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SETS ON WHICH MEASURABLE FUNCTIONS ARE
DETERMINED BY THEIR RANGE

MAXIM R. BURKE AND KRZYSZTOF CIESIELSKI

ABSTRACT. We study sets on which measurable real-valued functions on a measur-
able space with negligibles are determined by their range.

1. Introduction. In [BD, Theorem 8.5], it is shown that, under the Continuum
Hypothesis (CH), in any separable Baire topological space X there is a set M such that
for any two continuous real-valued functions f and g on X, if f and g are not constant
on any nonvoid open set then f [M] � g[M] implies f = g. In particular, if f [M] = g[M]
then f = g. Sets having this last property with respect to entire (analytic) functions in the
complex plane were studied in [DPR] where they were called sets of range uniqueness
(SRU’s). We study the properties of such sets in measurable spaces with negligibles. (See
below for the definition.) We prove a generalization of the aforementioned result [BD,
Theorem 8.5] to such spaces (Theorem 4.3) and answer Question 1 from [BD] by showing
that CH cannot be omitted from the hypothesis of their theorem (Example 5.17). We also
study the descriptive nature of SRU’s for the nowhere constant continuous functions on
Baire Tychonoff topological spaces.

When X = R, the result of [BD, Theorem 8.5] states that, under CH, there is a set
M � R such that for any two nowhere constant continuous functions f Ò g: R ! R, if
f [M] � g[M] then f = g. It is shown in [BD, Theorem 8.1] that there is (in ZFC) a set
M � R such that for any continuous functions f Ò g: R ! R, if f has countable level sets
and g[M] � f [M] then g is constant on the connected components of fx 2 R : f (x) 6=
g(x)g. In the case where g is the identity function, these properties of M are similar to
various properties that have been considered in the literature. Dushnik and Miller [DM]
showed that, under CH, there is an uncountable set M � R such that for any monotone
(nonincreasing or nondecreasing) function f : R ! R, if fx 2 R : f (x) = xg is nowhere
dense, then f [M]\M is countable. Building on this result from [DM], Büchi [Bü] showed
that, under CH, there is a set M � R of cardinality ∑ such that for any X � M and for
any Borel function f : X ! M, f [fx 2 X : f (x) 6= xg] has cardinality less than ∑. He calls
such sets totally heterogeneous. He also observes that if instead of saying “for any Borel
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function f : X ! M” we say “for any Borel function belonging to collection A” for special
classes A of Borel functions, the use of CH can be avoided. This is true, e.g., for the
class of all Borel functions f : R ! R such that f [X] � M and for each y 2 R, f�1(fyg)
is either countable or of positive Lebesgue measure (a class which contains monotone
functions, for example). In the last section of the paper, we shall discuss the relationships
between some of these properties and the SRU property for various classes of functions.

2. Preliminaries. Our set-theoretic terminology is standard: see [Ku1] or [Je]. In
particular, R, Q and Z will stand for the sets of real numbers, rational numbers and
integers, respectively. We will write Bor for the Borel õ-algebra of R.

A triple hXÒΣÒN i is a measurable space with negligibles if Σ is a õ-algebra of subsets
of X and N is a proper õ-ideal of subsets of X generated by Σ\N . (See [F] for the basic
properties of such spaces.) By analogy with the case where Σ and N are respectively
the õ-algebra of measurable sets and the õ-ideal of null sets for a measure on X, we
will call the elements of Σ measurable sets and refer to the elements of N as negligible
sets. We will also call the members of Σ n N positive sets. (So, in particular, positive
sets are measurable.) If Σ and N are clear from the context, we will write X in places
where it would be more appropriate to write hXÒΣÒN i. In particular, when M � X is not
negligible, we shall identify M with the space hMÒΣMÒNMiwhere ΣM = fE\M : E 2 Σg
and NM = fN \ M : N 2 N g. We say that hXÒΣÒN i is @1-saturated if every pairwise
disjoint family of positive sets is countable. An atom of hXÒΣÒN i is a positive set which
does not have two disjoint positive subsets. hXÒΣÒN i is nonatomic if it has no atoms. The
completion of hXÒΣÒN i is the space hXÒ Σ̂ÒN i where Σ̂ = fE4N : E 2 ΣÒ N 2 N g.

Now, let hXÒΣÒN i be a measurable space with negligibles. A function f : X ! R is
Σ-measurable (or simply measurable if Σ is clear from the context) if f�1(U) 2 Σ for
each open set U � R. The family of all measurable functions from X into R will be
denoted by MΣ(X). We will often write M (X) in place of MΣ(X) when Σ is clear from
the context. If E � X, then f E denotes the restriction of f to E. For f Ò g 2 M (X) we
write f � g to mean that fx 2 X : f (x) 6= g(x)g is negligible. The level sets of f 2 M (X)
are the sets f�1( y) for y 2 range( f ). We say that f is nowhere constant if it is not constant
on any positive set, or equivalently, if its level sets are negligible.

DEFINITION 2.1. Let hXÒΣÒN i be a measurable space with negligibles and let F �
M (X) be a family of measurable functions. A set M � X is an SRU (a set of range
uniqueness) for F if whenever f Ò g 2 F are nowhere constant functions, f [M] = g[M]
implies f � g. A set M is a strong SRU for F if for any positive set E and any nowhere
constant f Ò g 2 F , if f [M \ E] � g[M] then f E � g E. We will frequently have
F = M (X). It will be convenient, when M is an SRU (resp. a strong SRU) for M (X), to
call M an SRU (resp. a strong SRU) for hXÒΣÒN i or, when the structure is clear from
the context, simply an SRU (resp. a strong SRU).

Note that if hXÒΣÒN i is a measurable space with negligibles and F � M (X) then
every strong SRU for F is an SRU for F , and if F � G � M (X) then any SRU (resp.
strong SRU) for G is also an SRU (resp. a strong SRU) for F .
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All topological spaces considered in this paper are assumed to be Tychonoff. A
topological space is Baire if it satisfies the Baire Category Theorem, i.e., if every meager
subset of X has empty interior. A Cantor set is a nonvoid zero-dimensional compact
metrizable space with no isolated points, i.e., a homeomorphic copy of the Cantor middle
third set. If X is a topological space, we write C(X) for the family of all continuous real-
valued functions on X. An s0-set (in X) is a set S � X with the property that for every
Cantor set P � X, there is a Cantor set Q � P such that Q \ S = ;. (See [Mi2] for the
basic facts about s0-sets.) We will say that S � X is a strong s0-set if f [S] is an s0-set in
R for every f 2 C(X).

To any Baire topological space X we can associate a natural measurable space with
negligibles hXÒΣÒN i, where N is the õ-ideal of meager subsets of X and Σ is the õ-
algebra of Baire subsets of X, i.e., the õ-algebra generated by the family f f�1

�
(aÒ1)

�
:

a 2 R & f 2 C(X)g. When we consider a topological space as a measurable space
with negligibles, it is this structure we have in mind, unless otherwise stated. Note that
C(X) � M (X). When X is Baire, the term “nowhere constant” applied to a continuous
function f 2 C(X) considered as a member of M (X) coincides with the usual meaning
of “not constant on any nonvoid open set.” On the few occasions where we consider
spaces which are not Baire, we will clarify the meaning of “nowhere constant.” (See also
Remark 5.16.)

We record the following simple observation for future reference.

PROPOSITION 2.2. Let X be a Baire topological space. If M � X is an SRU (strong
SRU) for M (X) then M is an SRU (strong SRU) for C(X). Moreover, for any f Ò g 2 C(X)
and any positive E 2 Σ,

f E � g E if and only if f E = g E.

Proposition 2.2 will be our main tool for producing SRU’s for Baire spaces. However,
we shall also see (Example 5.20) that the converse to the first part of Proposition 2.2 can
fail.

Finally, note that if in some measurable space with negligibles hXÒΣÒN i there are no
nowhere constant measurable functions f : X ! R then every subset of X is (vacuously)
a strong SRU. This happens, for example, if X has an atom. (See also Corollary 3.8.)
Of course, this situation is of no interest and we shall be interested in spaces in which it
does not happen.

DEFINITION 2.3. Let hXÒΣÒN i be a measurable space with negligibles. We shall say
that X is flexible if there is a nowhere constant measurable function f : X ! R. If X is a
Baire topological space then we say that X is locally flexible if for every open set U � X
there is a continuous function f : X ! R which is identically equal to zero outside U and
nowhere constant in U.

Note that if hXÒΣÒN i is the natural measurable space with negligibles associated with
some atomless countably additive nontrivial õ-finite measure on X then X is flexible.
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The notion of local flexibility is better suited than the notion of flexibility to the study
of SRU’s the class C(X). This will be more apparent in Section 5. Notice, however, that
there are compact topological spaces that are flexible but not locally flexible. The space
X = [0Ò 1]ð (°1 + 1) with its natural topology is one example. Its flexibility is witnessed
by the projection onto the first coordinate. The failure of local flexibility is witnessed by
the open set U = [0Ò 1] ð °1. (See [BS, examples 1 and 2].)

The next proposition is established as part of the proof of [BS, Theorem 1]. It shows,
for example, that a space with no isolated points which is either separable or metrizable
is locally flexible.

PROPOSITION 2.4. Let X be a space with no isolated points such that either (i) X is
separable or (ii) X is normal and has a dense set which is a countable union of closed
discrete sets. Then X is locally flexible.

3. Properties of SRU’s for M (X). In this section we establish some results con-
cerning the nature of SRU’s.

PROPOSITION 3.1. Let hXÒΣÒN i be a measurable space with negligibles, and let
M � X.
(a) Let X be flexible. If M � X is an SRU (a strong SRU), then M is not empty, and for

every positive E, M\E is an SRU (a strong SRU) for M (E). In particular, an SRU
must meet every positive subset of X.

(b) If M is an SRU and f Ò g: X ! R are nowhere constant measurable functions such
that f 6� g, then f [M]4g[M] is uncountable.
If M is a strong SRU, E is a positive set, and f E 6� g E, then f [M \ E] n g[M] is
uncountable.

(c) If M is an SRU (for M (X)), N 2 N \ Σ, and C � X is countable then (M n N) [ C
is an SRU (for M (X)).
If M is a strong SRU (for M (X)), N 2 N , and C � X is countable then (MnN)[C
is a strong SRU (for M (X)).

PROOF. (a) Let f : X ! R be a nowhere constant function from the definition of
flexibility of X and let g: X ! R be given by g(x) = f (x) + 1. Then g is a nowhere
constant measurable function which does not agree with f anywhere. So clearly M
cannot be empty.

Let E be a positive set. We will show that M\E is an SRU for M (X). The proof for the
strong SRU case is similar. Let h1Ò h2: E ! R be nowhere constant measurable functions
such that h1[M\E] = h2[M\E]. For i = 1Ò 2, extend hi to X by letting hi(x) = f (x) when
x 2 X n E. Then h1[M] = h2[M] and hence h1 � h2. In particular, h1 E � h2 E.

