ORDINARY AND STRONG DENSITY CONTINUITY OF COMPLEX ANALYTIC FUNCTIONS

KRZYSZTOF CIESIELSKI (Morgantown)

Abstract

In the paper we prove that the complex analytic functions are (ordinarily) density continuous. This stays in contrast with the fact that even such a simple function as $G: \mathbb{R}^2 \to \mathbb{R}^2$, $G(x, y) = (x, y^3)$, is not density continuous [1]. We will also characterize those analytic functions which are strongly density continuous at the given point $a \in \mathbb{C}$. From this we conclude that a complex analytic function f is strongly density continuous if and only if f(z) = a + bz, where $a, b \in \mathbb{C}$ and b is either real or imaginary.

1. Preliminaries

The notation used throughout this paper is standard. In particular, the complex plane \mathbb{C} will be identified with \mathbb{R}^2 . All sets considered in the paper will be Lebesgue measurable. The two-dimensional Lebesgue measure of a set $A \subset \mathbb{C}$ will be denoted by $\lambda(A)$. Recall that 0 is a strong dispersion point of $A \subset \mathbb{C}$ if

(1)
$$\lim_{a\to 0^+, b\to 0^+} \frac{\lambda(A\cap [(-a,a)\times (-b,b)])}{\lambda((-a,a)\times (-b,b))} = 0$$

and it is an (ordinary) dispersion point of A if in the above limit we replace rectangles with squares, i.e., we take a = b. It is also well known that the squares can be replaced with the balls $B(a) = \{z \in \mathbb{C} : |z| < a\}$, i.e., that 0 is a dispersion point of $A \subset \mathbb{C}$ if

(2)
$$\lim_{r \to 0^+} \frac{\lambda(A \cap B(r))}{\lambda(B(r))} = 0.$$

A point $z \in \mathbb{C}$ is a dispersion (strong dispersion) point of $A \subset \mathbb{C}$ if it is a dispersion (strong dispersion) point of A - z, and $z \in \mathbb{C}$ is a density (strong density) point of

Mathematics subject classification numbers, 1991. Primary 26B05, 26A15; Secondary 30A99.

Key words and phrases. Strong density continuity, complex analytic functions.

0031-5303/95/\$4.00	Akadémiai Kiadó, Budapest
c) Akadémiai Kiadó, Budapest	Kluwer Academic Publishers, Dordrecht

A if it is a dispersion (strong dispersion) point of the complement of A. (Compare Saks [5], pages 106, 128.) The strong density topology $\mathcal{T}_{\mathcal{S}}$ on C is defined as the family of all measurable subsets A of C such that every $z \in A$ is a strong density point of A [2]. Similarly we define the density topology $\mathcal{T}_{\mathcal{N}}$ on C using the notion of ordinary density point on C. (Compare [2] and [3].) Notice that the topologies $\mathcal{T}_{\mathcal{N}}$ and $\mathcal{T}_{\mathcal{S}}$ are invariant under translations and under multiplications by positive real numbers.

A function $f: \mathbb{C} \to \mathbb{C}$ is density continuous (strongly density continuous) at $z \in \mathbb{C}$ if it is continuous with the topology $\mathcal{T}_{\mathcal{N}}(\mathcal{T}_{\mathcal{S}})$ used in the domain and the range. In particular, it is easy to see that $f: \mathbb{C} \to \mathbb{C}$ is density continuous (strongly density continuous) at $z \in \mathbb{C}$ if and only if for every $A \subset \mathbb{C} \setminus \{z\}$ if z is not a dispersion (strong dispersion) point of A then f(z) is not a dispersion (strong dispersion) point of f(A).

In what follows we will use also the following easy fact. It will be left without proof.

