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Abstract 

Let X be a set and let Y be an ideal on X. In this paper we show how to find a 
topology T on X such that r-nowhere dense (or r-meager) sets are exactly the sets in 2. 
We try to find the “best” possible topology with such property. 

In Section 1 we discuss the ideals ($1) and 9(X). We also show that for every ideal 
S#S(X) there is a topology T,, making it nowhere dense and that this topology is TI if 
t_l .Y= X. Section 2 concerns principal ideals 9’(S) for S c X. It contains characterization 
of cardinal pairs (K, A) = ( f S /, 1 X\S 1) for which 9’(S) can be made nowhere dense or 
meager by compact Hausdorff, metric, and complete metric topologies. Section 3 deals with 
the ideals containing all singletons. We prove there that it is consistent with ZFC + CH that 
for every q-ideal 9 on II3 containing all singletons and such that every element of 9 is 
either null or meager, there exists a Hausdorff zero-dimensional topology making 9 
nowhere dense. Section 4 contains the discussion of the above theorem. In particular, it is 
noticed there that the theorem follows from CH for the ideals with the cofinality < w,. 

Keywords: Nowhere dense; Meager; Perfectly meager and universaily null sets 
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1. P~limina~es 

Most notation used in this paper will follow [lo]. If T is a topology on X then 
N(T, X) (respectively ~M(T, X1) is the family of all T-nowhere dense (respectively 
T-meager) sets. We also write N(T) or N(X) if the other parameter is clear from 
the context. 
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For an ideal 4 on a nonempty set X we say that a topology r on X makes 9 

meager (nowhere dense, respectively) if 9 = M(r, X) (9 = N(r, X1, respectively). 
We will start with some easy remarks. 

Fact 1.1. Zf r makes 9 nowhere dense then: 
7 makes 9 meager if and only if 9 is a u-ideal. 

Since every ideal on a finite set is a a-ideal we immediately conclude 

Fact 1.2. Let S be a finite subset of X and let 9c9W be an ideal. Zf r is a 
topology on X then: 

r makes 9 meager if and only if r makes 9 nowhere dense. 

Let us begin with considering two special cases of ideals: the trivial ideal (@I and 
the improper ideal 9(X). For the trivial ideal the following is true. 

Fact 1.3. Zf 7 is a TO topology on X then the following conditions are equivalent: 
(1) r makes ($1 nowhere dense; 
(2) r makes (fl} meager; 
(3) r is a discrete topology on X. 

Proof. Equivalence of (1) and (2) and the implication “(3) * (1)” are obvious. 
To see that (1) implies (3) first notice that the set cl((x}) is clopen for every 

x E X, since otherwise a nowhere dense set cl((x})\ int(cl((x}>) would be nonempty. 
Now, if y E cl((x}) then also x E cl((y)) since cl((y}) is open and contains y. But 

X is TO, so y =x. This means that (n} = cl((x}) E T for every x EX. Fact 1.3 has 
been proved. 0 

Notice that in the above the assumption of X being TO is important since the 
indiscrete space (X, (@, X}) also makes the trivial ideal nowhere dense. 

In the case of improper ideal 9(X) on a set X the situation is a little bit more 
complicated, as described in the following fact. 

Fact 1.4. Let X be a nonempty set. 
(1) There is no topology on X making 9(X) nowhere dense. 

(2) Zf X is finite th en there is no topology on X making 9(X) meager. 

(3) There is neither a compact T2 nor a complete met&able topology on X making 
5%X) meager. 

(4) Zf X is infinite then there is a met&able topology r on X making 9’(X) 
meager. 

Proof. (1) is obvious, since X is dense in itself. 
(2) follows from (l), by Fact 1.2. 
(3) follows immediately from the Baire Category Theorem. 
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To see (4) let Y be a set with the same cardinality as X and identify X with 
Y x Q, where Q stands for the set of rational numbers considered with the natural 
topology. If we equip Y with the discrete topology (or any other metrizable 
topology), then the product topology on Y x Q is metrizable, and it makes 
9(X) =9a(Y X Q) meager, since the sets Y X {q) are nowhere dense in Y X Q. 0 

Facts 1.3 and 1.4 fully describe the situation with the trivial and improper ideals. 
Thus, in what follows we will consider only proper and nontrivial ideals. 

Now, let 9 be an ideal on X. Define ~(9) = {X\A: A ~9) U (@I. The 
following fact is easy to verify. (See [Sl. Compare also Lemma 3.5.) 