(b) We prove the first statement; the second is proven similarly. By way of contradic-
tion suppose that C = f [M]4g[M] is countable. By (a), M is not negligible, and hence
f [M] and g[M] are uncountable. So, we can choose y 2 f [M]\g[M]. Define f̄ Ò ḡ: X ! R
as follows: f̄ (x) = f (x) if x 62 f�1(C), and f̄ (x) = y if x 2 f�1(C). Similarly, ḡ(x) = g(x) if
x 62 g�1(C), and ḡ(x) = y if x 2 g�1(C). We have f̄ � f 6� g � ḡ. Thus, it is enough to
show that f̄ [M] = ḡ[M], since this contradicts that M is SRU for M (X).
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By symmetry, it is enough to prove that f̄ [M] � ḡ[M]. So, let x 2 M. If x 2 f�1(C) then
f̄ (x) = y 2 g[M]nC = ḡ[M]. If x 62 f�1(C) then f̄ (x) = f (x) 2 f [M]nC = g[M]nC = ḡ[M].
Thus, f̄ [M] � ḡ[M].

(c) First we will prove this in the case when C = ;.
Let f Ò g: X ! R be nowhere constant measurable functions. Suppose M is an SRU, N

is a measurable negligible set, and f [M nN] = g[M nN]. Let f̄ Ò ḡ: X ! R be the functions
which agree on X n N with f Ò g respectively, and are identically equal to 0 on N. Then
f̄ Ò ḡ 2 M (X) and f̄ [M] = ḡ[M]. Since M is an SRU, we have f̄ � ḡ and hence f � g.
Thus M n N is an SRU for M (X).

Next suppose M is a strong SRU for M (X), N is negligible, E is a positive set and
f [(MnN)\E] � g[MnN]. Choose N0 2 Σ\N such that N � N0. Then f [M\ (EnN0)] �
f [(M n N) \ E] � g[M n N] � g[M]. Since E n N0 is positive and M is a strong SRU for
M (X), we have f [E n N0] � g [E n N0] and hence f E � g E. Thus M n N is a strong
SRU for M (X).

Now, to prove the general case we can assume by what we proved above that N = ;.
But then, the desired result follows easily from (b).

Proposition 3.1(c) suggests that possibly M4N is an SRU (strong SRU) for X if
N 2 N \ Σ and M is an SRU (strong SRU) for X. However, this is false already for
X = R, since if K � R is any Cantor set, then M [ K is not an SRU for C(R) for any
strong SRU for M (R). (See Theorem 5.6(5).) However, we do not know the answer to
the following question.

PROBLEM 3.2. If X is a Baire topological space, is Proposition 3.1(c) true with M (X)
replaced by C(X)?

(It is consistent that there is a strong SRU for C(R) which is not an SRU for M (R), as
we will show in Example 5.20.)

The next proposition gives special circumstances in which no SRU can exist. It will
be useful later.

PROPOSITION 3.3. Let hXÒΣÒN i be a measurable space with negligibles. In any of
the following circumstances, there is no SRU for M (X).
(a) Σ is the collection of all subsets of X, the cardinality of X is at most ∑, and hXÒΣÒN i

is nonatomic.
(b) X is flexible, ∑ is regular, N � Σ, N contains all sets of cardinality less than ∑, and

X is covered by less than ∑ negligible sets.
(c) There are more than 2∑ pairwise nonequivalent (modulo N ) nowhere constant

measurable functions X ! R.

PROOF. If (a) holds, we argue as follows. Since X is nonatomic, singletons are negligi-
ble. Thus any one-to-one function f : X ! R is a nowhere constant measurable function.
Clearly there are such functions since X has cardinality at most ∑. Thus, X is flexible.
Suppose M � X were an SRU. By Proposition 3.1(a), M is not negligible. Fix any
one-to-one function f : X ! R. Write M as the union of two disjoint sets A and B of
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equal cardinality and find a bijection h: X ! X such that h[A] = B and h[B] = A. Define
g: X ! R by g = f Ž h. Then f [M] = g[M] but f 6� g and hence M is not an SRU.

If (b) holds, suppose M � X were an SRU. Since sets of cardinality less than ∑ are
negligible, M has cardinality at least ∑. Since X is covered by less than ∑ negligible sets
and ∑ is regular, there is a negligible set N � M of cardinality ∑. Let h: N ! R be any
surjection. Since X is flexible and N is measurable, there are many distinct nowhere
constant measurable extensions of h to X. All of these extensions map M onto R, and
hence M is not an SRU.

If (c) holds, then for any M � X there are, by the pigeonhole principle, two nonequiv-
alent nowhere constant measurable functions f Ò g: X ! R such that f [M] = g[M]. Hence
M is not an SRU.

To state the next result we need the following definition.

DEFINITION 3.4. Let hXÒΣÒN i be a measurable space with negligibles. A set E 2 Σ
is a measurable cover of M � X if M � E and every positive subset of E meets M.

LEMMA 3.5. Let M � X and let f : M ! R be a measurable function.
(a) The function f extends to a measurable function f̄ : X ! R.
(b) Suppose M has a measurable cover. If f is nowhere constant in M, and X is flexible,

then f extends to a nowhere constant measurable function f̄ : X ! R.

PROOF. (a) Of course this is well-known. Here is a sketch of the proof. For each
rational number q, let Eq 2 Σ be such that fx 2 M : f (x) Ú qg = Eq \ M. For
x 2 E =

S
fEq : q 2 Qg, we let f̄ (x) = inffq 2 Q : x 2 Eqg and for x 2 X n E we let

f̄ (x) = 0. It is straightforward to check that f̄ is as desired.
(b) Fix a nowhere constant measurable function g: X ! R. First notice that every

positive subset of E must have a nonnegligible intersection with M. If not, there would
be a positive F � E and N 2 Σ\N with F\M � N and then F nN is a positive subset
of E which does not meet M.

Extend f to E using (a). By the above remark the extension of f to E is necessarily
nowhere constant. Now extend f to X by letting it agree with g outside of E.

We leave the straightforward proof of the following consequence of Lemma 3.5(b) to
the reader.

COROLLARY 3.6. Let hXÒΣÒN i be a flexible measurable space with negligibles and
suppose that every subset of X has a measurable cover. If M � X is an SRU (a strong
SRU) for M (X), then M is also an SRU (a strong SRU) for M (M).

The next proposition and its corollary show that in an @1-saturated measurable spaces
with negligibles, the assumption of flexibility is not very restrictive when we are consid-
ering SRU’s for M (X).

Recall that a Souslin algebra is a ccc nonatomic complete Boolean algebra in which
the intersection of any countable collection of dense open sets is a dense open set (or
equivalently, every countable collection of maximal antichains has a common refine-
ment). See [Je, pp. 220, 274] for the basic properties of these algebras.
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PROPOSITION 3.7. Let hXÒΣÒN i be a nonatomic, @1-saturated, measurable space
with negligibles. Then X is flexible if and only if ΣEÛNE is not a Souslin algebra for any
positive E.

PROOF. Suppose ΣEÛNE is a Souslin algebra for some positive E 2 Σ. Let f : E ! R
be measurable. For each q 2 Q, let Aq be the collection of positive subsets A of E
such that A � f�1(�1Òq) or A � f�1(qÒ1). If we denote by Až

q the image of Aq in
ΣEÛNE, then Až

q is dense open in ΣEÛNE. Since ΣEÛNE is a Souslin algebra, there is an
A 2

T
q2Q Aq. Clearly f is constant on A, and thus E (and hence X as well) is not flexible.

Suppose, conversely, that none of the algebras ΣEÛNE is a Souslin algebra. Since
ΣÛN is ccc, to show that X is flexible it suffices to show that for each positive set E
there is a positive E0 � E which is flexible. So fix a positive set E, and let An � ΣE nNE,
n Ú °, be partitions of E which have no common refinement. Give each An the discrete
topology and let f : E ! ΠnAn be given by f (x) = the unique sequence in ΠnAn whose
n-th term contains x for each n. Clearly f is measurable and its range is homeomorphic
to a subspace of R. Let A = f f�1( y) : y 2 ΠnAn, f�1( y) positiveg. A is an antichain
which refines each An, and hence A is not maximal. Thus E0 = E n

SA is positive and
is flexible since f E0 is nowhere constant.

In particular, under the assumptions of Proposition 3.7, if Souslin’s Hypothesis is true
or X is a õ-finite measure space then X is flexible. The following structural result follows
easily from Proposition 3.7.

COROLLARY 3.8. If hXÒΣÒN i is an @1-saturated measurable space with negligibles,
then X admits an essentially unique decomposition into three pieces X = A[S[F, where
A is a countable union of atoms, ΣSÛNS is a Souslin algebra if S is not empty, and F is
either empty or flexible.

4. Existence of SRU’s for M (X). The next lemma states that sufficiently generic
generalized Lusin sets are strong SRU’s. Since the conditions given here will be used
several times in the rest of the paper, we make the following definition.

DEFINITION 4.1. Let hXÒΣÒN i be a measurable space with negligibles and let î be
an uncountable cardinal. A set L � X is called a î-strong SRU (for X) if for each pair
f Ò g 2 MΣ(X) of nowhere constant functions there exists a subset Cf Òg of L satisfying the
following properties.
(i) Card

�
L \ E n f�1(g[Cf Òg])

�
½ î for each positive set E, and Card(L \ N) Ú î for

each negligible set N.
(ii) Card(Cf Òg) Ú î, and f (x) 6= g( y) for every distinct xÒ y 2 L n Cf Òg.

Notice that if î is regular, then we can drop the “n f�1(g[Cf Òg])” in clause (i) of
Definition 4.1, as it is taken care of by the other parts of clauses (i) and (ii). (The other
parts of (i) and (ii) imply that L\ f�1(g[Cf Òg]) =

S
fL\ f�1( y) : y 2 g[Cf Òg]g is the union

of less than î many sets of cardinality less than î.)

LEMMA 4.2. Let hXÒΣÒN i be a measurable space with negligibles and î be an
uncountable cardinal. If L � X is a î-strong SRU, then for any nowhere constant
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functions f Ò g 2 MΣ̂(X) and any positive set E such that f E 6� g E, f [L \ E] n g[L] has
cardinality at least î. In particular L is a strong SRU for MΣ̂(X).

PROOF. For each pair uÒ v 2 MΣ(X) of nowhere constant functions fix a set CuÒv as
given by Definition 4.1. Let f Ò gÒE be as in the hypothesis of the lemma. Let N be a
negligible set on whose complement f and g agree with Σ-measurable functions f̄ and ḡ
respectively. By shrinking E we can assume that E\N = ; and E � fx 2 X : f (x) 6= g(x)g.
But then E is the countable union of the measurable sets fx 2 E : f (x) Ú q Ú g(x)g and
fx 2 E : g(x) Ú q Ú f (x)g, where q 2 Q. So, at least one of these sets is positive, and
shrinking E even further we can assume that f [E] \ g[E] = ;.