LEMMA 1.1. Let
$$A \subset B(1)$$
 and $R_k \subset B(1)$, $k \in \mathbb{N}$, be such that
$$\frac{\lambda(A \cap R_k)}{\lambda(R_k)} > \delta \text{ for all } k \in \mathbb{N}.$$

If the sets $K^j \subset B(1)$ for j < n are disjoint and such that $\lambda(\bigcup_{j < n} K^j) = \lambda(B(1))$ then there is a j < n and an increasing sequence $\{k_p\}$ such that

$$\frac{\lambda(A \cap K^j \cap R_{k_p})}{\lambda(K^j \cap R_{k_p})} > \delta \quad \text{for all} \ p \in \mathbb{N}.$$

We will also use the following version of the change of variables formula.

LEMMA 1.2. Let $F: \mathbb{C} \to \mathbb{C}$, $U \subset \mathbb{C}$ be an open region and let $h: U \to \mathbb{C}$ be analytic with analytic inverse. Then

$$\int_{h(U)} F \, d\lambda = \int_U (F \circ h) \cdot |h'(z)|^2 \, d\lambda$$

PROOF. This immediately follows from the standard change of variables formula ([4], Thm. 7.26) if we notice that the Jacobian of transformation h is equal to $|\det h'(x,y)| = |h'(z)|^2$ which, in turn, follows immediately from Cauchy-Riemann equations. (Compare [4], p. 250, Exercise 6.)

In what follows we will also use the following notation for $\alpha \ge 0$ and $\varepsilon, r_0 > 0$:

$$K(\alpha,\varepsilon,r_0) = \{ z = re^{i\varphi} \in \mathbb{C} : 0 \le r < r_0 \& \alpha - \varepsilon < \varphi < \alpha + \varepsilon \}.$$

2. Functions bz^n

We will start with the following equivalent form of the property that 0 is a strong dispersion point of $A \subset \mathbb{C}$.

LEMMA 2.1. The point 0 is a strong dispersion point of $A \subset \mathbb{C}$ if and only if for every $\alpha = m\pi/2$, $m \in \mathbb{N}$, and every parameter $\varepsilon \in (0, \pi/4)$ (that might depend of r)

(3)
$$\lim_{r\to 0^+} \frac{\lambda(A\cap K(\alpha,\varepsilon,r))}{\lambda(K(\alpha,\varepsilon,r))} = 0.$$

PROOF. Fix $A \subset \mathbb{C}$.

By way of contradiction assume first that (3) is false for some $\alpha = m\frac{\pi}{2}$, $m \in \mathbb{N}$. Then, there exists $\delta > 0$ and sequences $\varepsilon_k \in (0, \pi/4)$ and $r_k > 0$ such that r_k converges to 0 and

$$rac{\lambdaig(A\cap K(lpha,arepsilon_k,r_k)ig)}{\lambdaig(K(lpha,arepsilon_k,r_k)ig)}>\delta \ \ ext{for all} \ \ k\in\mathbb{N}.$$

For convenience we will assume $\alpha = 0$, the other cases being similar.

Figure 1.

Let $a_k = r_k$ and $b_k = 2\varepsilon_k r_k$. Then, $b_k \ge r_k \tan \varepsilon_k$, since $2 > \frac{\tan(\pi/4)}{\pi/4} > \frac{\tan \varepsilon_k}{\varepsilon_k}$. In particular, $K(\alpha, \varepsilon_k, r_k) \subset (-a_k, a_k) \times (-b_k, b_k)$. (See Figure 1.) Moreover, $\lambda((-a_k, a_k) \times (-b_k, b_k)) = 8r_k^2 \varepsilon_k = 8\lambda(K(\alpha, \varepsilon_k, r_k))$. Hence

$$\frac{\lambda\big(A\cap [(-a_k,a_k)\times (-b_k,b_k)]\big)}{\lambda\big((-a_k,a_k)\times (-b_k,b_k)\big)}\geq \frac{\lambda\big(A\cap K(\alpha,\varepsilon_k,r_k)\big)}{8\,\lambda\big(K(\alpha,\varepsilon_k,r_k)\big)}>\frac{\delta}{8}$$

for all $k \in \mathbb{N}$, contradicting (1).

