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1. Preliminaries

Throughout the paper we will use the standard definitions
and notation ([ABR], [E]).

Let X and Y be metric spaces. The goal is to study some
intermediate classes of functions between the class Cuc(X, Y )
of all uniformly continuous mappings (briefly, UC) fromX into
Y and the class C(X, Y ) of all continuous functions f : X → Y .
These classes, defined below, have been intensively studied in
[BD] and [BDP] mainly in the case when Y = R. (Compare
also [B,DP].) In this paper we will study them for general Y .
In particular, we will consider the case when X = Y is the
complex plane C.

Let X and Y be metric spaces and let f : X → Y .

(1) For K,M ⊆ X we say that g : X → Y is a (K,M)-
approximation of f if g is a UC map such that g[M ] ⊆
f [M ] and g(x) = f(x) for each x ∈ K.

(2) The function f is uniformly approachable (briefly, UA)
if f has a (K,M)-approximation for every compactK ⊆
X and every M ⊆ X.

(3) The function f is weakly uniformly approachable (briefly,
WUA) if f has a ({x},M)-approximation for every x ∈
X and every M ⊆ X.
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The class of all uniformly approachable (weakly uniformly
approachable, respectively) functions f : X → Y will be denoted
by Cua(X, Y ) (Cwua(X, Y ), respectively.) Notice that

Cuc(X, Y ) ⊆ Cua(X, Y ) ⊆ Cwua(X, Y ) ⊆ C(X, Y ).(1)

(See [DP]. Compare also [BD, Section 12].)
Indeed, every UC function f is UA, since g = f is a (K,M)-

approximation of f for every M,K ⊆ X. Every UA function
is WUA, since {x} is compact for every x ∈ X. To see that
every WUA map f is continuous, it is enough to show that
f [M ] ⊆ f [M ] for every M ⊆ X, where M stands for the
closure of M . So, take x ∈M and an ({x},M)-approximation
g of f . Then, f(x) = g(x) ∈ g[M ] ⊆ g[M ] ⊆ f [M ].

We will discuss possible equations in (1) for different spaces
X and Y in Section 3.

For a topological spaceX we say that a function g ∈ C(X,R)
is a truncation of f ∈ C(X,R) if g is constant on every con-
nected component of {x ∈ X : f(x) �= g(x)}. In what follows
we will use also the following fact which can be proved by
straightforward transfinite induction diagonal argument.

Proposition 1.1. [BD, Thm 8.1] Let X be a separable topo-
logical space. Then there is a set M ⊆ X such that for every
f, g ∈ C(X,R), if g[M ] ⊆ f [M ] and f−1(y) is at most coun-
table for every y ∈ R then g is a truncation of f .

The set M from Proposition 1.1 will be called a magic set
(for X). The following fact is an easy but useful corollary of
Proposition 1.1. It is a version of [BD, Cor 8.3].

Corollary 1.2. Let X be a separable metric space. If f ∈
C(X,R) is a one-to-one function without non-constant UC
truncation then f is not WUA.

2. Basic facts

In this section we collect some basic properties of the classes
of UA- and WUA-maps.
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Theorem 2.1. Composition of UA (WUA, respectively) maps
is a UA (WUA, respectively) map.

Proof: Let f : X → Y and f ′ : Y → Z be UA maps. To show
that f ′ ◦ f : X → Z is UA take a compact subset K of X and
a set M ⊆ X. Then f [K] is a compact subset of Y . Choose
a (K,M)-approximation g : X → Y of f and a (f [K], f [M ])-
approximation g′ : Y → Z of f ′. It is enough to show that g′◦g
is a (K,M)-approximation of f ′ ◦ f . Obviously g′ ◦ g coincides
with f ′ ◦ f on K. Also g[M ] ⊆ f [M ] and g′[f [M ]] ⊆ f ′[f [M ]]
implies that (g′ ◦ g)[M ] ⊆ (f ′ ◦ f)[M ]. The proof is finished
when we notice that g′ ◦ g is UC as a composition of two UC
functions.

The argument for WUA functions is identical, if we replace
K with {x}.

Pproposition 2.2. Let F be a subset of a metric space X. If
f : X → R is UA (WUA, respectively) then so is its restriction
f |F : F → R.

Proof: Let f ∈ Cua and M,K ⊆ F , K being compact. So,
there exists (K,M)-approximation g : X → R of f . It is easy
to see that g|F is an (K,M)-approximation of f |F .

In [BD] it was shown that every continuous function f : R →
R is UA. In fact, one can show the following stronger property.