Now, since L is a î-strong SRU, the set K = (L \ E) n
�

f̄�1(ḡ[Cf̄ Òḡ]) [ Cf̄ Òḡ [ Cf̄ Ò f̄

�
has cardinality at least î. Since K � L n Cf̄ Ò f̄ , f̄ is one-to-one on K and hence f̄ [K] has
cardinality at least î. We have also ; = f̄ [K]\ ḡ[L] = f [K]\ ḡ[L], since K ² E is disjoint
from N [ f̄�1(ḡ[Cf̄ Òḡ]) [Cf̄ Òḡ. Hence, f [K] \ g[L] � g[L\N] has cardinality less than î.
So, f [L \ E] n g[L] ¦ f [K] n ( f [K] \ g[L]) has cardinality at least î.

THEOREM 4.3. Let hXÒΣÒN i be a measurable space with negligibles. Suppose that
Σ has cardinality ∑ and no positive set can be covered by less than ∑ negligible sets. Then
there is a ∑-strong SRU for X. In particular, there is a strong SRU for hXÒ Σ̂ÒN i.

PROOF. Let h fã : ã Ú ∑i be a list of all nowhere constant functions from MΣ(X),
let hEã : ã Ú ∑i be a list of all positive sets in which each set is listed ∑ times and let
hNã : ã Ú ∑i be a list of N \ Σ.

Inductively choose points xã 2 X as follows. Let Sã = fxå : å Ú ãg. Since the level
sets of fã are negligible, and Eã cannot be covered by less than ∑ negligible sets, there
is a point xã 2 Eã which does not belong to any sets of the form Nå or f�1

å

�
fç(xé)

�
with

åÒ ç � ã and é Ú ã.
We shall show that L = fxã : ã Ú ∑g is a ∑-strong SRU with witnessing sets given by

Cf Òg = Sã for any ã Ú ∑ such that f Ò g 2 f få : å � ãg. First notice that xã 6= xå for every
å Ú ã Ú ∑, since xã 62 f�1

ã

�
fã(xå)

�
.

To see clause (ii) of Definition 4.1, suppose that x and y are distinct elements of LnSã.
Thus x = xå, y = xç for some distinct åÒ ç Ù ã, say å Ú ç. Then xç 62 g�1

�
f (xå)

�
and

hence f (x) = f (xå) 6= g(xç) = g( y).
Clause (i) of Definition 4.1 now follows easily.

COROLLARY 4.4. Consider the measurable space with negligibles hRÒBorÒN i. If
either
(i) N is the õ-ideal of null sets in R and the union of less than ∑ many null sets does not

cover R; or
(ii) N is the õ-ideal of meager sets in R and the union of less than ∑ many meager sets

does not cover R,
then there exists a strong SRU for the completion of hRÒBorÒN i.

Note that the conclusion of Corollary 4.4 cannot be proved in ZFC for either of the
ideals. This follows from Proposition 3.3(b), since in the Cohen model every subset of
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R of cardinality Ú ∑ is null and R is the union of less then ∑ many null sets, while in the
random real model every subset of R of cardinality Ú ∑ is meager and R is the union of
less then ∑ many meager sets. (See, e.g., [Mi1].) But what about the existence of a strong
SRU, or an SRU, just for hRÒBorÒN i, with N as in the corollary?

To answer this question we will need the following theorem of P. Corazza [C].

PROPOSITION 4.5. [C] It is consistent with ZFC that ∑ = °2, every subset of R of
cardinality less than ∑ has strong (so Lebesgue) measure zero, and for every subset
M of R cardinality ∑ there is a uniformly continuous function f : R ! [0Ò 1] such that
f [M] = [0Ò 1].

From this we can easily deduce the following.

COROLLARY 4.6. It is consistent with ZFC that there is no SRU for hRÒBorÒN i,
where N is the õ-ideal of null sets in R.

PROOF. This happens in the model from Proposition 4.5. First recall, that in this
model the real line is covered by less than ∑ sets of measure zero, i.e., R =

S
òÚ°1

Nò

for some null sets Nò. (See, e.g., [C] or [Mi3].) Now, if M were an SRU then, by
Proposition 3.1(a), M cannot be null. So, it has cardinality ∑. Hence, there is ò Ú °1 such
that M0 = M \ Nò 2 N has cardinality ∑. Let h: R ! [0Ò 1] be a uniformly continuous
map such that h[M0] = [0Ò 1]. There are many pairwise nonequivalent extensions of h M0

to nowhere constant Borel functions from R into [0Ò 1]. Since these extensions all have
the same image of M, M is not an SRU, contradiction.

We do not know whether there is a model of ZFC in which there is no SRU for
hRÒBorÒN i, where N is the õ-ideal of meager sets. (See Problem 5.18.) However,
in models where every set of reals of cardinality ∑ maps uniformly continuously onto
[0Ò 1], there is no SRU for hRÒBorÒN i of cardinality ∑. (See Theorem 5.6(5) and the
comments before Lemma 5.5.) On the other hand, the following observations, that arose
in conversations with S. Todorcevic, show that there is an @1-strong SRU for hRÒBorÒN i
in the models from [C] and [Mi3].

For any set L, let L(2) = fhaÒ bi 2 L2 : a 6= bg.

DEFINITION 4.7. [To, Section 6] Let N be the ideal of subsets of R consisting either
of the meager sets or of the sets of Lebesgue measure zero. Let N2 be the corresponding
ideal of subsets of R2. A set L � R is called 2-Lusin for N if L is uncountable, but for
every N 2 N2, the set N \ L(2) does not contain an uncountable disjoint set, where two
ordered pairs haÒ bi and hcÒ di are disjoint if faÒ bg \ fcÒ dg = ;.

PROPOSITION 4.8. Consider the measurable space with negligibles hRÒBorÒN i
where N is either the ideal of meager sets or the ideal of sets of Lebesgue measure
zero. If L is a 2-Lusin set for N which has uncountable intersection with every positive
set, then L is an @1-strong SRU for hRÒBorÒN i.

PROOF. Let L be a 2-Lusin set and let f Ò g: R ! R be nowhere constant Borel functions.
We claim there is a countable set Cf Òg such that f (x) 6= g( y) for any distinct xÒ y 2 L n C.
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(Then the rest of Definition 4.1 is easily checked.) By way of contradiction assume that
this is not the case. Inductively choose distinct points xãÒ yã 2 L n

S
åÚãfxåÒ yåg such

that f (xã) = g( yã). The set F = fhxÒ yi 2 R2 : f (x) = g( y)g is Borel and contains all
the points hxãÒ yãi. Since L is 2-Lusin, it follows that F is not negligible. By Fubini’s
theorem (by which we mean [Ox, Theorem 15.4] if N is the meager ideal), there is
an x 2 R such that Fx = fy 2 R : hxÒ yi 2 Fg is not negligible. But g�1

�
f (x)

�
= Fx,

contradicting the fact that g is nowhere constant.
Under CH there is a 2-Lusin set having uncountable intersection with every positive

set (by a minor modification of the proof of [To, Proposition 6.0]). It now follows from
Proposition 4.8 that there is an @1-strong SRU for hRÒBorÒN i in the iterated perfect set
model for N equal to either the meager or the null ideal, and in the model of [C] for N
equal to the meager ideal. The point is that in all of these situations, (i) the ground model
coded negligible Borel subsets of the plane are cofinal in the ideal of negligible subsets
of the plane in the extension and (ii) every positive Borel subset in the extension contains
a ground model coded positive Borel set, and hence a ground model set which is 2-Lusin
and has uncountable intersection with every positive set retains these properties in the
extension. (Preservation of the 2-Lusin property can be seen by noticing that for L � R
and N a negligible subset of the plane, saying that N does not contain an uncountable
sequence of disjoint pairs from L is equivalent to saying that there is a countable subset
C of L such that for any distinct xÒ y 2 L n C, hxÒ yi 62 N.)

We now give a version of Theorem 4.3 for several measurable spaces with negligibles
simultaneously.

THEOREM 4.9. Let hXÒΣÒN ii, i 2 N, be @1-saturated measurable spaces with neg-
ligibles. Suppose that Σ has cardinality ∑ and, for each i 2 N, no set in Σ n N i can be
covered by less than ∑ members of N i. Then there is a set M � X which is a strong SRU
for all the spaces hXÒΣÒN ii simultaneously.

PROOF. Let
D
hiãÒ fãÒ gãÒEãi : ã Ú ∑

E
be a list of all quadruples hiÒ f Ò gÒEi where

i 2 N, f Ò g: X ! R are nowhere constant measurable functions with respect to hXÒΣÒN ii,
E 2 Σ nN i, and f [E] \ g[E] = ;.

Inductively choose points xã 2 X so that g�1
ã

�
fã(xã)

�
2
T

i2N N i , as follows. The set
Cg

ã

= fy 2 R : g�1
ã ( y) 62

T
i2N N ig is countable since each hXÒΣÒN ii is @1-saturated.

Hence f�1
ã (Cg

ã

) 2 N i
ã

. The sets g�1
å

�
få(xå)

�
, for å Ú ã are in

T
i2N N i by the induction

hypothesis. The sets f�1
ã

�
gã(xå)

�
, for å Ú ã, are in N i

ã

since fã is nowhere constant.
Thus we may choose a point xã 2 Eã which avoids all these less that ∑ members of N i

ã

.
We have g�1

ã

�
fã(xã)

�
2
T

i2N N i, since xã 62 f�1
ã (Cg

ã

).
Now let i Ú N and, with respect to hXÒΣÒN ii, let f Ò g: X ! R be nowhere constant

measurable functions and E � X a positive set such that f E 6� g E. By shrinking E we
may assume that f [E] \ g[E] = ;. Now, let ã Ú ∑ be such that iã = i, Eã = E, fã = f and
gã = g. It is straightforward to verify that f (xã) 62 g[M].

REMARK 4.10. Consider the spaces hXÒΣÒN i where X = R, Σ = Bor, and N is
either the ideal of meager sets or the ideal of sets of Lebesgue measure zero.
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(a) It follows from Theorem 4.9 that if R can be covered neither by less than ∑meager
sets, nor by less than ∑ sets of measure zero then there is a set M � X which is a strong
SRU simultaneously for both spaces under consideration.

(b) Another way to get a set which is a strong SRU for both spaces simultaneously,
is to force with an @1-stage finite support iteration hPãÒQã : ã Ú °1i where Qã is a
Pã-name for Cohen forcing if ã is even and for random forcing if ã is odd. The generic
set of reals M = frã : ã Ú °1g is a strong SRU for both spaces simultaneously. Since
there are Lusin and Sierpiński sets in this model, the covering assumption of Theorem 4.9
fails for both ideals if ∑ Ù @1. The proof that M is a strong SRU is left as an exercise for
the reader.