Conversely, assume that (1) is false, i.e., that there exists $\delta > 0$ and sequences a_k , b_k converging to 0 such that

$$\frac{\lambda\big(A\cap [(-a_k,a_k)\times (-b_k,b_k)]\big)}{\lambda\big((-a_k,a_k)\times (-b_k,b_k)\big)} > \delta \quad \text{for all} \ \ k\in\mathbb{N}.$$

Then, by Lemma 1.1 used with sets $K^j = \{re^{i\varphi} \in B(1): j\frac{\pi}{2} < \varphi < (j+1)\frac{\pi}{2}\}$ for $j \in \{0, 1, 2, 3\}$, we can assume that the similar property holds when in the above

CIESIELSKI

limit the sequence of rectangles $\{(-a_k, a_k) \times (-b_k, b_k)\}$ is replaced by one of the following four sequences: $\{(0, a_k) \times (0, b_k)\}, \{(0, a_k) \times (-b_k, 0)\}, \{(-a_k, 0) \times (0, b_k)\},$ or $\{(-a_k, 0) \times (-b_k, 0)\}$. For convenience we will assume that this is the case for the first of these sequences, i.e., that

$$rac{\lambdaig(A\cap [(0,a_k) imes (0,b_k)]ig)}{a_kb_k}>\delta ~~ ext{for all}~~k\in\mathbb{N}.$$

Furthermore, choosing subsequence, if necessary, we can assume that either $a_k \leq b_k$ for all k or $b_k \leq a_k$ for all k. We will assume that

 $b_k \leq a_k$ for all $k \in \mathbb{N}$.

Let $r_k = \sqrt{a_k^2 + b_k^2}$ and $\varepsilon_k = \arctan \frac{b_k}{a_k \delta/2}$. Then $r_k \leq 2 a_k$ and

$$(a_k\delta/2, a_k) \times (0, b_k) \subset K(0, \varepsilon_k, r_k) \subset (0, 2a_k) \times (-\frac{4}{\delta}b_k, \frac{4}{\delta}b_k).$$

(See Figure 2.)

In particular, $\lambda(K(0, \varepsilon_k, r_k)) \leq 2 a_k 2 \frac{4}{\delta} b_k = \frac{16}{\delta} a_k b_k$ and $\frac{\lambda(A \cap K(0, \varepsilon_k, r_k))}{\lambda(K(0, \varepsilon_k, r_k))} \geq \frac{\lambda(A \cap [(a_k \delta/2, a_k) \times (0, b_k)])}{\frac{16}{\delta} a_k b_k}$ $\geq \frac{\delta}{16} \frac{\lambda(A \cap [(0, a_k) \times (0, b_k)]) - \lambda((0, a_k \delta/2] \times (0, b_k))}{a_k b_k}$ $\frac{\delta}{16} \left(\delta - \frac{\delta}{2}\right) = \frac{\delta^2}{32},$

for all $k \in \mathbb{N}$, which contradicts (3).

In what follows we will need also the following inequality.

(4) LEMMA 2.2. Let
$$f(z) = e^{i\varphi}z^n$$
, $A \subset \mathbb{C}$, $\alpha, \beta \ge 0$ and $\varepsilon, r > 0$. If
 $A \cup K(\alpha, \varepsilon, r) \subset K(\beta, \frac{\pi}{n}, 1)$

then for every $d \in (0, 1)$

$$\lambda\big(f(A)\cap K(n\alpha+\varphi,n\varepsilon,r^n)\big)\geq n^2(d\,r)^{2n-2}\big[\lambda\big(A\cap K(\alpha,\varepsilon,r)\big)-d^2\varepsilon r^2\big].$$

