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Abstract. In this paper we show that if the real lifieis not a union of less than
continuum many of its meager subsets then there exists an almost continuous
Sierphski—Zygmund function having a perfect road at each point. We also prove
that it is consistent with ZFC that every Darboux functfof® — R is continuous

on some set of cardinality continuum. In particular, both these results imply
that the existence of a Siefiski—-Zygmund function which is either Darboux or
almost continuous is independent of ZFC axioms. This gives a complete solution
of a problem of Datriji [4]. The paper contains also a construction (in ZFC) of an
additive Sierphski-Zygmund function with a perfect road at each point.

1 Introduction

Our terminology is standard. In particular, the symh§|sZ, Q andR stand for
the sets of all: positive integers, integers, rationals and reals, respectively. We
shall consider only real-valued functions of one real variable. No distinction is
made between a function and its graph. The family of all functions from X set
into Y will be denoted byy*. The symbol cardX) will stand for the cardinality
of a setX. The cardinality ofR is denoted by. If Ais a planar set, we denote
its x-projection by domA). For f,g € RE the notation { = g] means the set
{x eR:f(x) =g(x)}.

If 7 is an ideal of subsets @&, then

cov(7) = minfeard(7):.7 c 7 & | J.7 =R}
non(7) min{card Q):ACR& A¢ 7}.

(See [5].) The ideal of all meager subsetsibis denoted by77. Recall also
the following definitions.
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— f:R — R is of Sierpiski-Zygmund typéshortly, f € Sz, or f is of S-
Z type) if its restrictionf|M is discontinuous for each s C R with
cardM) = ¢ [17].

— f:R — R has a perfect roachtx € R if there exists a perfect s& such that
X is a bilateral limit point ofC andf |C is continuous ak. We say thaf is
of perfect road typgshortly,f € PR, or f is of PR type) iff has a perfect
road at each point [13].

— f:R — R is said to bealmost continuougin the sense of Stallings) if each
open subset of the plane containifigcontains also a continuous function
g:R — R [18].

— F:Rx[0,1] — R is aconnectivity functiorif the graph of its restrictiorr | X
is connected (irR3) for every connecte C R x [0, 1].

— f:R — R is extendabléf there is a connectivity functiofr: R x [0,1] — R
such thatF (x, 0) =f (x) for everyx € R.

Recall also that iff :R — R intersects everplocking set i.e., a closed set
K c R? whose domain is a non-degenerate interval, thés almost continu-
ous [9]. It is also well-known that each almost continuous functioR — R is
connected [18] and therefore that it has the Darboux property.

In [4], Darji constructed (in ZFC) an example of an S-Z function of perfect
road type and asked whether there exists an almost continuous (or just Darboux)
S-Z function. Examples of such functions under additional set theoretical assump-
tions are known. For example, Ceder [2] showed that under the assumption of
the Continuum Hypothesis CH there exists a connectivity (hence Darboux) S-Z
function, and Kellum [10] noticed that Ceder’s function is in fact almost contin-
uous. In Section 2 we will generalize both constructions (Ceder’s and Dariji’s) by
showing that under the assumption that ca&§ = ¢ (which is somewhat weaker
than CH or Martin’s Axiom MA [16, 5]) there exists an almost continuous S-Z
function of PR type. On the other hand, in Section 5 we will show that there is a
model of ZFC in which there is no Darboux S-Z function. Thus, some additional
set theoretical assumptions are necessary in all of the examples mentioned above.

Sections 3 and 4 contain the constructions related to that from Section 2. In
particular, Section 3 deals with the functiohdR — R continuous with respect
to the qualitative topology on the domain and the natural topology on the range.
In Section 4 we give a ZFC example of an additive S-Z function of PR type,
generalizing the result of Darji from [4].

2 An almost continuous S-Z function of PR type

In our construction we will use the following easy and well known lemma.