(c) A set which is a strong SRU for both spaces simultaneously satisfies the following
stronger property. Let f Ò g: R ! R be Borel functions. If f [M]4g[M] is countable, then
there is a Borel set E such that f [R n E] and g[R n E] are countable and f (x) = g(x) for
all x 2 E except for x belonging to a meager set of measure zero. (Compare this with
Theorem 4.13.)

(d) No set M � R can be an SRU for the completion of both spaces simultaneously.
The reason is that there is a set H � R of measure zero and whose complement is meager.
One of M \H, M \ (R nH) would have the same cardinality as M, say the former. Then
given any two nonequivalent Lebesgue measurable functions f Ò g: R ! R, we can easily
modify f (M \H) and g (M \H) to arrange f [M] = g[M].

The next example shows that an SRU need not be a strong SRU. (The assumptions
on the ideal N are satisfied by the ideal of countable sets. They are also consistently
satisfied by the meager and null ideals.)

EXAMPLE 4.11. Consider a measurable space with negligibles hXÒΣÒN i in which
X = R, Σ is the Borel õ-algebra of R and f�x : x 2 Ng 2 N for every N 2 N .
Assume that singletons are negligible and no positive set can be covered by less than
∑ negligible sets. Then there is a set M � R which is an SRU for hXÒ Σ̂ÒN i and such
that fjxj : x 2 Mg � M. In particular, M is not a strong SRU for the piecewise linear
functions.

PROOF. Clearly, such a set M is not a strong SRU, for if we let f (x) = jxj and g(x) = x
for every x 2 R, we have that f and g are nowhere constant (since N contains singletons),
f [M] � g[M], and f 6� g.

Note that since N is a proper ideal, R is not negligible. Thus, from the symmetry
assumption on N , neither (�1Ò0) nor (0Ò1) is negligible. Let h: R ! R be given by
h(x) = �x for all x 2 R. To construct M, let F be the family of all triples h f Ò gÒEi such
that f and g are nowhere constant Borel functions, E is a positive Borel set, f [E]\g[E] = ;
and either

(i) E � (0Ò1), or
(ii) E � (�1Ò0) and f [E] \ g[�E] = ;, where �E = f�x : x 2 Eg.

Let
D
h fãÒ gãÒEãi : ã Ú ∑

E
list all elements of F with each triple appearing ∑many times

and let hNã : ã Ú ∑i be a list of all negligible Borel sets.
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By induction on ã Ú ∑ define a sequence hxã : ã Ú ∑i of real numbers such that

xã 2 Eã n
[
åÚã

�
Nå [ f�1

ã

�
fã(xå)

�
[ f�1

ã

�
gã(šxå)

�
[š

h
f�1
å

�
gå(xå)

�i½


Such a choice can be made, since each set Nå [ f�1
ã

�
fã(xå)

�
[ f�1

ã

�
gã(šxå)

�
[

š
h
f�1
å

�
gå(xå)

�i
is negligible and no positive set is the union of less than ∑many negligible

sets.
Let M = fxã : ã Ú ∑g [ fjxãj : ã Ú ∑g. Clearly fjxj : x 2 Mg � M.
To see that M is an SRU for hXÒ Σ̂ÒN i let f Ò g 2 MΣ̂(R) be nonequivalent nowhere

constant. Let N be a negligible Borel set on whose complement f and g agree with Σ-
measurable functions f̄ and ḡ respectively. In particular, f̄ and ḡ are N -nowhere constant
and not equivalent. Note that

there is a positive Borel set E � X n N such that either h f̄ Ò ḡÒEi 2 F or hḡÒ f̄ ÒEi 2 F .

This is clear if f̄ (0Ò1) 6� ḡ (0Ò1) since then h f̄ Ò ḡÒEi 2 F for any positive Borel
set E � (0Ò1) n N such that f̄ [E] \ ḡ[E] = ;. So, assume that f̄ (0Ò1) � ḡ (0Ò1).
Then f̄ (�1Ò0) 6� ḡ (�1Ò0). Choose a positive Borel set E � (�1Ò0) n N such that
f̄ [E]\ḡ[E] = ;. By shrinking E, if necessary, we can also assume that ( f̄Žh) E = (ḡŽh) E,
since f̄ (0Ò1) � ḡ (0Ò1). Now either f̄ E 6� ( f̄ Ž h) E or ḡ E 6� (ḡ Ž h) E, since
otherwise we would have f̄ E � ( f̄ Ž h) E = (ḡ Ž h) E � ḡ E. Assume the former case,
the other being similar. Then we can shrink E further to arrange f̄ [E] \ ( f̄ Ž h)[E] = ;.
But ( f̄ Ž h)[E] = (ḡ Ž h)[E] = ḡ[�E]. So, f [E] \ g[�E] = ; and h f̄ Ò ḡÒEi 2 F .

By symmetry we can assume that h f̄ Ò ḡÒEi 2 F . Now, let ã Ú ∑ be such that
h f̄ Ò ḡÒEi = h fãÒ gãÒEãi. Then, f̄ (xã) = fã(xã) 62 gã[M] = ḡ[M], because of the following.

– fã(xã) 6= gã(šxå) for å Ú ã since xã 62 f�1
ã

�
gã(šxå)

�
.

– fã(xã) 6= gã(xã) since xã 2 Eã and fã[Eã] \ gã[Eã] = ;.
– fã(xã) 6= gã(jxãj). This follows from the previous line if xã Ù 0. If xã Ú 0 then

Eã � (�1Ò0) and fã[Eã] \ gã[�Eã] = ;. So and fã(xã) 6= gã(�xã) = gã(jxãj),
since xã 2 Eã.

– fã(xã) 6= gã(šxå) for å Ù ã since then xå 62 š
h
g�1
ã

�
fã(xã)

�i
.

Since each fã(xã) 6= fã(xå) for every å Ú ã Ú ∑ and each element of F is listed in
our enumeration ∑ many times, we conclude that f̄ [M] n ḡ[M] has cardinality contin-
uum. But M \ N has cardinality less than continuum since N = Nã for some ã Ú ∑.
Hence, f [M]4 f̄ [M] and g[M]4ḡ[M] have cardinality less than ∑ and so, f [M] n g[M] is
nonempty.

When hXÒΣÒN i is @1-saturated, we can give a version of Theorem 4.3 which shows
that any measurable function is essentially determined by its range on a strong SRU.
First we prove the following lemma.

LEMMA 4.12. Let hXÒΣÒN i be a flexible @1-saturated measurable space with neg-
ligibles and let î be a cardinal such that the union of any collection of less than î
many negligible sets is negligible. If M � X is a strong SRU then M has the following
properties.
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(a) If f Ò g 2 M (X) are such that f [M] n g[M] has cardinality less than î then E =
X n

�
f�1(Cf ) [ fx 2 X : f (x) = g(x)g

�
is negligible, where Cf = fy 2 R :

f�1( y) is positiveg.
(b) If f Ò g 2 M (X) are such that f [M]4g[M] has cardinality less than î, then there is a

measurable set U such that f [X nU] and g[X nU] are countable, and f U � g U.

PROOF. (a) Let C = f [M] n g[M]. Note that Cf , Cg are countable and C has cardinality
less than î. By way of contradiction suppose that E is positive. Then f E is nowhere
constant. Let E1 � E be a positive set on which the ranges of f and g are separated by
some rational number q, say f (x) Ú q Ú g(x) for all x 2 E1. Since the set E1 \ f�1( y)
is negligible for every y 2 R and C [ Cg has cardinality less than î we can find a
positive subset K of E1 n f�1(C [ Cg). Let A = g�1(Cg). Define a measurable function
h: X ! R so that h (K [ A) is any nowhere constant measurable function such that
h[K]\ f [K] = ;, and h agrees with g on X n (K[A). Since M is a strong SRU, there must
be a point x 2 M \ K such that f (x) 62 h[M]. From the definition of K, f (x) 62 Cg = g[A].
So, f (x) 62 g[A] [ g[K] [ h[M n (K [ A)] = g[A [ K] [ g[M n (K [ A)] � g[M]. Thus
f (x) 2 f [M] n g[M] = C, contradicting x 2 K.

(b) Take U = X n
�
f�1(Cf ) \ g�1(Cg)

�
. By (a) applied as stated, and also with f

and g interchanged, U n fx 2 X : f (x) = g(x)g =
�

X n
�
f�1(Cf ) [ fx 2 X : f (x) =

g(x)g
��
[
�

X n
�
g�1(Cg) [ fx 2 X : f (x) = g(x)g

��
is negligible.

THEOREM 4.13. Let hXÒΣÒN i be an@1-saturated measurable space with negligibles.
Suppose ∑ is regular, Σ has cardinality ∑ and the union of less than ∑ negligible sets is
negligible. Then there is a set L � X such that for any two Σ̂-measurable functions
f Ò g: X ! R, f [L]4g[L] has cardinality less than ∑ if and only if there is a measurable
set E such that f [R n E] and g[R n E] are both countable and f E � g E.

PROOF. First note that by Corollary 3.8, we may assume that X is flexible, since f and
g have essentially countable range on the atomic and Souslin parts of the space. Let L be
a ∑-strong SRU (Theorem 4.3). Then L has the desired properties by Lemma 4.12 and
the assumption that the union of less than ∑ negligible sets is negligible.

REMARK 4.14. The saturation assumption in Theorem 4.13 cannot be deleted. Con-
sider X = R2, Σ the Borel õ-algebra of R2, N = the ideal of countable subsets of X.
By Theorem 4.3, X has a strong SRU M. By Proposition 3.1(a), M \ B 6= ; for every
uncountable Borel set B. Let ô1, ô2 be the projection maps R2 ! R onto the first and
second coordinates, respectively. Then ô1[M] = ô2[M] = R. However, ô1(x) 6= ô2(x)
except when x is on the main diagonal, and ô1 and ô2 are not both constant on any set
with more than one point.

The existence theorems we have given for SRU’s in measurable spaces with negli-
gibles deal with structures in which there are only ∑ equivalence classes of measurable
functions. As was pointed out in Proposition 3.3(c), there can be no SRU for a measurable
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space with negligibles which has more than 2∑ pairwise nonequivalent measurable func-
tions. This leaves the question of what happens when there are î equivalence classes of
measurable functions and ∑+ � î � 2∑. The next theorem and the remark which follows
it partially address this question.

THEOREM 4.15. Assume GCH. Let X = 2°2 , let Σ be the õ-algebra of Baire sets for
the usual topology on X, and let N be such that hXÒΣÒN i is a measurable space with
negligibles (i.e., N is a proper õ-ideal and Σ\N is cofinal in N ). There is a countably
closed @2-cc forcing notion P which preserves GCH and such that in the extension VP

there exists an @1-strong SRU for X.
In particular, it is consistent that there exists a strong SRU for a flexible measurable

space with negligibles in which there are 2∑ equivalence classes of measurable functions.

PROOF. The last statement follows from the rest of the theorem by taking N to be the
õ-ideal of meager sets in 2°2 , since any two projections onto subproducts of the form
2[ãÒã+°) ≤ 2°, ã Ú °1 a limit ordinal, are nonequivalent nowhere constant members of
M (X). (We identify here 2° with the Cantor middle third set C � R.) The space 2° is
flexible by Proposition 2.4, since it is separable.