PROOF. By (4) we can restrict f to $K(\beta, \frac{\pi}{n}, 1)$. Then, f is one-to-one and has an analytic inverse f^{-1} . Hence, using Lemma 1.2, we obtain

$$\begin{split} \lambda \big(f(A) \cap K(n\alpha + \varphi, n\varepsilon, r^n) \big) &= \lambda \big(f(A) \cap f(K(\alpha, \varepsilon, r)) \big) \\ &= \int_{f(K(\alpha, \varepsilon, r))} \chi_{f(A)} \, d\lambda \\ &= \int_{f(K(\alpha, \varepsilon, r))} \chi_A \circ f^{-1} \, d\lambda \\ &= \int_{K(\alpha, \varepsilon, r)} \chi_A \circ f^{-1} \circ f(z) \cdot |f'(z)|^2 \, d\lambda \\ &= \int_{K(\alpha, \varepsilon, r)} \chi_A(z) \cdot n^2 |z|^{2n-2} \, d\lambda \\ &\geq \int_{K(\alpha, \varepsilon, r) \setminus K(\alpha, \varepsilon, dr)} \chi_A(z) \cdot n^2 |z|^{2n-2} \, d\lambda \\ &\geq \int_{K(\alpha, \varepsilon, r) \setminus K(\alpha, \varepsilon, dr)} \chi_A(z) \cdot n^2 (dr)^{2n-2} \, d\lambda \\ &= n^2 (dr)^{2n-2} \left[\int_{K(\alpha, \varepsilon, r)} \chi_A \, d\lambda - \int_{K(\alpha, \varepsilon, dr)} \chi_A \, d\lambda \right] \\ &\geq n^2 (dr)^{2n-2} [\lambda (A \cap K(\alpha, \varepsilon, r)) - \lambda (K(\alpha, \varepsilon, dr))] \\ &= n^2 (dr)^{2n-2} [\lambda (A \cap K(\alpha, \varepsilon, r)) - d^2 \varepsilon r^2]. \end{split}$$

-	•

Now, we are ready for the proof of the main lemma.

LEMMA 2.3. Let $b \in \mathbb{C}$ and $n \in \mathbb{N}$, $n \ge 1$. Then the function $f(z) = bz^n$ is density continuous at 0. Moreover, it is strongly density continuous at 0 if and only if b is either real or imaginary number.

PROOF. If b = 0 then the lemma is certainly true. So, assume that $b \neq 0$. The topologies $\mathcal{T}_{\mathcal{N}}$ and $\mathcal{T}_{\mathcal{S}}$ are invariant under multiplications by positive real numbers. So, without loss of generality we can assume that |b| = 1, i.e., that $b = e^{i\varphi}$ for some $\varphi \geq 0$. To prove that f is density continuous at 0 let $A \subset B(1)$ be such that 0 is not a dispersion point of A. We will show that 0 = f(0) is not a dispersion point

of f(A). To this order first notice that, by (2), there exists a sequence $r_k \in (0, 1)$ converging to 0 and $\delta \in (0, 1)$ such that

$$rac{\lambdaig(A\cap B(r_k)ig)}{\lambdaig(B(r_k)ig)}>\delta \ \ ext{for all} \ \ k\in\mathbb{N}.$$

Then, by Lemma 1.1 used with sets $K^j = K(\frac{j\pi}{2n}, \frac{\pi}{4n}, 1), j < 4n$, we can assume that for some $\alpha = \frac{j\pi}{2n}$ we have $A \subset K(\alpha, \frac{\pi}{4n}, 1)$ and

$$\frac{\lambda\big(A\cap K(\alpha,\frac{\pi}{4n},r_k)\big)}{\lambda\big(K(\alpha,\frac{\pi}{4n},r_k)\big)} > \delta \quad \text{for all} \ \ k\in\mathbb{N}.$$