Lemma 1. [8] Suppose UC R and f: U — R is continuous. Then there exists a
Gs set M containing U and a continuous functipnM — R such thatg|U =f.
O

The next lemma is a modification of [4, Lemma 3].
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Lemma 2. There exists a sequen¢éH,, P,): o < ¢) such that

(1) Ho U {p.} C R is a compact perfect set ang, fis a bilaterally limit point
of Hy;

(2) H=U,.Ha is linearly independent ovep;

(3) HoNHg =0 for everya < 8 < ¢;

(4) for every xe R there exists continuum many< ¢ such that x= p,.

Proof. Let K be a linearly independent perfect set. (See [7] or [11, p. 270].)
Pick a proper perfect subsBtof K, and let{s,n:a <c& n e Z\ {0}} be a
one-to-one enumeration &f \ P. Moreover, let{p,: « < ¢} be an enumeration

of R such that for everx € R there exists continuum many < ¢ with p, = x.

By induction ona. < ¢ choose sequenceég, n: o < ¢ & n € Z\{0}) of non-zero
rationals and(C,n:a < ¢ & n € Z \ {0}) of perfect sets such that for every
a<candn e Z\ {0}

1
Can C (pm Po + n) M (da,nSan +P),

where forb < a we will understandd, b) as the intervallf,a). Next, for each
a < ¢ defineH, = [J{Cun:n € Z\ {0}}. It is easy to see that the family
{Ha C R:a < ¢} has the desired properties. O

Theorem 1. Assumingcov (7)) = ¢, there exists an almost continuous S-Z func-
tion f: R — R which has a perfect road at each point.

Proof. For A C R we denoteL(A) = A x R. Let {X,:a < ¢} be a one-to-one
enumeration ofR and {g,: a < ¢} an enumeration of all continuous functions
defined onGs subsets ofR.

Construct, by induction o < ¢, a sequencé(C,,D,):a < ¢) such that
for everya < ¢

(1) D, C dom (qa)\Uﬂ<a(CgU Dg) is an at most countable set such thatD,,
is a dense subset gf, \ Uﬁm(gﬁ U L(Cs U Dg));

(2) C, is equal to a setl, from Lemma 2 such that, = p, andC, is disjoint
from {x3: 8 < a} UUp<, Ds UUs-,, Cs-

The choice as in (2) can be made, since the{ggt < a} UJz., Dg has
cardinality less than continuum, and there are continuum many pairwise disjoint
setsH,, with p, = X,.

Now, define the value$(x,) of the functionf by induction ona < ¢ as
follows.

(@) f(Xa) = gs(Xs) providedx, € Dg for somef < .
(b) f(xa) € {y e Rily—f ()| < |[Xa—Xs|}\{g+(Xa): v < a} providedx, € Cs
for somef < ¢. (Note thatf (x3) is already defined since, by (2},< «.)

(€) f(Xa) € R\ {g,(Xa): ¥ < o} otherwise.

We will show thatf has the desired properties.
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First notice that, by (b)f |(Cs U {x3}) is continuous akg for every g < .
Thereforef € PR

To prove thaf € SZ, by Lemma 1 it is enough to show that card { gs]) <
cforeachs < c. But[f =gs] C U,<3DaU{Xaia < 3}),socard( = gs]) <c.
Hence,f € SZ

To verify thatf is almost continuous choose a blocking et R2. It is
enough to show thdtnF # (). To see this, note that there exist a non-degenerate
interval J ¢ dom () and an upper semicontinuous function] — R such that
h C F. (See [10, Lemma 1].) Thus there existsaan< ¢ such thay,, = h|C(h),
whereC (h) denotes the set of all points at whibhis continuous. Then dom,,
is residual inJ andg,, C F. In particular, ifS is the set of all < ¢ such that
dom (g, N F) is residual in some non-degenerate intetvahenS # (.

