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ORDINARY AND STRONG DENSITY CONTINUITY
OF COMPLEX ANALYTIC FUNCTIONS

KrzyszTor CIESIELSKI (Morgantown)

Abstract

In the paper we prove that the complex analytic functions are (ordinarily)
density continuous. This stays in contrast with the fact that even such a simple
function as G:R? — R?, G(z,y) = (z,ys), is not density continuous [1]. We will
also characterize those analytic functions which are strongly density continuous at
the given point ¢ € C. From this we conclude that a complex analytic function f
is strongly density continuous if and only if f(z) = a + bz, where a,b € C and b is
either real or imaginary.

1. Preliminaries

The notation used throughout this paper is standard. In particular, the com-
plex plane C will be identified with R2. All sets considered in the paper will be
Lebesgue measurable. The two-dimensional Lebesgue measure of a set A C C will
be denoted by A(A). Recall that 0 is a strong dispersion point of A C C if

o AUnlCeax(hh)
a—0+,5-0+  A((—a,a) x (=b,b))

()

and it is an (ordinary) dispersion point of A if in the above limit we replace rectangles
with squares, i.e., we take @ = b. It is also well known that the squares can be
replaced with the balls B(a) = {2 € C: |z| < a}, i.e., that 0 is a dispersion point of
AcCCif
@) lim AANB() _
r—0+  A(B(r))

A point z € C is a dispersion (strong dispersion) point of A C C if it is a dispersion
(strong dispersion) point of A — z, and z € C is a density (strong density) point of
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A if it is a dispersion (strong dispersion) point of the complement of A. (Compare
Saks [5], pages 106, 128.) The strong density topology 7s on C is defined as the
family of all measurable subsets A of C such that every z € A is a strong density
point of A [2]. Similarly we define the density topology 7x on C using the notion
of ordinary density point on C. (Compare [2] and [3].) Notice that the topologies
Ty and 7gs-are invariant under translations and under multiplications by positive
real numbers.

A function f:C — C is density continuous (strongly density continuous) at
z € Cif it is continuous with the topology T (7s) used in the domain and the range.
In particular, it is easy to see that f: C — C is density continuous (strongly density
continuous) at z € C if and only if for every A C C\ {z} if 2z is not a dispersion
(strong dispersion) point of A then f(z) is not a dispersion (strong dispersion) point
of f(A).

In what follows we will use also the following easy fact. It will be left without
proof.

LEMMA 1.1. Let A C B(1) and Ry C B(1), k € N, be such that
AMANRy)

A(Re)
If the sets K9 C B(1) for j < n are disjoint and such that /\(Uj<n K7) = A(B(1))

then there is @ j < n and an increasing sequence {k,} such that
MANKINRy,)
)\(Kj N Rkp)

We will also use the following version of the change of variables formula.

>6 forall keN.

>6 forall peN.

LEMMA 1.2. Let F:C — C, U C C be an open region and let h-U — C be
analytic with analytic inverse. Then

A(U)FdA:/lj(Foh)-|h’(z)l dx.

Proor. This immediately follows from the standard change of variables for-
mula ([4], Thm. 7.26) if we notice that the Jacobian of transformation & is equal to
|det A'(z,y)| = |A'(2)|? which, in turn, follows immediately from Cauchy-Riemann
equations. (Compare (4], p. 250, Exercise 6.) W

In what follows we will also use the following notation for « > 0 and £, 79 > 0:

K(a,e,ro)={z=re?€C:0<r<rm&a—¢c<p<a+e}.

2. Functions bz"

We will start with the following equivalent form of the property that 0 is a
strong dispersion point of A C C.
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LEMMA 2.1. The point O is a strong dispersion point of A C C if and only if
for every a@ = mn /2, m € N, and every parameter ¢ € (0, 7/4) (that might depend

ofr)

3) MANK(a,e,1)

rot A(K(a,e,1))

Proor. Fix ACC.
By way of contradiction assume first that (3) is false for some o = mZ,
m € N. Then, there exists 6 > 0 and sequences ¢; € (0, 7/4) and rx > 0 such that
ry converges to 0 and
A(A N K(a, €k, T‘k))
)\(K(a, €k, T')c))

For convenience we will assume o = @, the other cases being similar.