Then, by Lemma 2.2 used with $d = \delta/2$, and the above we have

$$\begin{aligned} \frac{\lambda\left(f(A)\cap B(r_k^n)\right)}{\lambda\left(B(r_k^n)\right)} &\geq \frac{\lambda\left(f(A)\cap K(n\alpha+\varphi,\frac{\pi}{4},r_k^n)\right)}{\pi r_k^{2n}} \\ &\geq \frac{n^2\left(\frac{\delta}{2}\,r_k\right)^{2n-2}\left[\lambda\left(A\cap K(\alpha,\frac{\pi}{4n},r_k)\right) - \frac{\delta^2}{4}\frac{\pi}{4n}r_k^2\right]}{4n\frac{\pi}{4n}r_k^{2n}} \\ &= \frac{n}{4}\left(\frac{\delta}{2}\right)^{2n-2}\left[\frac{\lambda\left(A\cap K(\alpha,\frac{\pi}{4n},r_k)\right)}{\lambda\left(K(\alpha,\frac{\pi}{4n},r_k)\right)} - \frac{\frac{\delta^2}{4}\frac{\pi}{4n}r_k^2}{\frac{\pi}{4n}r_k^2}\right] \\ &> \frac{n}{4}\left(\frac{\delta}{2}\right)^{2n-2}\left[\delta - \frac{\delta^2}{4}\right] > 0 \end{aligned}$$

for every $k \in \mathbb{N}$. Therefore, by (2), 0 is not a dispersion point of f(A). We proved that f is density continuous at 0.

To prove the second part, assume first that $b = e^{i\varphi}$ is real or imaginary. Thus, $\varphi = m\frac{\pi}{2}$ for some $m \in \mathbb{N}$. Let $A \subset B(1)$ be such that 0 is not a strong dispersion point of A. We will show that 0 = f(0) is not a strong dispersion point of f(A).

By Lemma 2.1 we can find $\delta \in (0, 1)$, $\beta = p\frac{\pi}{2}$, where $p \in \mathbb{N}$, and sequences $\varepsilon_k \in (0, \pi/4)$ and $r_k \in (0, 1)$ such that r_k converges to 0 and

$$\frac{\lambda\big(A\cap K(\beta,\varepsilon_k,r_k)\big)}{\lambda\big(K(\beta,\varepsilon_k,r_k)\big)} > \delta \ \ \text{for all} \ \ k\in\mathbb{N}.$$

By Lemma 1.1 used with sets $K^j = K(\frac{j\pi}{2n}, \frac{\pi}{4n}, 1), j < 4n$, we can assume that for some $\alpha = \frac{j\pi}{2n}$

$$\frac{\lambda\big(A \cap K(\beta,\varepsilon_k,r_k) \cap K(\alpha,\frac{\pi}{4n},1)\big)}{\lambda\big(K(\beta,\varepsilon_k,r_k) \cap K(\alpha,\frac{\pi}{4n},1)\big)} > \delta \ \text{ for all } \ k \in \mathbb{N}$$

We can also assume that either $\varepsilon_k > \frac{\pi}{4n}$ for all k or $\varepsilon_k \leq \frac{\pi}{4n}$ for all k. However, the first case implies that 0 is not an ordinary dispersion point of A, since in this case we would have

$$\frac{\lambda(A \cap B(r_k))}{\lambda(B(r_k))} \geq \frac{\lambda(A \cap K(\beta, \varepsilon_k, r_k))}{4n \, \lambda(K(\beta, \varepsilon_k, r_k))} > \frac{\delta}{4n}$$

for all $k \in \mathbb{N}$. Thus, by the first part of the Lemma, 0 is not a (strong) dispersion point of f(A).

So, assume that $\varepsilon_k \leq \frac{\pi}{4n}$ for all k. But then, $\alpha = \beta$ since otherwise $K(\beta, \varepsilon_k, r_k) \cap K(\alpha, \frac{\pi}{4n}, 1) = \emptyset$. Hence, $K(\beta, \varepsilon_k, r_k) \cap K(\alpha, \frac{\pi}{4n}, 1) = K(\alpha, \varepsilon_k, r_k)$ and

$$\frac{\lambda(A \cap K(\alpha, \varepsilon_k, r_k))}{\lambda(K(\alpha, \varepsilon_k, r_k))} > \delta \quad \text{for all} \ \ k \in \mathbb{N}.$$