Theorem 1.5. Zf Y is a proper ideal on X, then r(9) is a topology on X making Y 

nowhere dense. 

It is easy to see that 

Fact 1.6. Zf IJ 9=X then ~(9) is a TI but not a T, topology. 

However, in general, the elements of X\ lJ 9 are not separated by r(9). 
Thus, to prove the next theorem, we need to modify topology r(9). 

Theorem 1.7. For every proper ideal 9 on X there is a T,, topology r on X making Y 

nowhere dense. 

Proof. Extend topology ~(9) to r,,(9) = ~(9) U&%X\ U 9). It is easy to see 
that ~~(9) is a T,, topology on X. It is also not difficult to see that all sets from 9 
remain closed nowhere dense, while no new nowhere dense sets are added. 0 

Since Theorem 1.7 closes the problem of the existence of TO topological spaces 
making a given ideal nowhere dense (meager), for the rest of the paper we will 
study the spaces that are at least TI. The paper is organized as follows. In Section 
2 we consider the case where 9 is principal. This case seems to be well 
understood. However, two open problems are stated near the end of Section 2. 
Section 3 is devoted to the ideals containing all singletons. Here two main results 
are based on additional axioms whose role, in several instances, is not entirely 
clear. 

2. Principal ideals 

Recall that an ideal ScL@a(X) is said to be principal if there exists a subset 
S LX such that Z=9(S>. This section is devoted to a problem of making such 
ideals nowhere dense or meager. Since such problems depend only on the 
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cardinality of sets S and X\S the following definition will be useful. For cardinal 
numbers K and h we say that a topological space X (or its topology) is (K, A) 
nowhere dense (meager> provided there exists S E [Xl” such that I X\S I = A and 

N(X) =9(S) (M(X) =9(S)). 
Let us note the following obvious facts, that follow directly from Fact 1.1. 

Fact 2.1. If k < w then topology T is (k, A) nowhere dense if and only ifit is (k, A) 
meager. 

Fact 2.2. If a topology r is (K, A) nowhere dense then it is (K, A) meager. 

Now, suppose that a topology r on X makes Y=S%S) meager. For any 
y EX\S the singleton {y} must be dense in some nonempty open set U. Thus, 
y E V for all nonempty open subsets Yg U. It follows that either U = (y} or r is 
not Tr. This observation can be stated as follows. 

Fact 2.3. If a TI topological space X makes 9(S) meager then {y} is open for euery 
y EX\S. 

Lemma 2.4. Let r be a TI topoiogy on Xand let S cX. Topology T makes 4 =9(S) 
nowhere dense iff 

(1) {y) is open for euery y E X\S; and 
(2) in@) = @ (equiualently, X\S is dense in X). 

Proof. <‘ * ” Assume that N(T) =Y. (1) follows from Fact 2.3. Thus, S is closed. 
Now, if U c S is open then it is empty since S is nowhere dense, which proves (2). 

“ = ” Assume (1) and (2). For any A E N(T) we must have A G S because of (1). 
On the other hand, if S was dense in an open set U then, by (11, U c S and, by (21, 
U is empty. 0 

Lemma 2.4 shows that any TI topology making 9=9(S) nowhere dense is a 
union of P(X\S) and a family F of sets meeting S. In general 9 does not need 
to be closed under supersets but in case of S being a singleton these topologies 
have a nice characterization. 

Theorem 2.5. Let X be a set and let s E X. Topology r is a TI topology making 

9({s}) nowhere dense if and only if it has a basis of the form 

‘53={(x): XEX\{S}} UF, (11 

where 9 is some ~nrn~irnai filter on X such that n 9 = (is}. 

Proof. “ =+ ” Assume that r is a TI topology on X making 9((s)) nowhere dense. 
Take F= {U E T: s E U}. Evidently F is closed under finite intersections. It is 
closed for taking supersets since, by Lemma 2.4, {x) is open for every x EX\{S). 
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Thus, 9 is a filter. It is not maximal, since {s) 4 9. Moreover, n 9 = (s), because 
T is T,. Clearly 9 as in the equation (1) is a basis for T. 

“G=” Assume that ~3’ is as in (1) above. It is easy to see that T = {tJ 9’: 
9’ L%‘) =9( X\S) u 9 is a T, topology making 9((s)) nowhere dense. •I 

Corollary 2.6. Any T, topology making 9((s}) nowhere dense is also a T2 topology. 