Theorem 2.3 If X is a uniform space then every continuous
function f : R → X is UA.

Proof: Let K be a compact subset of R and M ⊆ R. Choose
an interval [a, b] containing K such that either a ∈ M or
(−∞, a] ∩M = ∅ and that either b ∈ M or [b,∞) ∩M = ∅.
Let r : R → [a, b] be the retraction, i.e., r(x) = x for x ∈ [a, b],
r(x) = a for x < a and r(x) = b for x > b. Clearly r is UC.
Define g by g = f |[a,b] ◦ r. Then g is UC as a composition of
two UC functions, and g coincides with f on K ⊆ [a, b]. It is
also easy to see that g[M ] ⊆ f [M ].
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In what follows we will often use the following criteria which
is similar to that of [BD, Thm. 6.3].

Proposition 2.4. Let (X, ρ) be a separable metric space and
let f : X → R. If there exists an uncountable Y ⊆ R such that
f−1(y) is non-empty and connected for every y ∈ Y and that
ρ(f−1(x), f−1(y)) = 0 for every x, y ∈ Y then f is not WUA.

Proof: Replacing X with f−1(Y ), if necessary, we can assume
that X = f−1(Y ). Now, let D be a countable dense subset
of X and put M = f−1(f [D]). Then M is dense in X, since
D ⊆M . Moreover, M is a proper subset of X, since Y = f [X]
is uncountable unlike f [M ] = f [f−1(f [D])] = f [D]. Pick some
x ∈ X \M . Then, x �∈M = f−1(f [D]) = f−1(f [f−1(f [D])]) =
f−1(f [M ]), i.e., f(x) �∈ f [M ]. Our aim is to show that f has
no ({x},M)-approximation. By way of contradiction assume
that there exists an UC function g : X → R such that g[M ] ⊆
f [M ]. Then g[M ] ⊆ f [M ] = f [D] is countable, hence zero-
dimensional. (See [E, Chapter 7, §2, Corollary].) Since Cd =
f−1(f(d)) ⊆ M is connected for every d ∈ D and g[Cd] ⊆
g[M ] ⊆ f [M ] = f [D], we conclude that g is constant on each
Cd. Since our hypothesis yields that ρ(Cd, Cd′) = 0 for every
d, d′ ∈ D, the uniform continuity of g implies that all these
constants coincide. Therefore g|M is constantly equal to some
b ∈ f [M ]. But f(x) �∈ f [M ]. So, g(x) = b �= f(x). Therefore g
is not an ({x},M)-approximation of f .

As an immediate corollary we obtain the following. (See also
[BD, Lemma 5.4].)

Corollary 2.5. The function h : R2 → R given by formula
h(x, y) = x2 − y2 is not WUA.

Proof: By Proposition 2.4 function h|[0,∞)×[0,∞) is not WUA.
So, h is not WUA by Proposition 2.2.

One of the most interesting properties of the class of UA
functions is the fact that every perfect map1 from Rn into

1A map f : X → Rn is perfect if f−1(r) is compact for every r ∈ Rn.
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R is UA [BD, Thm 5.2]. However, this theorem does not
generalize for all functions from R2 into R2, as shown by the
next example. (Compare with Example 4.1.)

Example 2.6. The functions f, g : R2 → R given by the for-
mulas f(x, y) = x2 and g(x, y) = y2 are UA, while the perfect
map H = (f, g) : R2 → R2 is not WUA.

Proof: The function f is UA by Theorem 2.1 since it is a
composite of a UC function f1 : R2 → R, f1(x, y) = x, and
a UA function f2 : R → R, f2(x) = x2. (See Theorem 2.3.)
Similarly we show that g is UA. To see that H is is not WUA
notice that the function h : R2 → R from Corollary 2.5 is a
composite ofH and a UC function h : R2 → R, h(x, y) = x−y.
Thus, by Theorem 2.1, H cannot be WUA.

Example 2.6 shows also that a map H = (f, g) : X → Y ×Z
does not have to be WUA even if f : X → Y and g : X → Z
are both UA.

Now, if X is a metric space then C(X,R) is a linear topolo-
gical space and Cuc(X,R) is its linear subspace. However, the
classes Cua(X,R) and Cwua(X,R) are not closed under addi-
tion, as shown by Example 2.6 and Corollary 2.5. In fact, the
next example shows that the sum of WUA function and UC
function does not have to be WUA. To formulate it easier, we
need the following notation and lemma.