We can also assume that $A \subset K(\alpha, \frac{\pi}{4n}, 1)$. Then, by Lemma 2.2 used with $d = \delta/2$, and the above we have

$$\frac{\lambda(f(A)\cap K(n\alpha+\varphi,n\varepsilon_k,r_k^n))}{\lambda(K(n\alpha+\varphi,n\varepsilon_k,r_k^n))} \geq \frac{n^2(\frac{\delta}{2}r_k)^{2n-2} [\lambda(A\cap K(\alpha,\varepsilon_k,r_k)) - \frac{\delta^2}{4}\varepsilon_k r_k^2]}{n\varepsilon_k r_k^{2n}}$$
$$= n\left(\frac{\delta}{2}\right)^{2n-2} \left[\frac{\lambda(A\cap K(\alpha,\varepsilon_k,r_k))}{\lambda(K(\alpha,\varepsilon_k,r_k))} - \frac{\frac{\delta^2}{4}\varepsilon_k r_k^2}{\varepsilon_k r_k^2}\right]$$
$$> n\left(\frac{\delta}{2}\right)^{2n-2} \left[\delta - \frac{\delta^2}{4}\right] > 0$$

for every $k \in \mathbb{N}$. But notice that $n\alpha + \varphi = (j+m)\frac{\pi}{2}$. Therefore, by Lemma 2.1, 0 is not a strong dispersion point of f(A). We proved that f is strong density continuous at 0.

Figure 3.

To finish the proof let us assume that $b = e^{i\varphi}$ is neither real nor imaginary. Thus, $\varphi = p\frac{\pi}{2}$ for some p > 0, $p \notin \mathbb{N}$. Let $A = \{(x, y): x > 0 \& -x^2 < y < x^2\}$. It is easy to see that 0 is not a strong dispersion point of A. On the other hand, f(A) does not contain any axis. (See Figure 3.) Using this fact it is not difficult to argue that 0 is a strong dispersion point of f(A).

3. General case

We will need the following fact.

CIESIELSKI

LEMMA 3.1. Let f be analytic on a neighborhood of 0 and assume that $f(z) = \sum_{k=n}^{\infty} a_k z^k$ where n > 0 and $a_n \neq 0$. If $g(z) = a_n z^n$ then there exists r > 0 such that for every $A \subset B(r)$

(5)
$$\frac{1}{4n}\lambda(g(A)) \le \lambda(f(A)) \le 4\lambda(g(A)).$$

In particular, f is density (strongly density) continuous at 0 if and only if g is density (strongly density) continuous at 0.

PROOF. Notice that condition (5) imples that 0 is a dispersion (strong dispersion) point of f(A) if and only if 0 is a dispersion (strong dispersion) point of g(A). Thus, the additional part follows immediately from (5).

To prove (5) let us first choose $r_0 > 0$ such that f' does not have any zeros in $B(r_0) \setminus \{0\}$.

Notice that it is enough to prove that for every j < n we can find r > 0 such that

$$\frac{1}{4}\lambda(g(A)) \leq \lambda(f(A)) \leq 4\lambda(g(A)).$$

holds for all $A \subset K^j = K(\alpha, \frac{\pi}{n}, r)$, where $\alpha = \frac{2\pi j}{n}$. So, choose $\alpha = \frac{2\pi j}{n}$ and consider functions f and g as restricted to K^j . Then, g is one-to-one and has an analytic inverse $g^{-1}: g(K^j) \to K^j$.

Put $h = f \circ g^{-1}$. Then, h is analytic and

$$h'(z) = f'(g^{-1}(z))(g^{-1})'(z)$$

= $\left(\sum_{k=n}^{\infty} ka_k (g^{-1}(z))^{k-1}\right) \frac{1}{na_n (g^{-1}(z))^{n-1}}$
= $\sum_{k=n}^{\infty} \frac{ka_k}{na_n} (g^{-1}(z))^{k-n}.$

Thus, we can pick $r \in (0, r_0)$ such that $|h'(z) - 1| = |h'(z) - h'(0)| < \frac{1}{2}$, i.e., that

(6)
$$\frac{1}{2} < |h'(z)| < \frac{3}{2} < 2$$

for all $z \in g(K^j)$ with |z| < r. We will show that this choice of r implies (5).