We can assume that X is flexible since otherwise the theorem is trivial.
We start with few remarks on the structure of Baire sets and Baire functions in X.

First recall that for each Baire set B � X, there exists a countable set A � °2 on which
B “lives” in the sense that

p 2 B iff q 2 B for every pÒ q 2 X with p A = q A(1)

(See [Ku2] for example.) Similarly, since every Baire function f 2 M (X) is fully
described by the sets f�1

�
(aÒ1)

�
(a 2 Q) we can find a countable set A � °2 on which

f “lives” in the sense that

f ( p) = f (q) for every pÒ q 2 X with p A = q A(2)

Note also that if f and A satisfy (2) then the function fA: 2A ! R, fA( p A) = f ( p) for
p 2 X, is well defined and it codes f .

Now, for A � °2 and f : 2A ! R let f̂ : X ! R be defined by f̂ ( p) = f ( p A). Moreover,
for D � °2 let F (D) be the family of all f : 2A ! R such that A 2 [D]° and f̂ is a Σ-
measurable N -nowhere constant. When s: C ð D ! f0Ò 1g and ç 2 C we will write sç
for the function from D into f0Ò 1g given by sç(é) = s(çÒ é) for every é 2 D. Define

P =
n
hCÒDÒ sÒFi : C 2 [°1]�° & D 2 [°2]�° & s: C ðD ! f0Ò 1g & F 2

h
F (D)

i�°o

and define a partial order on P by hCÒDÒ sÒFi � hC0ÒD0Ò s0ÒF0i provided C0 � C, D0 � D,
s0 � s, F0 � F, and for every ç 2 C n C0 and ã 2 C n fçg

�
8A 2 [D0]°

�
(8f Ò g 2 F0)

h
dom( f ) = dom(g) = 2A �! f (sç A) 6= g(sã A)

i
(3)
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It is easy to see that P is countably closed. P is @2-cc since, by standard 4-system
arguments, for any sequence of conditions

D
hCòÒDòÒ sòÒFòi : ò Ú °2

E
we can find

ò Ú ê Ú °2 such that Cò = Cê and sò [ sê is a function. (See [Ku1, Ch. VII, Section 6].)
Then hCòÒDò[Dê Ò sò[ sêÒFò[Fêi 2 P extends both hCòÒDòÒ sòÒFòi and hCêÒDê Ò sê ÒFêi

since condition (3) is viciously satisfied. Thus, P preserves cardinals and does not add any
new countable sequences of ground model elements. In particular, VP contains neither
any new real numbers nor any new code fA of any Baire functions f .

Let G � P be V-generic and let

x =
[n

s : hCÒDÒ sÒFi 2 G
o


Clearly x is a function from a subset of °1 ð °2 into 2. To see that dom(x) = °1 ð °2 it
is enough to notice that for every ç Ú °1 and é Ú °2 the sets fhCÒDÒ sÒFi 2 P : ç 2 Cg
and fhCÒDÒ sÒFi 2 P : é 2 Dg are dense in P. For the latter this is trivial. To see it for
the former case, let hCÒDÒ sÒFi 2 P and ç 2 °1. Pick

p 2 X n
[n

f̂�1
�
g(sã A)

�
: ã 2 C & f Ò g 2 F & dom(g) = 2A

o


Then hC [ fçgÒDÒ tÒFi 2 P with t Cð D = s and tç = p D extends hCÒDÒ sÒFi 2 P.

Let L = fxç : ç Ú °1g and notice that genericity easily implies that the xç’s are
distinct. The proof is completed by verifying that for each pair f Ò g 2 MΣ(X) of nowhere
constant functions, there is a countable set Cf Òg of L such that assumptions (i) and (ii) of
Definition 4.1 are satisfied with î = @1. Let f Ò g 2 MΣ(X) be nowhere constant functions,
let E be a positive Baire set, and let N be a negligible Baire set. Let A � °2 be countable
and such that h f ÒAi and hgÒAi satisfy (2) and choose a condition hCÒDÒ sÒFi 2 G such
that fAÒ gA 2 F. (Such conditions are trivially dense.) Define Cf Òg = fxç : ç 2 Cg. It is
clear from the definition of the order on P that Definition 4.1(ii) is satisfied. Since î is
regular, Definition 4.1(i) is equivalent to: L \ E is uncountable for each positive Baire
set E and that L \ N is countable for each negligible Baire set N. To verify this, let E be
a positive Baire set, let N be a negligible Baire set and let ã Ú °1. Choose a countable
set A � °2 such that hBÒAi and hNÒAi satisfy (1). The desired properties follow easily
from the density of the conditions hCÒDÒ sÒFi such that A � D and sç 2 fp D : p 2 Eg
for some ç 2 C n ã, and the density of the conditions hCÒDÒ sÒFi such that 0 2 C and
that there are f Ò g 2 F with dom( f ) = dom(g) = 2A and N = f̂�1

�
g(s0 A)

�
. (Such an f̂

exists since X is flexible.)

REMARK 4.16. The measurable space with negligibles h∑ÒP(∑)ÒN i, where N is the
ideal of countable subsets of ∑, has no SRU by Proposition 3.3(a). Thus, in Theorem 4.3,
the cardinality restriction on Σ cannot be relaxed to 2∑. If î is an atomlessly measurable
cardinal and N is the null ideal of a witnessing measure, then hîÒP(î)ÒN i is an @1-
saturated measurable space with negligibles which illustrates the same point.
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5. SRU’s for continuous functions. In this section we will examine properties of
SRU’s for C(X), for X a Baire topological space considered with its natural structure as
a measurable space with negligibles. (See Section 2). Many of the results do not rely
on X being Baire, however. (See Remark 5.16.) Recall, that by Proposition 2.2 we can
replace the relation � in the definition of (strong) SRU with equality. Proposition 2.2
and Theorem 4.3 ensure that, under suitable hypotheses, strong SRU’s exist in many
Baire spaces. We will need to assume, for most of our results, that our spaces are locally
flexible. Proposition 2.4 provides us with a healthy supply of such spaces.

We begin with several easy lemmas.

LEMMA 5.1. Let X be a Baire topological space considered with its natural measur-
able structure and let M � X be an SRU for C(X). If f 2 C(X) is nowhere constant,
K = f [M] and h: R ! R is a homeomorphism such that h[K] = K then h( y) = y for every
y 2 f [X].

PROOF. Let f , h and K be as above and by way of contradiction assume that h( y) 6= y
for some y 2 f [X]. Then g = h Ž f 6= f while g 2 C(X) is nowhere constant and
g[M] = h

h
f [M]

i
= h[K] = K = f [M], contradicting the definition of an SRU for C(X).

LEMMA 5.2. Let a Ú b and K � (aÒ b) be a Cantor set. Then, every continuous
function g: K ! (aÒ b) has an extension G: R ! R such that G[(aÒ b)] = (aÒ b), G(x) = x
for all x 2 R n (aÒ b) and G is countable-to-one on R n K.

PROOF. Let c and d be the maximum and the minimum of K, respectively. Extend g
to a continuous function g1: [cÒ d] ! (aÒ b) by defining it linearly on any component of
[cÒ d] n K. Let U =

Sn
int
�
g�1

1 ( y)
�

: y 2 [cÒ d]
o

. If f : [cÒ d] ! R is the distance function
from [cÒ d]nU then it is easy to find a constant k Ù 0 such that G = (g1+kf ): [cÒ d] ! (aÒ b).
It is also not difficult to check that G is continuous and countable-to-one on [cÒ d] n K.
By extending it to the identity function on R n (aÒ b) and linearly on each of the intervals
(aÒ c) and (dÒ b) we obtain the desired function.

LEMMA 5.3. Let X be a Baire topological space. Let f 2 C(X) and g 2 C(R) be
nowhere constant. If either X is locally connected or g is countable-to-one, then g Ž f 2
C(X) is also nowhere constant.

PROOF. If g is countable-to-one, then (gŽ f )�1( y) =
S
f f�1(z): z 2 g�1( y)g is meager,

as it is a countable union of nowhere dense sets.
If X locally connected and (g Ž f )�1( y) has nonempty interior, then there exists a

nonvoid open connected U � (g Ž f )�1( y) = f�1
�
g�1( y)

�
. So, f [U] � g�1( y). But

f [U] � R is connected, as an image of a connected set. So, either f [U] is a singleton,
contradicting that f is nowhere constant, or f [U] contains a nonvoid open interval,
contradicting the fact that g�1( y) is nowhere dense.

REMARK 5.4. Notice also that Lemma 5.3 may fail if we require only that g is
nowhere constant. To see this, let K � R be a Cantor set and let X = K ð K. Moreover,
let c: K ! f0g be the constant map and let G be the extension of c given by Lemma 5.2.
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Then the conclusion of Lemma 5.3 fails for g = G and f = the projection of X onto the
first coordinate.

Recall from Section 2 that S � X is an s0-set if for every Cantor set P � X, there is a
Cantor set Q � P such that Q \ S = ;. Also, S is a strong s0-set if f [S] is an s0-set in R
for every f 2 C(R). Note that every set of cardinality less than ∑ is a strong s0-set. There
are s0-sets of cardinality ∑ in R [Mi2], but it is consistent that there are no strong s0-sets
of cardinality ∑ [Mi3].

LEMMA 5.5. If S � X is a strong s0-set, then S is an s0-set and S is zero-dimensional.

PROOF. The zero-dimensionality of S follows easily from the fact that X is completely
regular and the image of S by a member of C(X) cannot contain an interval. To see that
S is an s0-set, let K � X be a Cantor set, and let g: K ! R be a homeomorphism onto
its range. Since K is compact, g extends to a function G 2 C(R) [En, Exercise 3.2.J].
Since G[S] is an s0-set, there is a Cantor set L � G[K] such that L \ G[S] = ;. Then
S \

�
G�1(L) \ K

�
= ;.

THEOREM 5.6. Let X be a locally flexible Baire topological space considered with its
natural measurable structure. If M � X is an SRU for C(X) then M has the following
properties.
(1) M is dense in X.
(2) Let U � X be nonvoid open and let f 2 C(X) be nowhere constant. Then f [M \U]

is uncountable provided at least one of the following conditions hold.
(a) U = f�1(W) for some open W � R;
(b) M is a strong SRU.

(3) M \U is uncountable for every nonempty open set U � X.
(4) For every f 2 C(X) there is a nowhere constant f̄ 2 C(X) such that f [M] � f̄ [M].
(5) M is a strong s0-set. In particular, M is a zero-dimensional s0-set.
(6) If X is a nonvoid analytic metric space then M is not analytic.

PROOF. (1) By way of contradiction, assume that there is a nonvoid open set U � X
disjoint from M. Let V = X n cl(U) and let hU and hV be functions from the definition of
local flexibility for U and V respectively. Define f = hV + hU and g = hV � hU. Then f
and g are continuous, nowhere constant. Moreover, f [M] = hV[M] = g[M], while f 6= g,
since hU is nowhere constant on U.