Let « = minS and| be a non-degenerate interval such that dgm{F) is
residual inl. But F is closed andy, is continuous. Sog,|l C F. Moreover,
by the minimality ofa, for eachf < o the setl N[gs = go] C domggNF) is
nowhere dense ih. Consequently,

| Ndom {ga \ U (95 UL(Cs U Dﬁ))}

B<a
= (1 ndom@)\ (J (1N (095 = 921U C5 UD))# 0,
B<a
since cov{#’) = ¢. Thus, by (1)l N D, # . Letx € | N D,. Then, by (a),
(X, F(X)) = (X, ga(x)) € f NF. O

Remark.Note that an S-Z function of perfect road type is not extendable.
(See [4].) So, Theorem 1 gives a new and easy example of an almost con-
tinuous function that has a perfect road at each point and is not an extendable
function. The first example of such a function was constructed (in ZFC) in [15].

3 The qualitative case

Now we shall consideR with the fine topologyg generated by the ideak”".
This topology is called thqualitative topology. Recall that a s& is open in the
qualitative topology if it can be written in the fortd \ P, whereU is open in
the Euclidean topology and is of the first category. (Note that it is an example
of a *-topology in the sense of Hashimoto [6] gF-topology in the sense of
Vaidyanathaswamy [19] with respect to the ide&l of meager sets.)

For a setA C R and a functiorf: A — R we say thaf is g-continuousat a
point xo € A if f is continuous akg as a real function defined on the subspace
A of the spac€R, q).

Lemma 3. For every set AC R and a function fA — R,

(1) if Ae . ZZ, then f is g-continuous;
(2) if f is continuous, then it is g-continuous;
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(3) if Ais g-dense in itself and f is g-continuous, then f is continuous.

Proof. Statements (1) and (2) are evident. For (3), see [12, Th. 4] or [3,
Cor. 1.1.8]. |

Proposition 1. If cov (7)) = non (72") = ¢ then there exists an almost continuous
function f: R — R of perfect road type such thaf¥ is not g-continuous for every
M &.%.

Proof. AssumeM ¢ .7Z". ThenM is not g-nowhere dense. So, there exists an
interval | such thatM N | is g-dense in itself. In particulatM N1 ¢ .7, so
cardM N1) =c. Letf be the function constructed in Theorem 1. THé¢M N1)
is discontinuous so, by LemmaB(M N1) is notg-continuous. Thereford,|M
also is notg-continuous. O

4 An additive S-Z function of PR type

Theorem 2. There exists an additive Sieffgki-Zygmund function:iR — R of
perfect road type.

Proof. Let H = {ha:a < ¢} be a Hamel basis which contains the bketcon-
structed in Lemma 2 and Idlg,: a < ¢} be a well-ordering of all continuous
functions defined o1Gs subsets ofR. For eacha < ¢ choose a selﬁa and an
f (hy) such that

€)) H, is equal to a sel, from Lemma 2 such thdi, = p, and H, is disjoint
from {hg: 5 < a};

(b) f(h,) # agp(x) — fu(t) forall 8 < o, q € Q, x € lin({hz: 8 < a}) and
t € lin({hs: 8 < «}), where lin @) denotes the linear subspacelbver Q
generated by, andf, is the additive extension dfl{hs: 3 < a}.

Moreover, ifh, € ﬁg for someg < cthen, by (a)5 < a and we will additionally
require that

(©) [f(ha) —f(hs)| < |he — gl

Let f:R — R be the additive extension éfH — R.

To prove thaff is a function of S-Z type it is enough to verify that cafd
Jga) < cforeverya < ¢. So, fixa < ¢ and assume th&{(x) = g, (x). Let~ be the
first ordinal such that € lin ({hs: 5 < ~v}). Thenx = ph, +ty, wherep € Q\ {0}
andtp € lin({hg: 3 < 7}). Soh, =gx —t, whereq = p~1 € Q andt = qtp €
lin({hg: 8 < ~}). Moreover,f(hw) =f(h,) = gf(x) — f(t) = qga(x) — f(t), so
v < a. Thus, by (b), { = g.] Clin({hg: 8 < a}) and card{ N g,) < c.