Since f' does not have any zeros in $Z = K^j \cap B(r) \setminus \{0\}$, the set Z can be covered by open sets $S \subset Z$ such that f has an inverse $f^{-1}: f(S) \to S$. So, pick $S \subset Z$ with this property. Since Lebesgue measure is countable additive, we may assume that $A \subset S$. Then, function h restricted to g(S) is one-to-one and, by Lemma 1.2,

$$\begin{split} \lambda(f(A)) &= \int_{f(S)} \chi_{f(A)} \, d\lambda \\ &= \int_{h(g(S))} \chi_A \circ f^{-1} \, d\lambda \\ &= \int_{g(S)} (\chi_A \circ f^{-1} \circ f \circ g^{-1}(z)) \cdot |h'(z)|^2 \, d\lambda \\ &= \int_{g(S)} \chi_{g(A)}(z) \cdot |h'(z)|^2 \, d\lambda. \end{split}$$

But, by (6), $\frac{1}{4} < |h'(z)|^2 < 4$ for all $z \in g(S) \subset g(K^j)$. Thus

$$\lambda(f(A)) = \int_{g(S)} \chi_{g(A)}(z) \cdot |h'(z)|^2 d\lambda \ge \int_{g(S)} \chi_{g(A)}(z) \cdot \frac{1}{4} d\lambda = \frac{1}{4} \lambda(g(A))$$

and

$$\lambda(f(A)) = \int_{g(S)} \chi_{g(A)}(z) \cdot |h'(z)|^2 d\lambda \leq \int_{g(S)} \chi_{g(A)}(z) \cdot 4 d\lambda = 4\lambda(g(A)).$$

Now, we are ready for the main theorems.

THEOREM 3.2. Every analytic function is density continuous.

PROOF. It follows immediately from Lemmas 2.3, 3.1 and the fact that the topology $\mathcal{T}_{\mathcal{N}}$ is invariant under translations.

THEOREM 3.3. A non-constant analytic function f is strongly density continuous at z if and only if $f^{(n)}(z)$ is either real or imaginary number, where $n = \min\{k > 0: f^{(k)}(z) \neq 0\}$.

PROOF. Since topology \mathcal{T}_S is invariant under translations we can assume that z = 0. Then, Theorem follows immediately from Lemmas 2.3 and 3.1.

THEOREM 3.4. An analytic function f is strongly density continuous on its domain if and only if f(z) = a + bz where $a, b \in \mathbb{C}$ and b is either real or imaginary number.

PROOF. First assume that f(z) = a + bz where $a, b \in \mathbb{C}$. If f is constant, then evidently f is strongly density continuous. So, assume f is not constant and pick an arbitrary $z \in \mathbb{C}$. Then $\min\{k > 0: f^{(k)}(z) \neq 0\} = 1$ and $f^{(1)}(z) = b$. So, by Theorem 3.3, f is strong density continuous at z if and only if b is either real or imaginary number.

CIESIELSKI

So, assume that f is not linear. Then, f' is analytic and not constant. Therefore, there exists z in the domain of f such that f'(z) is neither real nor imaginary number. Thus, by Theorem 3.3, f is not strongly density continuous at z.

REFERENCES

- [1] KRZYSZTOF CIESIELSKI, WŁADYSŁAW WILCZYNSKI, Density continuous transformations on \mathbb{R}^2 , Real Analysis Exchange 20 (1994-95), 102-118.
- [2] C. GOFFMAN, C.J. NEUGEBAUER and T. NISHIURA, Density topology and approximate continuity, *Duke Math. J.* 28 (1961), 497-506.
- [3] JAROSLAV LUKEŠ, JAN MALÝ and LUDĚK ZAJÍČEK, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189, Springer-Verlag 1986.
- [4] W. RUDIN, Real and Complex Analysis, McGraw-Hill, Inc., 1976.
- [5] S. SAKS, Theory of the integral, Monografie Matematyczne, Warsaw 1937.

(Received: June 8, 1994.) (In final form: December 1, 1994.)

DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26506-6310 USA E-MAIL: kcies@wvnyms.wvnet.edu