}\right]\right)$ there exists a continuous function $g \in \mathbb{R}^{\mathbb{R}} \cap V\left[G_{\omega_{2}}\right]$ coded in $V\left[G_{\alpha}\right]$ (i.e., such that $g \mid \mathbb{Q} \in V\left[G_{\alpha}\right]$) with the property that $g(x)=s$.

Property (A) follows immediately from the fact that CH holds in V and we iterate forcings of cardinality \mathfrak{c}. Properties (B) and (C) can be found in [1, Thm. 3.3(a)] and in [14, Sec. 4, p. 581], respectively.

Note also, that property (B) can be modified as follows.
$\left(\mathrm{B}^{\prime}\right)$ For every $\alpha<\omega_{2}$ of uncountable cofinality and every $p \in\left(\mathbb{R}^{\mathbb{Q}} \cup \mathbb{R}\right) \cap V\left[G_{\alpha}\right]$ there exists $\beta<\alpha$ such that $p \in V\left[G_{\beta}\right]$.

The part concerning $p \in \mathbb{R}$ follows from the fact that a real number can be identified with its binary representation, i.e., a function $s: \omega \rightarrow 2$. This also implies the part for $p \in \mathbb{R}^{\mathbb{Q}}$, since any such p can be identified with $\hat{p}: \mathbb{Q} \times \omega \rightarrow 2$, $\hat{p}(q, n)=p(q)(n)$, and further, with a function from 2^{ω} by identifying $\mathbb{Q} \times \omega$ with ω via bijection from V.

Now, let $h \in \mathbb{R}^{\mathbb{R}} \cap V\left[G_{\omega_{2}}\right]$ be an SZ function and let $a=\inf h[\mathbb{R}], b=$ $\sup h[\mathbb{R}]$. Then $-\infty \leq a<b \leq \infty$. We will show that $(a, b) \not \subset h[\mathbb{R}]$.

To prove this let $C(\mathbb{R})$ stand for the set of all continuous functions from \mathbb{R} to \mathbb{R} and define, for $\beta<\omega_{2}$,

$$
\begin{aligned}
S_{\beta} & =h\left[\mathbb{R} \cap V\left[G_{\beta}\right]\right] \\
& \cup \bigcup\left\{\{x, y\}:\left(\exists g \in C(\mathbb{R}) \cap V\left[G_{\omega_{2}}\right]\right)\left(g \mid \mathbb{Q} \in V\left[G_{\beta}\right] \&\langle x, y\rangle \in g \cap h\right)\right\} .
\end{aligned}
$$

Note that, by (A), the set $\left(\mathbb{R} \cup \mathbb{R}^{\mathbb{Q}}\right) \cap V\left[G_{\beta}\right]$ has cardinality $\leq \omega_{1}$ and that $\operatorname{card}(h \cap g) \leq \omega_{1}$ for every $g \in C(\mathbb{R}) \cap V\left[G_{\omega_{2}}\right]$. So, $\operatorname{card}\left(S_{\beta}\right) \leq \omega_{1}$ for every $\beta<\omega_{2}$. Define $\Gamma: \omega_{2} \rightarrow \omega_{2}$ by putting $\Gamma(\beta)=\sup \left\{\gamma(x): x \in S_{\beta}\right\}$, where
$\gamma(x)=\min \left\{\beta: x \in V\left[G_{\beta}\right]\right\}$, and let $\alpha<\omega_{2}$ be of uncountable cofinality such that $\Gamma(\beta)<\alpha$ for every $\beta<\alpha$. Then, by (B^{\prime}),
(i) $h(x) \in V\left[G_{\alpha}\right]$ for every $x \in \mathbb{R} \cap V\left[G_{\alpha}\right]$;
(ii) $h \cap g \subset V\left[G_{\alpha}\right]$ for every $g \in C(\mathbb{R})$ coded in $V\left[G_{\alpha}\right]$.

Now, let $s \in(a, b) \cap\left(V\left[G_{\omega_{2}}\right] \backslash V\left[G_{\alpha}\right]\right)$ be a number from (C). It is enough to prove that $s \notin h[\mathbb{R}]$.

But $s \notin h\left[\mathbb{R} \cap V\left[G_{\alpha}\right]\right]$ by (i). So, let $x \in \mathbb{R} \cap\left(V\left[G_{\omega_{2}}\right] \backslash V\left[G_{\alpha}\right]\right)$. It is enough to show that $h(x) \neq s$. But, by (C), there exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ coded in $V\left[G_{\alpha}\right]$ such that $g(x)=s$. So, $h(x) \neq s$, since otherwise $\langle x, s\rangle \in h \cap g$ and, by (ii), $s \in V\left[G_{\alpha}\right]$. This contradiction finishes the proof.

References

1. Baumgartner, J., Laver, R.: Iterated perfect set forcing. Ann. Math. Logic 17, 271-288 (1979)
2. Ceder, J.: Some examples on continuous restrictions. Real Anal. Exchange 7, 155-162 (1981-82)
3. Ciesielski, K., Larson, L., Ostaszewski, K.: \mathscr{T}-density continuous functions. Mem. Amer. Math. Soc. 107, 515 (1994)
4. Darji, U.B.: A Sierpiński-Zygmund function which has a perfect road at each point. Colloq. Math. 64, 159-162 (1993)
5. Fremlin, D.H.: On Cichoń's diagram. In: Choquet, G., Rogalski, M., Saint-Raymond, J. (eds.) Sém. d'Initiation a l'Analyse. Univ. Pierre et Marie Curie, Paris 23, 5.01-5.23 (1983-84)
6. Hashimoto, H.: On the *-topology and its applications. Fund. Math. 91, 275-284 (1976)
7. Jones, F.B.: Measure and other properties of a Hamel basis. Bull. Amer. Math. Soc. 48, 472-481 (1942)
8. Kuratowski, K.: Topologie I. Warszawa: PWN 1958
9. Kellum, K.R.: Sums and limits of almost continuous functions. Colloq. Math. 31, 125-128 (1974)
10. Kellum, K.R.: Almost continuity and connectivity - sometimes it's as easy to prove a stronger result. Real Anal. Exchange 8, 244-252 (1982-83).
11. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Warszawa Kraków Katowice: PWN 1985
12. Martin, N.F.G.: Generalized condensation points. Duke Math. J. 28, 507-514 (1961)
13. Maximoff, I.: Sur les fonctions ayant la propriété de Darboux. Prace Mat.-Fiz. 43, 241-265 (1936)
14. Miller, A.W.: Mapping a set of reals onto the reals. J. Symb. Logic 48, 575-584 (1983)
15. Rosen, H., Gibson, R.G., Roush, F.: Extendable functions and almost continuous functions with a perfect road. Real Anal. Exchange 17, 248-257 (1991-92)
16. Shoenfield, J.: Martin's axiom. Amer. Math. Monthly 82, 610-617 (1975)
17. Sierpiński, W., Zygmund, A.: Sur une fonction qui est discontinue sur tout ensemble de puissance du continu. Fund. Math. 4, 316-318 (1923)
18. Stallings, J.: Fixed point theorems for connectivity maps. Fund. Math. 47, 249-263 (1959)
19. Vaidyanathaswamy, R.: Treatise on Set Topology, Part 1. Madras: Indian Math. Soc. 1947

[^0]: Mathematics Subject Classification: Primary: 26A15; Secondary: 03E50, 03E65
 Correspondence to: M. Balcerzak

