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ORDINARY AND STRONG DENSITY CONTINUITY 
OF COMPLEX ANALYTIC FUNCTIONS 

KRZYSZTOF CIESIELSKI (Morgantown) 

A b s t r a c t  

In the paper we prove that the complex analytic functions are (ordinarily) 
density continuous. This stays in contrast with the fact that even such a simple 
function as G: R 2 --~ R 2, G(x, y) = (x, y3), is not density continuous [1]. We will 
also characterize those analytic functions which are strongly density continuous at 
the given point a E C. From this we conclude that a complex analytic function f 
is strongly density continuous if and only if f ( z )  = a + bz, where a, b E C and b is 
either real or imaginary. 

1. P r e l i m i n a r i e s  

The notat ion used throughout  this paper is standard. In particular, the com- 
plex plane C will be identified with R 2. All sets considered in the paper  will be 
Lebesgue measurable.  The two-dimensional Lebesgue measure of a set A C C will 
be denoted by ~(A). Recall that  0 is a strong dispersion point of A C C if 

(1) lim A(A f3 [ ( - a ,  a) x ( -b ,  b)]) = 0 
a--*O+,b-~O+ A((--a ,a)  • ( -b ,b ) )  

and it is an (ordinary) dispersion point of A if in the above limit we replace rectangles 
with squares, i.e., we take a = b. I t  is also well known that  the squares can be 
replaced with the balls B(a)  = {z E C: ]z[ < a}, i.e., that  0 is a dispersion point of 
A c C i f  

lim A(A n S ( r ) )  = O. 
(2) r--0+ 

A point z E C is a dispersion (strong dispersion) point o ( A  C C if it is a dispersion 
(strong dispersion) point of A - z, and z E C is a density (strong density) point of 
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A if is is a dispersion (strong dispersion) point of the complement of A. (Compare 
Saks [5], pages 106, 128.) The strong density topology Ts on C is defined as the 
family of all measurable subsets A of C such that  every z E A is a strong density 
point of A [2]. Similarly we define the density topology 7-~c on C using the notion 
of ordinary density point on C. (Compare [2] and [3].) Notice that the topologies 
7-~r and 7-s'are invariant under translations and under multiplications by positive 
real numbers. 

A function f:  C ---, C is density continuous (strongly density continuous) at 
z E C if it is continuous with the topology 7-~- (q's) used in the domain and the range. 
In particular, it is easy to see that  f :  C ~ C is density continuous (strongly density 
continuous) at z E C if and only if for every A C C \ {z} if z is not a dispersion 
(strong dispersion) point of A then f ( z )  is not a dispersion (strong dispersion) point 
of f (A) .  

In what follows we will use also the following easy fact. It will be left without 
proof. 

LEMMA 1.1. Let A C B(1) and Rk C B(1), k E N, be such that 

>5  foral l  k E N .  

l f  the sets KJ C B(1) for j < n are disjoint and such that ~(Uj<,~K j) = ~(B(1)) 
then there is a j < n and an increasing sequence {kp} such that 

,~(A n KJ n Rk,,) 
>6 for all p E N .   (K nRkp) 

We will also use the following version of the change of variables formula. 

LEMMA 1.2. Let F: C ---* C, U C C be an open region and let h: U ---* C be 
analytic with analytic inverse. Then 

~h Fd)~=/u(FOh) . ih ' ( z )12d)~ .  
(u) 

PROOF. This immediately follows from the standard change of variables for- 
mula ([4], Thm. 7.26) if we notice that the 3acobian of transformation h is equal to 
I det h ' (m Y)I = Ih'(z)l ~ which, in turn, follows immediately from Cauchy-Riemann 
equations. (Compare [4], p. 250, Exercise 6.) �9 

In what follows we will also use the following notation for c~ _> 0 and c, r0 > 0: 

K( c~,e, r0) = {z = re ~ E C:0 < r < r0 & c~-~  < ~ < c~ + e}. 

2. F u n c t i o n s  bz ~ 

We will sto~rt with the following equivalent form of the property that  0 is a 
strong dispersion point of A C C. 
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LEMMA 2.1. The point 0 is a strong dispersion point of A C C if and only if 
for every c~ = mTr/2, m E N, and every parameter ~ E (0, r /4 )  (that might depend 
of,.) 

(3) lim A(A fq K(~,  r r)) = 0. 

PROOF. Fix A C C. 
By way of contradiction assume first that  (3) is false for some a = m~,  

m E N. Then, there exists 6 > 0 and sequences ck E (0, re/4) and rk > 0 such that  
rk converges to 0 and 

,~(A n K(a ,  ck, rk)) 
> 6  foral l  k E N .  