We will use the symbol C to denote the unit circle on the
complex plane:

C = {z ∈ C : |z| = 1}
with the standard distance and we will write Rc to denote the
real line with the metric of C \ {−1}, i.e., given by formula

ρ(x, y) =
∣
∣
∣
∣e

2i arctan x − e2i arctan y

∣
∣
∣
∣ .

Lemma 2.7. (i) Let Y be a metric space. A function f ∈
C(Rc, Y ) is UC if and only if both limits limx→−∞ f(x)
and limx→∞ f(x) exist and are equal.
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(ii) A function f ∈ C(Rc,R) is WUA provided that
int(f [(−∞, x)] ∩ f [(x,∞)]) �= ∅ for every x ∈ Rc.

Proof: Since the spaces Rc and C \{−1} are isometric, we can
assume that f : C \ {−1} → Y .

(i) Now, if both limits limx→−∞ f(x) and limx→∞ f(x) exist
and are equal to b ∈ R, then we can extend f to a continuous
function F on C by putting F (−1) = b. Clearly F is UC, as a
continuous function on the compact set C. So, f is UC.

Conversely, if f : C \ {−1} → Y is UC, then it can be ex-
tended uniquely to UC function F : C → Y and then clearly
both limits exist and are equal to F (−1).

(ii) Choose x ∈ Rc and M ⊆ Rc. Clearly we can assume
that M �⊆ {x}.

If M is not dense in Rc then we can find a < b in Rc and
m ∈ M such that (a, b) ∩M = ∅ and either a < b < x < m
or m < x < a < b. Assume that a < b < x < m. Define
g|[b,m] = f |[b,m], g(x) = f(m) for x ∈ (−∞, a) ∪ (m,∞) and
extend it to (a, b) in a continuous way. Then, g is UC by (i)
and it is easy to see that g is an ({x},M)-approximation of f .
The case m < x < a < b is handled in a similar way.

So, assume that M is a dense subset of Rc. Let m ∈
M ∩ f−1(int(f [(−∞, x)] ∩ f [(x,∞)])) and put y = f(m) ∈
f [(−∞, x)] ∩ f [(x,∞)]. Choose a ∈ (−∞, x) ∩ f−1(y) and b ∈
(x,∞)∩f−1(y). Then, a < x < b and f(a) = f(b) = y = f(m).
Define g|[a,b] = f |[a,b] and g(x) = f(m) for x ∈ (−∞, a)∪(b,∞).
It is easy to see that g is a UC function which is an ({x},M)-
approximation of f .

Notice that the assumption in condition (ii) of Lemma 2.7 is
not necessary for its conclusion as shown by the UC function
f : Rc → R, f(x) = x/(1 + x2). Notice also, that Lemma
2.7(i) implies that Cuc(Rc,R) is a subring of C(Rc,R), i.e.,
that Cuc(Rc,R) is closed under pointwise product of functions.
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Figure 1: Graph of function f from Example 2.8.

Example 2.8. Let f, h: Rc → R be given by formulas

h(x) =
12 sin π

2
x

x2 + 1

and f(x) = −h(x) + arctan x. (See Figure 1.) Then h is UC,
f is WUA while f + h is not WUA.

Proof: The function h is UC by Lemma 2.7(i). The increasing
function f + h = arctan is not WUA by Corollary 1.2 and
the other implication of Lemma 2.7(i). To finish the proof, it
is enough to show that f satisfies the assumption of Lemma
2.7(ii). So, let x ∈ Rc and choose an integer number k such
that x ∈ [4k, 4(k + 1)]. Notice that

f(4k−1)=arctan(4k−1)+
12

(4k − 1)2 + 1
>arctan(4k−1)>−π

2

and

f(4k+5)=arctan(4k+5)− 12

(4k + 5)2 + 1
< arctan(4k+5) <

π

2
.
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Thus, it is enough to show the inequality f(4k−1) > f(4k+5),
since then (−π/2, f(4k− 1)) ⊆ f [(−∞, x)], (f(4k+ 5), π/2) ⊆
f [(x,∞)], and (−π/2, f(4k − 1)) ∩ (f(4k + 5), π/2) �= ∅. So,
we can reduce our task to the proof of

arctan(4k + 5)−arctan(4k − 1)<
12

(4k + 5)2 + 1
+

12

(4k−1)2+1
.

(2)

Now, if 4k + 5 ≤ 0, then arctan is concave on the interval
[4k − 1, 4k + 5] and using differential approximation at the
point 4k + 5 we obtain

arctan(4k+5)−arctan(4k−1)≤6 arctan′(4k+5)=
6

(4k+ 5)2+ 1
.