(2) By way of contradiction, assume that f [M \ U] is countable for some nonvoid
open U and nowhere constant f 2 C(X). Let Y = f [M \U].

First notice that Y has no isolated points. To see this, assume by way of contradiction
that Y has an isolated point y and let I � R be open such that I \ Y = fyg. Then
V = U \ f�1(I) is nonempty and, by (1), f [V] � f [cl(M \ V)] � cl( f [M \ V]) = fyg
contradicting the fact that f is nowhere constant.

Next notice that

(Ê)
there exists a Ú b and a countable-to-one continuous function h: R !
R such that h[Y] = Y, h( y0) 6= y0 for some y0 2 Y, and h(x) = x for
x 2 R n (aÒ b); moreover, (aÒ b) � W if we are in the case (a).
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Note that this will finish the proof. Indeed, put g = h Ž f 2 C(X) and notice that
f 6= g on U, since U \ f�1( y0) 6= ;. Moreover, by Lemma 5.3, g is nowhere constant and
g[M \ U] = h

h
f [M \ U]

i
= h[Y] = Y = f [M \ U] � f [M]. This gives a contradiction

with M being strong SRU, taking care of (b).
If U = f�1(W) then g[M nU] = h

h
f [M nU]

i
= f [M nU] � f [M], since h(x) = x for all

x 2 f [M nU] � R n (aÒ b). So, g[M] = f [M] giving us a contradiction with (a) as well.
To prove (Ê) consider two cases.
Case 1. cl(Y) is somewhere dense. Let (aÒ b) � cl(Y) be a nonvoid open interval

and assume that (aÒ b) � W if U = f�1(W). Then, there is a nontrivial homeomorphism
h: R ! R such that h[Y] = Y and h(x) = x for every x 2 R n (aÒ b). Clearly h( y) 6= y for
some y 2 Y.

Case 2. cl(Y) is nowhere dense. Let a Ú b be such that K = cl(Y) \ (aÒ b) is a Cantor
set and that (aÒ b) � W if U = f�1(W). Let g: K ! K � (aÒ b) be a homeomorphism such
that g[K \ Y] = K \ Y and g( y) 6= y for some y 2 K \ Y. (See [En, Exercise 4.3.H(3)]
for such a homeomorphism.) Let G be an extension of g as in Lemma 5.2. Then h = G
satisfies (Ê).

(3) By way of contradiction, assume that M\U is countable for some open nonempty
U � X. For an open set W � X let fW stand for the absolute value of the function from
the definition of local flexibility for W. Put f = fU � fint(XnU). Then f is continuous and

nowhere constant, and U ¦ f�1
�
(0Ò1)

�
6= ;. An application of (2) case (a) gives a

contradiction.
(4) Let f 2 C(X) and let Cf =

n
y 2 R : int

�
f�1( y)

�
6= ;

o
. By (1) for each y 2 Cf

we can choose xy 2 int
�
f�1( y)

�
\ M. Note that the set H =

h
X n

Sn
int
�
f�1( y)

�
: y 2

Cf

oi
[ fxy : y 2 Cfg is closed in X. Let g 2 C(X) be as in the definition of local

flexibility of X for the set X n H and let f̄ = f + g 2 C(X). Then f̄ is nowhere constant
and f [M] = f [M \ H] = f̄ [M \H] � f̄ [M].

(5) The claims made in the second statement follow from Lemma 5.5. For the proof
of the first statement, let us first verify that if f 2 C(R), we cannot have a Cantor set
contained in f [M]. By way of contradiction, assume that there is a Cantor set K � f [M].
By (4) we can assume that f is nowhere constant. Let g be a continuous two-to-one
function from K onto [0Ò 1] and let G be an extension of g as in Lemma 5.2. Then,
G 2 C(R) is countable-to-one and, by Lemma 5.3, F = G Ž f is nowhere constant. But
then, F[M] = G

h
f [M]

i
¦ G[K] ¦ [0Ò 1], which contradicts Lemma 5.1, since there are

many nontrivial homeomorphisms h of R with h(x) = x for all x 2 R n (0Ò 1).
Now suppose that f [M]\L 6= ; for every Cantor set L � K. Since K is homeomorphic

to its square, and the level sets of the projection of the square onto one of the coordinates
are all Cantor sets, there is a continuous map g: K ! K all of whose level sets are Cantor
sets. Extend this function g to a member G of C(R) and note that (G Ž f )[M] � K,
contradicting the result established in the previous paragraph.

(6) This follows immediately from (3) and (5).

PROBLEM 5.7. Are the assumptions (a) and (b) essential in (2) of Theorem 5.6?
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We will now consider some specific properties of SRU’s for C(X) where X is a
separable metric space. We begin with the following lemma.

LEMMA 5.8. Let hXÒ di be a separable metric space, and let M � X a strong s0-set. If
F is a closed subset of X and ¢ Ù 0 then there exists a continuous function g: X ! [0Ò ¢]
such that g�1(f0g) = F and g[M] is countable.

PROOF. Let h: X ! [0Ò ¢] be given by the formula h(x) = minf¢Òd(xÒF)g for x 2 X
and for n Ú ° let In = [¢Û2n+1Ò ¢Û2n]. Since M is a strong s0-set, for every n Ú ° there
exists a Cantor set Cn � In such that Cn \ h[M] = ;. Let fn: In ! In be a non decreasing
Cantor function such that fn[Cn] = In and let f : [0Ò ¢] ! [0Ò ¢] be an extension of all these
functions. It is easy to see that h = f Ž g: X ! [0Ò ¢] has the desired properties.

LEMMA 5.9. Let hXÒ di be a separable Baire metric space without isolated points.
Let U � X be open and let M � U be a meager strong s0-set. Then there is a function
g 2 C(X) such that g(x) = 0 for all x 2 X n U, g(x) ½ 0 for all x 2 X, g U is nowhere
constant, and g[M] is countable.

PROOF. Let Kn be closed nowhere dense sets in X such that M �
S

nÚ° Kn. Since X is
Baire, there is a set fdn : n Ú °g � U n

S
nÚ° Kn which is dense in U. We will construct,

by induction on n Ú °, a sequence gn: X ! [0Ò ¢n) of continuous functions such that for
every n Ú °

(i) gn[M] is countable
(ii) g�1

n (f0g) = (X nU) [
S

iÚn(Ki [ fdig)
(iii) ¢n 2 (0Ò 2�n)
(iv) (

P
iÚn gi)(dj) 62

�
(
P

iÚn gi)(dn)Ò (
P

iÚn gi)(dn) + ¢n

i
for n Ù 0 and j Ú n.

The construction is easily carried out. It is simply a matter of choosing ¢n satisfying (iii)
and (iv), and then defining gn to be the function g from Lemma 5.8 applied with F =
(X nU) [

S
iÚn(Ki [ fdig) and ¢ = ¢n.

Let g =
P

iÚ° gi. Then, by condition (iii), g is continuous. Also, condition (ii) implies
that for every n Ú °

g[M \ Kn] =
�X

i�n
gi

�
[M \ Kn]

which is countable by (i). So, g[M] is countable. Moreover, by (ii) and (iv),

g(dj) =
�X

iÚn
gi

�
(dj) 62

 �X
iÚn

gi

�
(dn)Ò

�X
iÚn

gi

�
(dn) + ¢n

#
3
�X

i�n
gi

�
(dn) = g(dn)

for every j Ú n Ú °. So g is nowhere constant in U.

THEOREM 5.10. Let hXÒ di be a separable Baire metric space without isolated points.
If M � X is an SRU for C(X) and U � X is a nonvoid open set, then M\U is not meager.

PROOF. Let M be an SRU for C(X). By Theorem 5.6(5), M is a strong s0-set. If M\U
is meager, then Lemma 5.9 gives a nonnegative function g1 2 C(X) which is identically
equal to zero outside U, nowhere constant on U, and has a countable image of M \ U.
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Let g2 2 C(X) be a nonpositive function which is identically equal to zero on U and
nowhere constant in the exterior of U. (For example, apply Lemma 5.9 with U replaced
by the exterior of U and M replaced by the empty set.) Let g = g1 + g2. Then g 2 C(X)
is nowhere constant. Let W = g�1

�
(0Ò1)

�
. We have g W = g1 W and hence W � U.

Also, g[M \W] � g1[M \U] is countable, contradicting Theorem 5.6(2)(a).

COROLLARY 5.11. A Sierpiński subset of Rn is not an SRU for C(Rn).

PROOF. Sierpiński sets are meager.

REMARK 5.12. Theorems 5.10 and 5.6(5) show that an SRU for C(R) cannot be
meager, but also cannot be too big. However, little can be said about the measure of an
SRU for C(R). Under CH, there is a strong SRU for C(R) which is a Lusin set and hence
has strong measure zero and there is another one of full outer measure. (For the full outer
measure example, apply Theorem 4.9 to hRÒBorÒN ii, i = 1Ò 2, where N1 and N2 are
the meager and null ideals.)

REMARK 5.13. It is not difficult to see that one can prove Theorems 5.10 for any
Baire space without isolated points in which any dense Gé set contains a countable dense
subset. The proof requires only minor changes. This could be used for example to show
that any SRU for [0Ò 1]∑ must be nowhere meager, a fact which also follows from the
next proposition.

PROPOSITION 5.14. Let X be a ccc topological space such that X° is Baire. If every
SRU for C(X°) is nowhere meager then so is every SRU for C(Xî) for every infinite
cardinal î.

PROOF. By way of contradiction assume that for some infinite cardinal number î
there is M � Xî which is an SRU for C(Xî) and such that U \ M is meager for some
nonvoid open set U � Xî. Decreasing U, if necessary, we can assume that U is a basic
open set supported by a finite set T of coordinates. Since Xî is ccc we can find an
Fõ meager set F supported by a countable infinite set S of coordinates and such that
U \ M � F. We can also assume that T � S. Let ô be the projection map of Xî onto
XS. Thus, ô[M \ U] � ô[F] is meager in ô[U]. So, by our assumption, ô[M] is not an
SRU for XS, i.e., there are two different nowhere constant functions f Ò g 2 C(XS) with
f
h
ô[M]

i
= g

h
ô[M]

i
. But f Ž ô, g Ž ô 2 C(Xî) are different and nowhere constant too,

contradicting the assumption that M was an SRU for Xî.

COROLLARY 5.15. For any cardinal î every SRU for [0Ò 1]î is nowhere meager in
[0Ò 1]î.