> ¢ forall keN.

\ ag=rK
————y
by=2exrk
tan e
- } Ik tan £
Figure 1.

Let ax = rx and by = 2¢xry. Then, by > ritaney, since 2 > _tar;77f4/4l >

ta?%. In particular, K(a, e, ry) C (—ag, ar) X (—bg,br). (See Figure 1.) More-

over, /\((—ak,ak) X (—bk,bk)) = 8rie; = 8A(K(a,sk, rk)). Hence
A(Aﬂ [(—ak,ak) X (—bk,bk)]) > /\(AnK(a,Ek,T'k))
)\((—ak,ak) X (—bk,bk)) - Sz\(K(a,Ek,Tk))

for all k£ € N, contradicting (1). _
Conversely, assume that (1) is false, i.e., that there exists § > 0 and sequences

ag, by converging to 0 such that
/\(A N [(——ak, ak) X (—bk, bk)])
A((—ak, ax) X (—bk, br))

Then, by Lemma 1.1 used with sets K7 = {re’¥ € B(1):j% < ¢ < (j + 1)3} for
j €{0,1,2,3}, we can assume that the similar property holds when in the above

>6
8

> 6 forall £k eN.
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limit the sequence of rectangles {(—ax,ar) X (—bx,bi)} is replaced by one of the
following four sequences: {(0, ax) x (0, bz)}, {(0, ax) x (—bx,0)}, {(—ax,0) x (0,b:)},
or {(—ax,0) x (—bx,0)}. For convenience we will assume that this is the case for
the first of these sequences, i.e., that

AM(AN[(0, ax) x (0,b)])

> 6 forall keN.
akbk

Furthermore, choosing subsequence, if necessary, we can assume that either ap < b
for all k£ or by < aj for all k. We will assume that

by < ap forall k €N.
Let r, = \/az + bz and £; = arctan ﬁﬁ Then rp < 2aj and

4 4
(ak6/2,ak) X (O,bk) C K(O,sk,rk) C (0,2ak) X (—Eb’“’ Sb’“)
(See Figure 2.)
2aptangy =
2 ay [by /ag 8/2)) =
(4/8) by
€k
by [\
.ksﬂ\rk“s}
Figure 2.

In particular, /\(K(O,Ek, rk)) <2ap2 %—bk = %ﬁakbk and
MANK(0,ex,7k)) S AAN[(ard/2,ax) x (0,bx)))
/\(K(O,ek,rk)) - %akbk

o 8 MANO,a) x (0,b)]) = A((0, ax8/2] (0,5))
= 16 ayby

6 (5_8)_¢
6\° "2/ 32

for all k € N, which contradicts (3). W
In what follows we will need also the following inequality.
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LEMMA 2.2. Let f(2) :.e"‘”z", ACC,a,80>0ande,r>0. If
(4) AUK(a,e,7) C K(B, %,1)
then for every d € (0,1)
A(f(A) N K(na + p,ne, ™)) > n*(dr)2[M(AN K(a,¢,7)) — d?er?].

PROOF. By (4) we can restrict f to K(8,%,1). Then, f is one-to-one and
has an analytic inverse f~!. Hence, using Lemma 1.2, we obtain

A(f(A) N K(na+ ¢, ne, ™)) = A(f(A) N f(K(a,¢,T)))

J(K(ae,r))

= XA Of_ldA
J(K(a,e,r))

- / Xao0f Vo f(z) - |f (=) dA
K(o

:/ Xa(z) -n?|z|>"~2d)
K(a

Xa(z) -n?z|"2dA

A\
—

K(ae,r)\K(a,e,dr)

\Y

Xa(z) -nP(dr)?"2dx

/K(a,e,r)\x(a,e,dr)

= nz(dr)2"_2 [/ Xad —/ Xa dAJ
K(a,e,r) K(a,e,dr)
> n*(dr)”"?[M(ANK(a,¢e,1)) — A(K(a,¢,dr))]

=n?(dr)*"2[A(AN K(a,e,r)) — d%er?)].
u

Now, we are ready for the proof of the main lemma.