So, (2) holds. The case when 4k−1 ≥ 0 is handled by the fact
that f is an odd function. Now, if 4k − 1 < 0 < 4k + 5 then
k = 0 or k = −1, i.e., {4k− 1, 4k+ 5}∩ {−1, 1} �= ∅, So, using
the fact that the derivative of arctan is at most 1 we obtain

arctan(4k+5)−arctan(4k−1) < 6 =
12

(±1)2+1

<
12

(4k+5)2+1
+

12

(4k−1)2+1
.

Problem 2.9. If X is a metric space, f ∈ Cua(X,R) and
g ∈ Cuc(X,R) is f + g UA?

Problem 2.10 If f ∈ Cwua(R
2,R) and g ∈ Cuc(R

2,R) is
f + g WUA?

3. Equations between Cuc, Cua, Cwua and C.

In this section we will discuss all the possible spectra of
equations and sharp inclusions in the formula

Cuc(X, Y ) ⊆ Cua(X, Y ) ⊆ Cwua(X, Y ) ⊆ C(X, Y ).(3)

An important contribution for this discussion comes from
the following fact.
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Proposition 3.1. [BD, Thm. 12.1] For any metric space X
the equation Cuc(X,R) = Cua(X,R) implies that Cuc(X,R) =
C(X,R).

In particular, the space Y in the following cases (ii)-(iv)
cannot be equal to R. On the other hand, we have Y = R in
all remaining cases.

(i): Cuc(X, Y ) = Cua(X, Y ) = Cwua(X, Y ) = C(X, Y ).
Any compact space X will do the job. For example
X = [0, 1], Y = R.

(ii): Cuc(X, Y ) = Cua(X, Y ) = Cwua(X, Y ) �= C(X, Y ).
LetM be a magic set for R from Proposition 1.1. Then
X = Y =M considered with the usual metric have the
above property. (See [B, Example 13].) Spaces X and
Y can be also chosen to be complete metric spaces [B,
Cor. 18]. (Notice that in [B] term UA is used for what
we call here WUA.)

(iii): Cuc(X, Y ) = Cua(X, Y ) �= Cwua(X, Y ) = C(X, Y ).

We do not know such an example. So, the following problem
remains open.

Problem 3.2. Do there exist metric spaces X and Y with
the property that Cuc(X, Y ) = Cua(X, Y ) �= Cwua(X, Y ) =
C(X, Y )?

(iv): Cuc(X, Y ) = Cua(X, Y ) �= Cwua(X, Y ) �= C(X, Y ).
Now, let f : Rc → R be as in Example 2.8 and let
M ⊆ Rc be a magic set. We claim, that the above
chain of equations and inequalities holds for X = M
and Y = f [M ].

First notice that bothM and the complement ofM are
dense in Rc. Otherwise, if (a, b) is a non-empty inter-
val contained in eitherM or Rc\M and if g∈C(Rc,R)
is such that g|Rc\(a,b)

= arctan |Rc\(a,b)
, g[(a, b)] =
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arctan[(a, b)], and g �= arctan, then g is an ({a},M)-
approximation of arctan which is not a truncation of
arctan.

Next we will show that

any h ∈ Cwua(M, f [M ]) can be(4)

uniquely extended to C(Rc,R).

Notice that this immediately implies Cwua(M, f [M ]) �=
C(M,f [M ]) since there exists a function h∈C(M,f [M ])
with h[M ] having precisely two elements and, by (4),
such h is not WUA.
To see (4) let h : M → R be a function without conti-
nuous extension into Rc. Then there exist x ∈ Rc\M ,
ε > 0 and two sequences {xn}n∈N and {yn}n∈N inM
converging to x such that |h(xn) − h(yn)| ≥ ε for all
n ∈ N . Let a < b be such that xn, yn ∈ [a, b] for all
n ∈ N . Since f |[a,b] is UC, there exists δ > 0 such that
|f(x)−f(y)| < ε for every x, y ∈ [a, b] with |x−y| < δ.
It is easy to see that this implies essentially the same
property for any truncation g of f , i.e., that

|g(x) − g(y)| < ε(5)

for every truncation g of f and any x, y ∈ [a, b] with
|x− y| < δ.
Now, choose k ∈ N such that |xk − yk| < δ and put
M0 = {yk}. We claim that if g : M → h[M ] is an
({xk},M0)-approximation of h then g is not UC. In-
deed, if g is an ({xk},M0)-approximation of h then
g(xk) = h(xk) and {g(yk)} = g[M ] ⊆ h[M ] = {h(yk)}.
So

g(xk) − g(yk)| = |h(xk) − h(yk)| ≥ ε.(6)

On the other hand, if g were UC, then it could be
extended to a UC function ĝ : Rc → R which must
be a truncation of f , since ĝ[M ] = g[M ] ⊆ f [M ]. But
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this and (6) contradict (5). This finishes the proof of
(4).