Now we shall verify thaf has a perfect road at eaghe R. Forx = h, € H
it is obvious by (c), sincd |(ﬁa U {h,}) is continuous ah,. So, assume that
X = Zi”:l gihs, , where allg; are rationals. Thew is a bilaterally limit point of
a perfect setly = S H,, U {x} andf|Hy is continuous ax. O
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5 A model with no Darboux S-Z function

In this section we will show that in the iterated perfect set (Sacks) model there
is no Darboux Sierpiski-Zygmund function. We will describe here only those
properties of this model that are necessary to follow the argument. More details
can be found in [14] and [1].

Let V be a model of ZFC+CH and l&f[G,,] be a model of ZFC¢ = w,
obtained as a generic extension\¢fover the forcingP, which is a countable
support iteration of the perfect set (Sacks) forcing. Therand V[G,,,] have
the same cardinals. Moreover, W[G,,] there exists an increasing sequence
(V[G,]: @ < wy) (of proper classes iV [G,,], given by a formula) with the
following properties. Y [G,] is a generic extension of obtained by extending
V with the partG,, of G,, which belongs to thew-iteration of Sacks forcing.)

(A) CH holds inV[G,] for every a < wy.

(B) For everya < w, of uncountable cofinality and evesye 2 NV [G,] there
exists 8 < « such thats € V[Gg].

(C) For everya < w, anda,b € R, a < b, there exists € (a,b) N (V[G,,] \
V[G,]) (a Sacks number ov&f[G,]) such that for everx € RN(V[G,,] \
V[G,]) there exists a continuous functigne RNV [G,,,] coded inV[G,]
(i.e., such thay|Q € V[G,]) with the property thay(x) = s.

Property (A) follows immediately from the fact that CH holdsvnand we iterate
forcings of cardinalityc. Properties (B) and (C) can be found in [1, Thm. 3.3(a)]
and in [14, Sec. 4, p. 581], respectively.

Note also, that property (B) can be modified as follows.

(B) For everya < w, of uncountable cofinality and evepye (RQUR)NV [G,]
there exists3 < « such thatp € V[Gg].

The part concerningg € R follows from the fact that a real number can be
identified with its binary representation, i.e., a functisnu — 2. This also
implies the part fop € R?, since any sucp can be identified witlp Q xw — 2,
p(g,n) = p(q)(n), and further, with a function from“2 by identifying Q x w
with w via bijection fromV.

Now, leth € R® N V[G,,] be an SZ function and lea = infh[R], b =
suph[R]. Then—oco < a < b < co. We will show that &,b) ¢ h[R].

To prove this letC(R) stand for the set of all continuous functions frdin
to R and define, for3 < wo,

S = h[RmV[GB]}
UU{ 1.y} B9 € C®NVIGLDGIC € VG & (x,y) € gnh)}.

Note that, by (A), the setR U R?) N V[Gs] has cardinality< w; and that
card N g) < w; for everyg € C(R) N V[G,,]. So, card§;) < w; for every
B < wp. Define I''w, — wy by putting I'(G) = sup{~y(x):x € Sz}, where
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~v(x) = min{g: x € V[Gg]}, and leta < w, be of uncountable cofinality such
that I'(3) < « for every 3 < a. Then, by (B),

(i) h(x) e V[G,] for everyx e RNV [G,];
(i) hng Cc V[G,] for every g € C(R) coded inV[G,].

Now, lets € (a,b) N (V[G,,] \ V[G.]) be a number from (C). It is enough
to prove thats ¢ h[R].

Buts ¢ h [RmV[Ga]] by (i). So, letx € RN(V[G.,]\V[Ga]). It is enough

to show thath(x) # s. But, by (C), there exists a continuous functigriR — R
coded inV[G,] such thatg(x) = s. So,h(x) # s, since otherwiséx,s) e hng
and, by (ii),s € V[G,]. This contradiction finishes the proof. O
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