LEMMA 2.3. Letb€ C and n € N, n > 1. Then the function f(z) = bz" is
density continuous at 0. Moreover, it is strongly density continuous at 0 if and only
if b is etther real or imaginary number.

Proor. If b = 0 then the lemma is certainly true. So, assume that b # 0. The
topologies 7y and 7s are invariant under multiplications by positive real numbers.
So, without loss of generality we can assume that |b| = 1, i.e., that b = ! for some
¢ > 0. To prove that f is density continuous at 0 let A C B(1) be such that 0 is
not a dispersion point of A. We will show that 0 = f(0) is not a dispersion point
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of f(A4). To this order first notice that, by (2), there exists a sequence r € (0,1)
converging to 0 and § € (0,1) such that

AMANB
AAOBCL) 5 o kN,
M(B(ri))
Then, by Lemma 1.1 used with sets K7 = K(%, 1), < dn, we can assume that
-for some a = £~ we have A C K(e, X, 1) and

MANK(a, £ T r))
)\(K(a, 4n,rk))
Then, by Lemma 2.2 used with d = §/2, and the above we have
)\(f(A) N B(ry ) S ,\(f(A) NK(na+e, I, r,’c‘))

> 6 forall keN.

A(B(rR) T it
n2( )™ ANANK(a, &, ) = S £
= 471——7',c
_n ()T AR ) £
T 4\2 MK (e, 4n,Tk)) =ri

\%

n 6\ "2 52
1(5) {‘57]“’

for every k € N. Therefore, by (2), 0 is not a dispersion point of f(A). We proved
that f is density continuous at 0.

To prove the second part, assume first that b = €'¥ is real or imaginary. Thus,
¢ = m% for some m € N. Let A C B(1) be such that 0 is not a strong dispersion
point of A. We will show that 0 = f(0) is not a strong dispersion point of f(A).

By Lemma 2.1 we can find é € (0,1), 8 = pg-, where p € N, and sequences
¢k € (0,7/4) and 7 € (0, 1) such that ry converges to 0 and

/\(A ﬂK(,B,Ek,Tk))

>6 forall keN.
MK (B, ek, 7v))

By Lemma 1.1 used with sets K/ = K(é%, fﬁ, 1), j < 4n, we can assume that for

somea—g—r
- 2n

/\(AOK(ﬁ,ek,rk) NK(a, %, ))
(K(ﬂ, €k, 'r'k) N K(a, Ins 1))
We can also assume that either £, > 4—- for all k or €, < - for all k. However, the

first case implies that 0 is not an ordinary dispersion pomt of A, since in this case
we would have

> 6 forall keN.

A(AN B(ry)) N AMANK(B,ex, 1))
’\(B("k)) - 4"’\(K(ﬂ)5k,7'k))
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for all k € N. Thus, by the first part of the Lemma, 0 is not a (strong) dispersion
point of f(A).

So, assume that £, < fr—l for all k. But then, @ = B since otherwise
K(B,ex,mx) N K(e, 47%, 1) = 0. Hence, K(B,er, ) N K(a, 47—%, 1) = K(e, ek, 7)
and

/\(Aﬂ K(a,e:k,rk))

/\(K(a,ek,rk))

We can also assume that A C K(a, 47%, 1). Then, by Lemma 2.2 used with d = §/2,
and the above we have

Mf(A) N K(no + p, nex, r})) S n2(§r) 2 M(ANK(a,ex, 7)) ~ %ekrﬂ

>6 forall k€ N.

MK (na + ¢, neg, ) negrit
(6)2n_2 /\(AﬂK(a,E:k,T'k)) %Ekr,%
=nl- ~ — 5
2 A(A (a’ekark)) EkT

5 2n—-2 62
>n (5) [6 - Z] >0
for every k € N. But notice that na+ ¢ = (j +m)%. Therefore, by Lemma 2.1, 0 is

not a strong dispersion point of f(A). We proved that f is strong density continuous
at 0.

f(A)

)

Figure 3.