REMARK 5.16. As we pointed out in Section 2, if X is a Baire topological space, the
usual notion of “nowhere constant” for a function f 2 C(X) (i.e., “not constant on any
nonvoid open set”) coincides with the meaning “not constant on any nonmeager Baire
set” we gave in Section 2. Most of the results in Section 5 go through even for spaces
that are not Baire, if the usual notion of “nowhere constant” is used in the definitions
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of SRU and of locally flexible. Lemma 5.3 for the case where g is countable-to-one
holds by a different argument: the level sets of g are scattered and it is easy to verify
by induction on the Cantor-Bendixson height of a scattered set that its preimage under
a nowhere constant function is nowhere dense. The proof of Lemma 5.1 goes through
with no changes, as does the proof of Theorem 5.6. As for Theorem 5.10, note that if
X is any nonvoid separable metric space with no isolated points and for some open set
U � X, M \U is meager, then by Theorem 5.10 applied to the completion Y of X, there
are two distinct nowhere constant functions f Ò g 2 C(Y) such that f [M] = g[M]. But then
the restrictions of f and g to X witness that M is not an SRU. In particular, if X itself has
a nonvoid meager open set (i.e., is not Baire), then there is no SRU for C(X).

The next example shows that the assumption of CH cannot be removed from [BD,
Theorem 8.5].

EXAMPLE 5.17. Suppose that
(i) there is a nonmeager subset of R of cardinality @1; and,
(ii) any two nowhere meager subsets of R of cardinality @1 are order isomorphic.
(See [Sh] for a proof that this is consistent.) If X � R is a nowhere meager subset of R
of cardinality @1 then there is no SRU for C(X).

PROOF. Suppose M � X were an SRU for C(X). By Theorem 5.10 M is nowhere
meager. But then, using (ii), it is easy to construct many distinct order isomorphisms of
M with itself. Each of these will extend to a homeomorphism of R, and hence M is not
an SRU.

The models we are aware of for assumptions (i) and (ii) of Example 5.17 are obtained
by î-stage finite support iterations of ccc forcing notions, where î is regular. As a result,
Cohen reals are added cofinally in the construction and the covering assumption of
Theorem 4.3 is satisfied for X = R, Σ = the Borel õ-algebra, and N = the meager ideal.
Thus, there is a strong SRU for C(R) in these models.

The following remains an intriguing problem.

PROBLEM 5.18. Is the existence of an SRU for C(R) provable in ZFC?

[Note added April 13, 1997. The answer is no: see [CS]. See also [BC] where it is shown
in ZFC that there is a meager SRU for the differentiable functions.]

We now give the example promised in Section 2 to show that the converse to the first
statement of Proposition 2.2 is false. First we prove the following lemma.

LEMMA 5.19. Let X be the space of irrational numbers (with the usual topology).
There is a countable dense set A � X and a homeomorphism h: X nA ! X nA such that
for any m 2 Z n f0g and any nowhere constant function g 2 C(X), g Ž hm: X n A ! R
does not extend to a continuous function on any nonempty open subset of X.

PROOF. Fix any countable dense set A � R. We define open subintervals Is = (asÒ bs)
of R for s 2 ZÚ° as follows. Let I; = R and given Is, define open subintervals Isfln,
n 2 Z, of Is so that Is n

S
n2Z Isfln � A, and bsfln = asfl(n+1). (For s 2 ZÚ° and n 2 Z the
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symbol sfln denotes the extension of s by n, i.e., sfln = s[ fhkÒ nig, where k = dom(s).)
Also ensure that if we let Un =

S
fIs : s 2 Zng, then

T
n2° Un = R n A. Identify Z° with

R n A via the map which sends u 2 Z° to the unique member of
T
fIu n : n 2 °g. Let

h: RnA ! RnA be the homeomorphism which corresponds via this identification to the
homeomorphism of Z° such that for u 2 Z° and k 2 Z we have h(u)(k) = u(k) if u(k) is
odd, and h(u)(k) = u(k)� 2 if u(k) is even. Let B � R n A be a countable dense set such
that h[B] = B. We may assume X = R n B since this set is homeomorphic to the set of
irrational numbers. Note that A � X and that h induces a homeomorphism of X n A. We
will show that X, h and A satisfy the conclusion of the lemma.

Let g 2 C(X) and m 2 Znf0g be such that gŽhm extends to a continuous function on
a nonvoid open subset I � X. By shrinking I, we may assume that I = Is0 \ X for some
s0 2 ZÚ°. Let t0 2 ZÚ° be such that hm[Is0 ] = It0 . We will show that g is constant on It0 .
First, we claim that for every t 2 ZÚ° such that t0 � t,

g is constant on the set St = fatfl(2m‡) : ‡ 2 Zg.

So, let ‡ 2 Z, x = atfl(2m‡) and y = atfl(2m(‡+1)). We will show that g(x) = g( y). Let
s 2 ZÚ° be such that hm[Is] = It. Note that s0 � s, so g Ž hm extends to a continuous
function on Is � Is0 . For z 2 Isfl(2m(‡+1)) \ (X n A), as z ! asfl(2m(‡+1)), hm(z) !
atfl(2m‡) and hence g

�
hm(z)

�
! g(atfl(2m‡)) = g(x). For z 2 Isfl(2m(‡+1)�1) \ (X n A),

as z ! asfl(2m(‡+1)) = bsfl(2m(‡+1)�1), hm(z) ! btfl(2m(‡+1)�1) = atfl(2m(‡+1)) and hence
g
�
hm(z)

�
! g(atfl(2m(‡+1))) = g( y). Thus, we must have g(x) = g( y), as desired.

Note that for each t � t0 and each n 2 Z, the constant values of g on Stfln and Stfl(n+1)

must be the same since these two sets share a cluster point. Let c be the constant value
taken by g on T1 where for each m 2

�
dom(t)Ò °

�
we let Tm =

S
fSt : t � t0Ò t 2 Zmg.

By similar considerations to the case m = 1, it follows by induction on m, using the
fact that Tm+1 has cluster points in Tm, that g has the constant value c on each Tm. SinceSn

Tm : m 2
�
dom(t)Ò °

�o
is dense in It0 , g is constant on It0 .

EXAMPLE 5.20. If R cannot be covered by less than ∑meager sets, then in any nonvoid
perfect Polish space X, there is a set M � X and a Borel isomorphism h: X ! X such
that h[M] = M, fx 2 R: h(x) = xg is meager, and if f Ò g 2 C(X) are nowhere constant
and E � X is a nonvoid open set such that f E 6= g E, then f [M \ E] n g[M] has
cardinality ∑. In particular, there is a strong SRU for C(X) which is not an SRU for the
Borel isomorphisms.

PROOF. Since every nonvoid perfect Polish space contains a residual copy of the
irrationals, we may assume that X is the space of irrational numbers. Let

D
h fãÒ gãÒEãi :

ã Ú ∑
E

be a list of all triples h f Ò gÒEiwhere f Ò g 2 C(X) are nowhere constant maps, E is
a nonempty open set, and f [E] \ g[E] = ;; let each such triple appear ∑ times in the list.
Let A and h be given by Lemma 5.19. Inductively choose points xã 2 Eã nA such that xã
does not belong to any set of the form f�1

ã

�
gã
�
hm(xå)

��
(m 2 Z, å Ú ã) or f�1

ã

�
få(xå)

�
(å Ú ã) or h�m

�h
g�1
å

�
få(xå)

�i
n A

�
(m 2 Z, å Ú ∑) or

n
x 2 X n A : fã(x) = gã

�
hm(x)

�o
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(m 2 Z n f0g). Note that sets of the latter form are nowhere dense by Lemma 5.19, and
the remaining sets are nowhere dense because fã and gå (å Ú ã) are nowhere constant.
Let M = fhm(xã) : m 2 ZÒ ã Ú ∑g.

To see that this works, let f Ò g 2 C(X) be nowhere constant and let E � X be a nonvoid
open set such that f E 6= g E. By shrinking E we may assume that f [E] \ g[E] = ;. For
eachã such that h fãÒ gãÒEãi = h f Ò gÒEi, we chose xã 2 E. We have that fã(xã) 62 gã[M],
i.e., for each å Ú ∑ and each m 2 Z, fã(xã) 6= gã

�
hm(xå)

�
. (This is clear from the choice

of xã. Consider separately the cases å Ú ã, å = ã, å Ù ã.) The rest of the properties of
the example now follow easily.

6. Variations on the theme. As mentioned in the introduction, properties similar to
the SRU property have been considered by various authors. We examine some of them
in this section.

Let us begin with the results from [DM] and [Bü] mentioned in the introduction.
Dushnik and Miller [DM] showed that, under CH, there is an uncountable set M � R
such that for any monotone (nonincreasing or nondecreasing) function f : R ! R, if
fx 2 R : f (x) = xg is nowhere dense, then f [M] \ M is countable. In a model of set
theory where ∑ = @2, R is covered by @1 meager sets and sets of cardinality @1 are
meager (e.g., in the random real model), there is no such set. To see this, note that in
any such model, for every uncountable set M � R, there is a set M0 � M of the same
cardinality as M such that M0 is nowhere dense in R. Then there is a monotone function
f : R ! R such that fx 2 R : f (x) = xg is equal to the closure of M0, and hence f [M]\M
has the same cardinality as M since it contains M0.

Consider now the result from [Bü] that, under CH, there is a totally heterogeneous
set. (See the introduction for the definition.) A classical diagonalization argument shows
that there is (in ZFC) a set M � R of cardinality ∑ such that for any Borel function
f : M ! M, f [fx 2 M : f (x) 6= xg] is countable. It is not possible, however, to produce
a totally heterogeneous set in ZFC. To see this, consider a model in which every set
M � R of cardinality ∑ can be mapped continuously onto [0Ò 1] (e.g., the iterated perfect
set model [Mi2]). It is easily seen that a totally heterogeneous set of reals cannot contain
a Cantor set, and hence its complement must have cardinality ∑. In the model under
consideration, if M � [0Ò 1] is any set such that both M and [0Ò 1] nM have cardinality ∑,
then let f : M ! [0Ò 1] be a continuous surjection. Choose M0 � M such that f [M0] = M.
Then f [fx 2 M0 : f (x) 6= xg] contains M n M0 and hence has cardinality ∑. In particular,
M is not totally heterogeneous.

For the remainder of this section we will examine two generalizations of the notion
of an SRU for C(R) for pairs of families F ÒG � C(R). We are interested particularly in
the following subfamilies of C(R) which we will abbreviate as follows:
ž C = C(R);
ž Const, the class of all constant functions f 2 C(R);
ž Cn, the class of all nowhere constant functions f 2 C(R);
ž Cc, the class of all countable-to-one functions f 2 C(R).
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DEFINITION 6.1. A function g 2 C is said to be a truncation of f 2 C if g is constant
on every connected component of fx 2 R : f (x) 6= g(x)g.

The following proposition is [BD, Theorem 8.1].

PROPOSITION 6.2. There exists a set M � R such that for every f 2 Cc and g 2 C if
g[M] � f [M] then g is a truncation of f .