Next we will show that for any h ∈ Cwua(M, f [M ])

h ∈ Cua(M, f [M ]) if and only if ĥ is a(7)

truncation off with lim
x→∞

ĥ(x) = lim
x→−∞

ĥ(x),

where ĥ : Rc → R is the unique extension of h, existing
by (4). Notice that by Lemma 2.7(i) and (4) this will
immediately imply Cuc(M, f [M ]) = Cua(M, f [M ]).
The implication “⇐” follows immediately from
Lemma 2.7(ii). To prove the other implication take

h ∈ Cua(M, f [M ]). Then ĥ is a truncation of f by
the definition of M . It is also easy to see that the
limits under question exist. Put s0 = limx→−∞ ĥ(x)

and s1 = limx→∞ ĥ(x), and by way of contradiction
assume that s0 �= s1. Let ε = |s0 − s1|/6 and choose

a0, a1 ∈ M such that h(ai) = ĥ(ai) ∈ (si − ε, si + ε)
for i = 0, 1, f [(−∞, a0]] ⊆ (−π/2 − ε,−π/2 + ε) and
f [(a1,∞)] ⊆ (π/2 − ε, π/2 + ε). We claim that there
is no ({a0, a1},M)-approximation g : M → f [M ] of h
which is UC. To see it assume by way of contradiction
that there exists such g. Then g is UC so that g has a
UC extension ĝ : Rc → R which must be a truncation
of f by the choice of M . Now

|ĝ(a0) − ĝ(a1)| = |h(a0) − h(a1)| > 4ε.(8)

Moreover, if b0 = limx→−∞ ĝ(x) then either b0 = h(a0),
if h(a0) �∈ (−π/2 − ε,−π/2 + ε), or otherwise b0 ∈
(−π/2 − ε,−π/2 + ε). In any case, |b0 − h(a0)| ≤ 2ε.
Similarly, we argue that |b1 − h(a1)| ≤ 2ε, where b1 =
limx→∞ ĝ(x). Combining this with (8) we obtain that
b0 �= b1. So, by Lemma 2.7(i), ĝ is not UC. This
contradiction finishes the proof of (8).
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To finish the proof it is enough to show that

f |M ∈ Cwua(M, f [M ]) \ Cua(M, f [M ]).(9)

But in Example 2.9 we proved that f is WUA, so
Proposition 2.2 implies that f |M ∈ Cwua(M, f [M ]).
The fact that f |M �∈ Cua(M, f [M ]) follows immedia-
tely from (8).

(v): Cuc(X, Y ) �= Cua(X, Y ) = Cwua(X, Y ) = C(X, Y )
holds for X = Y = R by Theorem 2.3.

(vi): Cuc(X, Y ) �= Cua(X, Y ) = Cwua(X, Y ) �= C(X, Y )
holds for X being the Hedgehog with continuum many
spikes [E, Example 4.1.3]E and Y = R. For the proof
see [BEP, Theorem 5.9]. (Actually it suffices to take
just b spikes, where b is the smallest cardinality of an
unbounded family in ωω.)

Problem 3.3. Does there exist a separable metric space X
with the property that Cuc(X,R) �= Cua(X,R) = Cwua(X,R) �=
C(X,R)?

(vii): Cuc(X, Y ) �= Cua(X, Y ) �= Cwua(X, Y ) = C(X, Y )
holds for X = R\{0} and Y = R. (See [Corollary 7.2
and Lemma 3.1].)

Problem 3.4. Does there exist a connected metric space X
with the property that Cuc(X,R) �= Cua(X,R) �= Cwua(X,R) =
C(X,R)?

(viii): Cuc(X, Y ) �= Cua(X, Y ) �=Cwua(X, Y ) �=C(X, Y )
holds for Y = R and X = Rc. The last inequality
Cwua(Rc,R) �= C(Rc,R) is witnessed by the identity
function,which is notWUA byCorollary1.2 andLemma
2.7(i). This and Proposition 3.1 imply Cuc(Rc,R) �=
Cua(Rc,R). The relation Cua(Rc,R) �= Cwua(Rc,R)
is justified by the function f from Example 2.8. It
is shown there that f ∈ Cwua(Rc,R). The fact that
f �∈ Cua(Rc,R) follows from (9) and Proposition 2.2.