To finish the proof let us assume that b = ¢'¥ is neither real nor imaginary.
Thus, ¢ = p¥ forsomep >0, p ¢N. Let A= {(z,y):z>0& —2? <y<z?}. It
Is easy to see that 0 is not a strong dispersion point of A. On the other hand, f(A)
does not contain any axis. (See Figure 3.) Using this fact it is not difficult to argue
that 0 is a strong dispersion point of f(4). W

3. General case

We will need the following fact.
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LEMMA 3.1. Let f be analytic on a neighborhood of 0 and assume that f(z) =
Ser, arzF where n > 0 and ap # 0. If g(2) = an2™ then there exists r > 0 such
that for every A C B(r)

(5) = Mo(4)) < A(F(4)) < A (5(4)).

In particular, f is density (strongly densily) continuous at 0 if and only if g is
density (strongly density) continuous at 0. '

PRoOF. Notice that condition (5) imples that 0 is a dispersion (strong dis-
persion) point of f(A) if and only if 0 is a dispersion (strong dispersion) point of
g(A). Thus, the additional part follows immediately from (5).

To prove (5) let us first choose ro > 0 such that f’ does not have any zeros in
B(ro) \ {0}.

Notice that it is enough to prove that for every j < n we can find r > 0 such
that

i—)\(g(A)) < A(f(4)) < 4x(9(4)).

holds for all A C K/ = K(e, n,r), where a = 2—:;-1 So, choose o = 2—21 and

consider functions f and g as restricted to KJ. Then, g is one-to-one and has an
analytic inverse g~ ': g(K?) — K.
Put h = fog~!. Then, h is analytic and

h'(z) = '(Q’I(Z))( “1'(2)

971(2))
z,’z;‘: )"

Thus, we can pick r € (0, 7o) such that |h'(z) — 1| = |h'(z) — K'(0)| < 3, i.e., that
1 , 3
(6) §<|h(z)l<§<2

for all z € g(K7) with |z| < r. We will show that this choice of r implies (5).

Since f' does not have any zeros in Z = K’ N B(r) \ {0}, the set Z can be
covered by open sets S C Z such that f has an inverse f~!: f(S§) — S. So, pick
S C Z with this property. Since Lebesgue measure is countable additive, we may
assume that A C §. Then, function h restricted to ¢(S) is one-to-one and, by
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Lemma 1.2,

M f(A) = /f . Xs(a) dX

= / XA o f_l dA
h(g(5))

:/ (Xaoflofog™(2)): |h(2))?dA
9(5)
= / Xgay(2) - (2P dA.
9(8)
But, by (6), < |h'(2)|?> < 4 for all z € g(S) C g(K’). Thus
= R ()2 Azl
M) = [ X WP [ Xyw(e) G2 = 326(4)

and

M) = [ Ko@) WS [ xyn(e)- 401 = ax(o(a)

9(
[ ]

Now, we are ready for the main theorems.
THEOREM 3.2. Every analytic function is densily continuous.

Proor. It follows immediately from Lemmas 2.3, 3.1 and the fact that the
topology 7 is invariant under translations. IR

THEOREM 3.3. A non-constant analytic function [ is strongly density con-
tinuous at z if and only if f(")(z) 15 etther real or imaginary number, where n =

min{k > 0: f(*¥)(2) # 0}.

PRrooF. Since topology 7s is invariant under translations we can assume that
z = 0. Then, Theorem follows immediately from Lemmas 2.3 and 3.1. W

THEOREM 3.4. An analytic function f is strongly densily continuous on ils
domain if and only if f(2) = a+ bz where a,b € C and b is either real or imaginary
number.

Proor. First assume that f(z) = a + bz where a,b € C. If f is constant,
then evidently f is strongly density continuous. So, assume f is not constant and
pick an arbitrary z € C. Then min{k > 0: f*)(z) # 0} = 1 and f((z) = b. So,
by Theorem 3.3, f is strong density continuous at z if and only if b is either real or
imaginary number.
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So, assume that f is not linear. Then, f’ is analytic and not constant. There-
fore, there exists z in the domain of f such that f/(z) is neither real nor imaginary
number. Thus, by Theorem 3.3, f is not strongly density continuous at z. M
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