Notice that a strong SRU M for hRÒBorÒN i, N = the meager ideal, has a similar
property. If f 2 C and g 2 C and g[M] � f [M], then by Lemma 4.12 (with î = @1),
the open intervals in fx 2 R : f (x) 6= g(x)g on which g is constant are dense in
fx 2 R : f (x) 6= g(x)g. We do not need to assume that f 2 Cc, however we cannot
conclude that g is a truncation of f , even if f 2 Cc. (For example, we could have
f (x) = x for all x, and g(x) = x for x 62 [0Ò 1], g [0Ò 1] = the Cantor ternary function.)
Proposition 6.2 also has the advantage of being a ZFC theorem.

DEFINITION 6.3. For the families F ÒG � C we say that M � R is an hF ÒGi-
truncation SRU if for every f 2 F and g 2 G, if g[M] � f [M] then g is a truncation of
f . A set M � R is an hF ÒGi-SRU if for every f 2 F and g 2 G, if g[M] � f [M] then
g = f .

We have the following general fact.

PROPOSITION 6.4. For every F ÒG � C
(1) If M � R is an hF ÒGi-SRU then it is hF ÒGi-truncation SRU;
(2) If G � Cn then every hF ÒGi-truncation SRU is an hF ÒGi-SRU.

PROOF. This is obvious since every function is its own truncation and this is the only
truncation that could be nowhere constant.

Proposition 6.4 shows in particular that for G � Cn, M � R is an hF ÒGi-SRU if
and only if it is an hF ÒGi-truncation SRU. Thus, for G � Cn we will examine only
hF ÒGi-SRU’s.

In the next theorem we seek, for various choices of G, the largest family F for
which there exists an hF ÒGi-SRU (hF ÒGi-truncation SRU). The examples in (A0) -
(C0) indicate that the families found in (A) - (C) are to some extent the best possible.

THEOREM 6.5.
(A) M = R is a hConstÒCi-SRU.
(A0) There is no hf fgÒGi-SRU if f 2 C n Const and Const � G.
(B) There exists a hCcÒCi-truncation SRU.
(B0) There is no hCnÒCi-truncation SRU. More precisely, there is no hf fgÒCi-truncation

SRU for every f 2 Cn with the property that f�1( y) is perfect for every y 2 R.
(C) If R is not the union less than ∑ many meager sets then there exists a hCÒGi-

truncation SRU for any G � C of cardinality less than ∑.
(C0) There exist f Ò gÒ h 2 C such that there is no hfhg, f f Ò ggi-SRU.
(D) Any strong SRU for C(R) is a hCÒCni-SRU.
(E) There exists an hf fg, Cni-SRU for every f 2 C.
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PROOF OF (A). Obvious.

PROOF OF (A0). Let f 2 C n Const and M � R. If M = ; take an arbitrary g 2
Const � G. If M 6= ; and x0 2 M let g 2 G be a constant function equal to f (x0). Then
g 6= f but g[M] � f [M].

PROOF OF (B). This is Proposition 6.2.

PROOF OF (B0). Let f 2 Cn be such that f�1( y) is perfect for every y 2 R. For
example, if F = ( f0Ò f1): [0Ò 1] ! [0Ò 1]2 is a classical Peano curve (see e.g., [CLO,
Example 4.3.8]) then we can define f by f (n + r) = n + f0(r) for every integer n and
r 2 [0Ò 1).

Let M � R. To see that it is not an hf fgÒCi-truncation SRU we will find g 2 C with
g[M] � f [M] which is not a truncation of f . We have two cases to consider.

Case 1. f [M] is not dense in R.
Take c Ú d such that (cÒ d) \ f [M] = ;. Since f [R] = R there exist a Ú b such that

(aÒ b) � f�1
�
(cÒ d)

�
. So, (aÒ b) \ M = ;. Choose a0 Ú b0 such that a Ú a0 Ú b0 Ú b and

define g on [a0Ò b0] to be nonconstant and such that g(x) 6= f (x) for every x 2 [a0Ò b0].
Put g(x) = f (x) for every x 2 Rn (aÒ b) and extend it to a continuous function on R. Then
g is not a truncation of f , while g[M] = f [M].

Case 2. f [M] is dense in R.
If f [M] = R it is enough to take as g an arbitrary continuous function which is not a

truncation of f . So, without loss of generality we can assume that f [M] 6= R.
Choose y0 2 R n f [M] and let P = f�1( y0). So, P is perfect, nowhere dense and

P \ M = ;. Choose a countable dense subset D of f [M] and notice the following fact.

(Ê)
For every d0Ò d1 2 D, d0 Ú d1, there exists a continuous function g
from R onto [d0Ò d1] such that g[R n P] � D � f [M] and g is not
constant on any open interval intersecting P.

To see it, let h: [0Ò 1] ! [0Ò 1] be a classical Cantor function, i.e., h is nondecreasing,
constant on any component of [0Ò 1]nC and such that h[C] = [0Ò 1], where C is a classical
Cantor ternary set. (See [Ro, p. 50].) Extend h to R by putting h(x) = 0 for x Ú 0 and
h(x) = 1 for x Ù 1 and notice that h[R n C] � Q. Let h0: R ! R be a homeomorphism
such that h0[P] = C and h1: R ! R be an order isomorphism such that h1[Q] = D,
h1(0) = d0 and h1(1) = d1. Then g = h1 Ž h Ž h0 satisfies (Ê).

To finish the proof notice that for any function g satisfying (Ê) we have g[M] �
g[R n P] � D � f [M]. Now, if g: R ! [d0Ò d1] and g0: R ! [d00Ò d

0
1] are as in (Ê) and

such that [d0Ò d1] \ [d00Ò d
0
1] = ; then for every x 2 P we have g(x) 6= g0(x). In particular,

either g or g0 is not a truncation of f .

PROOF OF (C). Choose G � C of cardinality less than ∑. Since any constant function
is a truncation of any other function we can assume without loss of generality that
G \ Const = ;.

For g 2 C let Const(g) denotes the set of these points at which g is locally constant, i.e.,

Const(g) =
²

x 2 R : (9aÒ b 2 R)
h
a Ú x Ú b & g is constant on (aÒ b)

i¦
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Then for every g 2 G the set Pg = R n Const(g) is nonempty and perfect. In particular,
it is not a union of less than continuum many its nowhere dense subsets.

Let fh fãÒ gãi : ã Ú ∑g = fh f Ò gi 2 C ð G : g is not a truncation of fg. We will
construct, by induction on ã Ú ∑, a set M = fmã : ã Ú ∑g such that gã(mã) 62 fã[M] for
every ã Ú ∑. This will finish the proof.

To have gã(mã) 62 fã[M] we will choose mã such that the following inductive condi-
tions are satisfied.

gã(mã) 62 f fã(mã)g, i.e., such that
(Iã) mã 2 Uã, where Uã = fx 2 R : fã(x) 6= gã(x)g.

gã(mã) 62 f fã(mç) : ç Ú ãg, i.e., such that
(IIã) mã 62

S
çÚã g�1

ã

�
fã(mç)

�
.

gã(mã) 62 f fã(mç) : ç Ù ãg, i.e., such that fã(mç) 6= gã(mã) for every ã Ú ç. By
interchanging ã and ç in the last condition we obtain fç(mã) 6= gç(mç) for every ç Ú ã.
So, it is enough to choose

(IIIã) mã 62
S
çÚã f�1

ç

�
gç(mç)

�
.

To make such a choice possible, we will also require that

(Êã) f�1
ã

�
gã(mã)

�
is nowhere dense in Pg for every g 2 G.

We will achieve this by making sure that gã(mã) 62 Sg
ã for every g 2 G, where

Sg
ã =

n
y 2 R : f�1

ã ( y) \ Pg is not nowhere dense in Pg

o


Notice that each Sg
ã is at most countable. So, we will guarantee (Êã) by choosing

(IVã) mã 62
S

g2G g�1
ã (Sg

ã).
Clearly it is enough to show that the choice of such mã is possible. So, assume that

for some ã Ú ∑ the construction is done till step ã. We will choose mã.
Let

Vã =
[
çÚã

�
g�1
ã

�
fã(mç)

�
[ f�1

ç

�
gç(mç)

�½
[
[

g2G

[
y2Sg

ã

g�1
ã ( y)

and put Tã = Uã n Vã. It is enough to show that Tã \ Pg
ã

6= ;. But gã is not a truncation
of fã. So, jgã[Uã]j = ∑ and the set Uã \ Pg

ã

is nonempty and open in Pg
ã

. Since Vã is a
union of less than continuum many sets, it is enough to argue that each of these sets is
nowhere dense in Pg

ã

.
But sets f�1

ç

�
gç(mç)

�
are nowhere dense in Pg

ã

by (Êç), i.e., the inductive assumption
(IVç). To finish the proof it is enough to notice that g�1

ã ( y) is nowhere dense in Pg
ã

for
every y 2 R, which follows immediately from the definition of Pg

ã

.

PROOF OF (C0). Let h(x) = minf0Ò x2 � 1g, g(x) = 0, and f (x) = maxfh(x)Ò x � 2g
for every x 2 R. Clearly f 6= h 6= g. It is enough to show that for every M � R either
f [M] � h[M] or g[M] � h[M]. But if M n (�1Ò 1) 6= ; then g[M] = f0g � h[M].
Otherwise M � (�1Ò 1) and f [M] = h[M].

PROOF OF (D). Apply Lemma 4.12 with î = @1, g 2 C and f 2 Cn.
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PROOF OF (E). Let f 2 C. If there are a Ú b such that f is constant on [aÒ b] it is
enough to take M = [aÒ b].

So, assume that f 2 Cn and let fgã : ã Ú ∑g = Cc. As in the proof of (C) it is enough
to find M = fmã : ã Ú ∑g such that

(Iã) mã 2 Uã = fx 2 R : f (x) 6= gã(x)g;
(IIã) mã 62

S
çÚã g�1

ã

�
f (mç)

�
;

(IIIã) mã 62
S
çÚã f�1

�
gç(mç)

�
.

But j f [Uã]j = ∑, since Uã 6= ; and f 2 Cn. Also
þþþSçÚã g�1

ã

�
f (mç)

�þþþ Ú ∑ since

jg�1
ã

�
f (mç)

�
j � @0. Thus, þþþþ f

� [
çÚã

g�1
ã

�
f (mç)

�½þþþþ Ú ∑

Moreover,

f
� [
çÚã

f�1
�
gç(mç)

�½
=
[
çÚã

f
�

f�1
�
gç(mç)

�½
�
n

gç(mç) : ç Ú ã
o

has cardinality Ú ∑. So, the set

Uã n
� [
çÚã

h
g�1
ã

�
f (mç)

�
[ f�1

�
gç(mç)

�i½

is nonempty. This finishes the proof of Theorem 6.5.

REMARK 6.6. There is no set M � R such that for every f Ò g 2 C(R) (not necessarily
nowhere constant), if f [M] = g[M] then f = g.

PROOF. Such a set M would be an SRU for C(R), so, by Theorem 5.6, M is dense and
is disjoint from a Cantor set K. But then we can build distinct Cantor-like functions f
and g with f [R n K] = g[R n K] (a countable set).
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