A (K(~,  r r~)) 

For convenience we will assume a = 0, the other cases being similar. 

bk=~kqc{ i 
a k = r k  

�9 �9 

r k tan ~-k 

Figure 1. 

Let ak = rk and bk = 2r Then, bk > rktanck,  since 2 > ~ > 
- -  7r/4 

tanck In particular, K(a,  ck rk) C (--ak,ak) X (--bk,bk). (See Figure 1.) More- 
~ k  ' 

over, A((-ak,  ak) x (-bk, bk)) = 8r~r = 8 A(g (a ,  ok, rk)). Hence 

A(AN [(--ak,ak) • (-bk,bk)]) > A ( A N K ( a ,  ck,rk)) 6 

A((--ak,ak) • (-bk,bk))  - 8 - A ~ - k : r k - ~  > -8 

for all k E N, contradicting (1). 
Conversely, assume that  (1) is false, i.e., that  there exists 6 > 0 and sequences 

ak, bk converging to 0 such that  

A(A f~ [(-ak,  ak) x (-bk, bk)]) 
> 6  foral l  k E N .  

A((--ak, ak) ~x (--bk, bk)) 

Then, by Lemma 1.1 used with sets g j = {re i~ E B(1) : j~  < ~ < (j + 1)~} for 
j E {0, 1, 2, 3}, we can assume that the similar property holds when in the above 
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limit the sequence of rectangles {(--ak, ak) x (--bk, bk)} is replaced by one of the 
following four sequences: {(0, ak) • (0, bk)}, {(0, ak) x (-bk,  0)}, {( -ak ,  0) • (0, bk)}, 
or { ( -ak ,  0) x ( -bk,  0)}. For convenience we will assume that this is the case for 
the first of these sequences, i.e., that 

A(A f3 [(0, ak) x (0, bk)]) 
> 6  for all k E N .  

akbk 
Furthermore, choosing subsequence, if necessary, we can assume that either ak < bk 
for all k or bk < ak for all k. We will assume that 

bk <ak  for all k E N .  

Let rk = ~ and r162 = arctan ak~2" Then rk < 2 ak and 

4 b 4 b (ak6/2, ak) X (O, bl:) C g(o ,  vk,rl:) C (0,2ak) • ( - ~  k ,~  k). 

(See Figure 2.) 

bk 

ak~/2 
rk 

2 ~tktan s = 

2 "k ['~ 8/2)1 = 

(4/8) bk 

Figure 2. 

particular, A(K(0,~k,rk))  < 2ak 2 ~bk = ~-akbk In and 

$(A f3 K(0, ok, rk)) > A(A f3 [(ak6/2, ak) x (0, bk)]) 

A(g(o,  ck,rk)) -- ~-akbk 

6 A(A f3 [(0, ak) • (0, bk)]) - $((0, ak6/2] • (0, bi)) > - -  
- 16 akbk 

6 6--  -- i--6 - - ~ '  

for all k E N, which contradicts (3). �9 

In what follows we will need also the following inequality. 
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LEMMA 2.2. Let f ( z )  = e'*z n, A C C, a, ~ >_ 0 and e , r  > 0. I f  

(4) A tJ g ( ~ ,  e, r) C g(/3, ~,  1) 

then for every d E (0, 1) 

A(I(A) N K ( n a  + ~o, ne, rn)) >_ ng(dr)2n-2[A(a N K(a ,e ,  r)) - d2er~]. 

PROOF. By (4) we can restrict f to K(~, ~, 1). Then, f is one-to-one and 
has an analytic inverse f - 1  Hence, using Lemma 1.2, we obtain 

A(f(A) N g(n(~ + ~, ne, rn)) = A(f(A) tq f ( g ( a ,  e, r))) 

= f](K(a,r , r ) )  XJ'(A) dA 

~- / X A o f -1  dA 
J! (r(~,~,~)) 

= / X A o f -1 o f (z) .  I f ' (z ) j  2 d A  
JK (~,~,r) 

= /K XA(Z)" n21zl2"-2dA 

~-- /r(ot,e,r)\K(ct,e,dr) XA(Z) " n2lzlZ"-z dA 

~-- /K(ct,e,r)\K(a,e,dr) XA(Z) " n2(dr)2n-2 dA 

>_ n2(d r) 2n-2 [A(A N K(a,  e, r)) - A(K(c~, e, dr))] 

= n2(dr) 2"-2[A(A N K ( a , e , r ) )  - d2er~]. 