UNIFORMLY APPROACHABLE MAPS 87

4. Complex polynomials and harmonic functions

In this section we will show that most complex analytic func-
tions f : C → C are not WUA. We start with the following
easy example.

Example 4.1. The function f : C → C given by f(z) = z2 is
not WUA.

Proof: If f were WUA than the real part of f , Re f =prx ◦ f ,
would beWUA, since prx : R2 → R, prx(x, y) = x, is UC. But
Ref(x+ iy) = x2 − y2 is not WUA. (See Corollary 2.5.)

Notice that f(z) = z2 is perfect. So, even the simplest ana-
lytic perfect mappings do not have to be WUA.

Clearly all linear functions from R2 into R2 are UC. Hence
all mappings C → C, z �→ az+b (a, b ∈ C) are UC. In fact, it
seems that these are the only complex analytic functions that
are WUA. We do not have a proof of this general statement.
However, the examples below should explain the reasons that
stands behind this conjecture.

In all the examples that follow we will prove that the complex-
valued function f(z) in question is not WUA by showing that
its imaginary part h(x, y) = Imf(x+ iy) is not WUA. This is
enough by Theorem 2.1. To prove that h is not WUA we will
apply Proposition 2.2 to an appropriate restriction hA of the
function h to a subspace A of R2. The verification that hA is
not WUA will be done by applying Proposition 2.4

Example 4.2. (1) The for n > 1 the n-th power function
C → C, z �→ zn, is not WUA.

(2) The exponential function C → C, z �→ ez, is notWUA.

Proof: To see (1) let h(x, y) = (x2 + y2)n/2 sin[n arctan(y/x)].
Take as A those points of the upper half-plain which have the
argument in the interval (0, π/n). Then for every c > 0 the
level curve Lc = h−1(c) is connected and has two asymptotes:
the rays Arg(z) = 0 and Arg(z) = π/n. Thus the distance
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between Lc and Lc′ is zero for c, c′ > 0. The application of
Proposition 2.4 finishes the proof.

In case (2) we have h(x, y) = ex sin y. Take A = {z ∈ C :
Rez > 0 & 0 < Imz < π/2}. Then for c > 1 the level curve
Lc = h−1(c) = {(ln[c/ sin y], y) : 0 < y < π/2} is connected as a
graph of continuous function x(y) = ln[c/ sin y]. Moreover, all
curves {Lc}c>1 have as common asymptote the line Imz = 0.
Thus the distance between Lc and Lc′ is zero for c, c′ > 1. Now
Proposition 2.4 can be applied.

In both cases above we used the fact that the function
h(x, y) = Imf(x + iy) has many level curves whose connected
components are of distance zero. (This was done by noticing
that they have the same asymptote.) The same argument
works also for other elementary entire functions like sin z, cos z
and complex polynomial functions of degree greater than 1.
In fact, by Liouville’s theorem for positive harmonic functions
[ABR, Theorem 3.1], for every entire analytic function f the le-
vel curves of h = Imf are unbounded and it seems conceivable
that for any non-linear f the function h always has many level
curves whose connected components are of distance zero. This
leads us to the following conjecture.

Conjecture 4.3. If f : C → C is entire analytic function
then f is WUA if and only if f is a linear.

We will finish this discussion with one more example.

Example 4.4. The inverse function f : C \ {0} → C, f(z) =
1/z, is not WUA.

Proof: Let A be the first quadrant {(x, y) : x > 0 & y > 0}.
Since h(x, y) = Imf(x + iy) = −y/

√
x2 + y2 it is easy to see

that for −1 < c < 0 the level curve Lc = h−1(c) is the ray in
A of the line y = −c(1 − c2)−1/2x. The distance between Lc

and Lc′ is clearly zero for c, c′ > 0. So, Proposition 2.4 can be
applied.
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It is not difficult to extend the argument of Example 4.4 to
all rational functions with essential poles. This suggests that
Conjecture 4.3 can be true also for all meromorphic functions.

We also do not know the answer for the following natural
question. (Compare with Example 2.8.)

Question 4.5. If f ∈ Cua(C,C) (f ∈ Cwua(C,C), respecti-
vely) and g : C → C is linear, is it always true that f + g is
UA (WUA, respectively)?
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