Now, we are ready for the proof of the main lemma. 

LEMMA 2.3. Let b C C and n E N, n > 1. Then the function f ( z )  = bz n is 
density continuous at O. Moreover, it is strongly density continuous at 0 if  and only 
if b is either real or imaginary number. 

PROOF. If b = 0 then the lemmais certainly true. So, assume that  b r 0. The 
topologies TAr and Ts are invariant under multiplications by positive real numbers�9 
So, without loss of generality we can assume that Ibl = 1, i.e., that b = e i~ for some 

> 0. To prove that  f is density continuous at 0 let A C B(1) be such that  0 is 
not a dispersion point of A. We will show that 0 = f(0) is not a dispersion point 
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of f (A).  To this order first notice that,  by (2), there exists a sequence rk E (0, 1) 
converging to 0 and ~ E (0, 1) such that 

)t(A (3 B(rk )) 
> ~  fora l l  k E N .  

Then, by Lemma 1.1 used with sets KJ = KtJ~ ~ 1), j < 4n, we Can assume that  k 2 n '  4 n '  

1) and for some a = L~_2,~ we have A C K(a ,  "4-~, 

~(A n K(~,  ~ ,  r~)) 
> ~  fora l l  k E N .  

~ ( g ( ~ ,  ~ ,  r~)) 

Then, by Lemma 2.2 used with d = ~/2, and the above we have 

)t(f(A) n B(r~)) )t(f(A) n h'(na + ~, {,  r'~)) > 
- 

> n2( 6~ rk)2'~-2[A(A n K ( a ,  4--~, rk)) - ~- T~'-kJ 62 ~ _21 
- -  A "X 2rt qnT~n r~ 

[ > "4 2n  2 n 6 -  > 0  

for every k E N. Therefore, by (2), 0 is not a dispersion point of f (A) .  We proved 
that f is density continuous at 0. 

To prove the second part, assume first that  b = e '~~ is real or imaginary. Thus, 
= rn~ for some m E N. Let A C B(1) be such that 0 is not a strong dispersion 

point of A. We will show that  0 = f ( 0 ) i s  not a strong dispersion point of f (A) .  
By Lemma 2.1 we can find 6 E (0, 1), /9 = p ~ ,  where p E N, and sequences 

ek E (0, 7r/4) and rk E (0, 1) such that  rk converges to 0 and 

X(A n K(fl, ek, rk)) 
> ~  fora l l  k E N .  

By Lemma 1.1 used with sets K j " "~r ~r = K ( ~ n ,  T~, 1), j < 4n, we can assume that  for 

s o m e  o~ = 

A(A n K(fl, zk, ~k) n K(~, ~ ,  1)) 
>~f fora l l  k E N .  

1 A(K(fl, ok, rk) n K ( a ,  Tff, )) 

~r for all k or r < Tff We can also assume that  either r > ~ _ ~ for all k. However, the 
first case implies that  0 is not an ordinary dispersion point of A, since in this case 
we would have 

)~(AnB(r~))  > X(AnK( f l , r  

X(e(r~))  - 4n,~(K(fl,r > 4---~ 
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for ail k E ~ N. Thus, by the first part of the Lemma, 0 is not a (strong) dispersion 
point of f(A). 

So, assume that  r _< T~Tr for all k. But then, a = /3 since otherwise 

g(/3, ek, rk) f) g(tr, Y-if'r 1) = 0. Hence, g(/3, ek, rk) f3 g(c~, ~n' 1) = g ( a ,  ok, rk) 
and 

~(A n g ( , , ~ ,  rk)) 
> 6  for all k E N .  

A ( g ( ~ ,  ~ ,  r~)) 

We can also assume that  A C K(a ,  :t-if'Tr 1). Then, by Lemma 2.2 used with d = df/2, 
and the above we have 

)~(/(A) n h'(no~ + ~o, nek, r~)) > n2(7 ,k) [ ~ n 
+ - 

- / ), ,"_ _21 
_ ~ * ' k  / 

for every k E N. But notice that  n ~ + ~  = ( j + m ) { .  Therefore, by Lemma 2.1, 0 is 
not a strong dispersion point of f(A). We proved that f is strong density continuous 
at 0. 

A 

~f(A) 

Figure 3. 

To finish the proof let us assume that b = e i~~ is neither real nor imaginary. 
T h u s , ~ = p ~  for s o m e p > 0 ,  p ~ N .  L e t A = { ( x , y ) : x > 0 &  - x  2 < y < x 2 } .  It 
is easy to see that 0 is not a strong dispersion point of A. On the other hand, f (A) 
does not contain any axis. (See Figure 3.) Using this fact it is not difficult to argue 
that 0 is a strong dispersion point of f(A). �9 

3 .  G e n e r a l  c a s e  

We will need the following fact. 
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LEMMA 3.1. Let f be analytic on a neighborhood of O and assume that f ( z )  = 
~,k~176 akz k where n > 0 and an # O. l f  g(z) = a,~z n then there exists r > 0 such 
that for every A C B(r)  

(5) ~n)~(g(A)) <_ )~(f(A)) <_ 4,~(g(A)). 

In particular, f is density (strongly density) continuous at 0 if and only if g is 
density (strongly density) continuous at O. 

PROOF. Notice that  condition (5) imples that 0 is a dispersion (strong dis- 
persion) point of f ( A )  if and only if 0 is a dispersion (strong dispersion) point of 
g(A). Thus, the additional part follows immediately from (5). 

To prove (5) let us first choose r0 > 0 such that  f '  does not have any zeros in 
B(r0) \ {0}. 

Notice that  it is enough to prove that for every j < n we can find r > 0 such 
that 

1)~(g(A)) < A(f(A)) < 4A(g(A)). 

holds for all A C K j = K(a ,  r r), where a = 21rj So, choose a = and ~ ,  n n 

consider functions f and g as restricted to K j. Then, g is one-to-one and has an 
analytic inverse g-  1: g( K j ) .... Kj" 

Put  h = f o g-  I. Then, h is analytic and 

h'(z) = f ( g - i ( z ) ) ( g - 1 ) ' ( z )  

k=n n a n  

Thus, we can pick v E (0, ro) such that Ih'(z) - 11 = Ih'(z) " h'(O)l < �89 i.e., that  

1 3 
(6) < Ih'(z)l < < 2 

for all z E g(KJ)  with Izl < r. We will show that  this choice of r implies (5). 

Since f '  does not have any zeros in Z = KJ N B(r)  \ {0}, the set Z can be 
covered by open sets S C Z such that  f has an inverse f - l : f ( S )  --+ S. So, pick 
S C Z with this property. Since Lebesgue measure is countable additive, we may 
assume that A C S. Then, function h restricted to g(S) is one-to-one and, by 
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Lemma 1.2, 

= : ( s )  x:(A) 
/ X A 0 f -1  dA 
Jh (g(s)) 

: ~ (XA of -I o f o g - l ( z ) )  �9 ]h'(z)l~dA 
(s) 

= fg(S) xg(A)(z). Ih'(z)l  ~ dA. 

1 [h,(z)[Z But, by (6), ~ < < 4 for all z E g(S) C g(KJ). Thus 

f (s) 1 A(f(A)) = �9 Ih'(z)l  2 dA >_ Xg(A)(Z)'~ dA 
(s) 

and 

= 

A(f(A)) : ~(s)X#(A)(Z). [h'(z)[ ~ dA < / Xg(A)(Z) .4dA : 4A(g(A)). 
(s) 

Now, we are ready for the main theorems. 

THEOREM 3.2. Every analytic function is density continuous. 

PROOF. It follows immediately from Lemmas 2.3, 3.1 and the fact that  the 
topology 7"g is invariant under translations. �9 

THEOREM 3.3. A non-constant analytic function f is strongly density con- 
tinuous at z if  and only if f(n)(z) is either real or imaginary number, where n = 
min{k > 0: f(k)(z) ~ 0}. 

PROOF. Since topology Ts is invariant under translations we can assume that 
z = 0. Then, Theorem follows immediately from Lemmas 2.3 and 3.1. �9 

THEOREM 3.4. An analytic function f is strongly density continuous on its 
domain if and only if f (z)  = a +bz where a,b E C and b is either real or imaginary 
number. 

PROOF. First assume that  f (z)  = a + bz where a, b E C. If f is constant, 
then evidently f is strongly density continuous. So, assume f is not constant and 
pick an arbitrary z E C. Then min{k > 0: f(k)(z) ~ 0} = 1 and f(i)(z) = b. So, 
by Theorem 3.3, f is strong density continuous at z if and only if b is either real or 
imaginary number. 
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So, assume that f is not linear. Then, f '  is analytic and not constant. There- 
fore, there exists z in the domain of f such that  f ' ( z )  is neither real nor imaginary 
number. Thus, by Theorem 3.3, f is not strongly density continuous at z. [] 
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