Notice that Corollary 2.6 is false for the ideal 9’(S) even if S has only two 
elements. For example, if we take different a,b E R\o and define a topology 7 on 
X= o u (a, b} as generated by sets (c) u w\F, where c E (a, b) and FE [WI<“’ 

then T is a topology making 9(S) =9((a, b)) nowhere dense which is T, but not 

T2. 
In general, for an arbitrary nonempty S LX, T, topologies on X making 

S=_+‘(S) nowhere dense do not have any simple characterization analogous to 
Theorem 2.5. However, for finite sets S we have the following characterization. 

Theorem 2.7. IfS=(s,, s2 ,..., s,,) is a finite nonempty subset of X and 7 is a T, 

topology on X, then 7 makes 9(S) nowhere dense if and only if X=X, U X, 

U . . . u X,,, where 

(a) X, n S = (~1, 
(b) X, E r, 
(c) T/, = T IxL makes 9((s,)) nowhere dense, 

foreveryk=1,2 ,..., n. 

proof. “ e ” follows easily from Theorem 2.5. 
“ j 9) For kE(1, 2,..., n) let X, = (X\S) U (sk). Clearly (a) and (b) are 

satisfied, since T is T,. The easy checking of (3) is left to the reader. •I 

It is worth mentioning that the analog of Theorem 2.7 does not need to be true 
for infinite sets S, because r I s does not need to be discrete. For example, 
consider w + 1 with the order topology and take (o + l)* with the product 
topology. Clearly, it makes 9([(w) X (w + l)] u [(w + 1) X (dl) nowhere dense 
while ((w, o)) is not open in (01 X (w + 1). 

The following facts follow easily from Theorems 2.5 and 2.7 and Fact 1.1. 

Corollary 2.8. If X is finite and S c X is nonempty then there is no T, topology on X 
making 9(S) either nowhere dense or meager. In particular, for any I < w and 
0 < k < w there is no (k, 1) meager T, topology. 

In what follows we will use also the following example. 

Example 2.9. Let A be a limit ordinal and let 9’ =9(A) U {(A + 1 \a: a < A). A T, 
topology generated by 9’ will be denoted by r,,,,(A). It is easy to see that T_,(A) 
makes 9((A)) nowhere dense. 
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The next corollary follows immediately from Theorem 2.5. 

Corollary 2.10. r&o) is a separable metrizable topology making 9({w)) nowhere 
dense. In particular, it iv (1, w) nowhere dense. 

In fact, T,,~(w) is just an order topology on w + 1. 
The following examples indicate that even in the simplest possible case, dis- 

cussed in Theorem 2.5, there is no unique (1, w) nowhere dense topology. 

Example 2.11. The topology induced from lR2 on a countable set 

X= {(l/n, l/m): 0 <n, m Co} U ((0,O)) 

makes 9’({(0, 0))) nowhere dense. Space X is not homeomorphic to T&W). 
However, the diagonal D = ((l/n, l/n): 0 < n < w} is homeomorphic to r,,,&o). 

Example 2.12. Let .7 be a nonprincipal ultrafilter on w. The topology r on w + 1 
generated by .9’(w) U {F U {w}: F E .9’j makes a(w)) nowhere dense. The space 
(w + 1, 7) is (1, w) nowhere dense and does not have any subspace homeomorphic 
to r,,Jo). This is because in T,Jw) only cofinite sets containing w are open 
unlike in any infinite subspace of (o + 1, 7) containing w. 

Corollary 2.10 and Examples 2.11 and 2.12 show a variety of (1, w) nowhere 
dense topologies. It is easy to show that the space from Example 2.12 is normal but 
not metrizable, since w has no countable basis. 

The next theorem gives a necessary and sufficient condition for the existence of 
a metrizable topology which is (K, A) nowhere dense. 

Theorem 2.13. Let K > 0 and A be cardinal numbers. The following conditions are 

equil!alent . 
(i) There exists a metrizable space X which b (K, A) nowhere dense. 

(ii) A” z K and A 2 o. 

Proof. “(i) * (ii)” Let r be a metrizable topology on X making 9=9(S) nowhere 
dense with I S ( = K and 1 X\S 1 = A. Then, by Lemma 2.4 X\S is dense in X. 
Since S # @, as K > 0, we conclude that A is infinite. Moreover, for every x E S 
there exists a sequence s(x) = {d,) E (X\SY’ that converges to x. Thus, the 
function s : S -+ (X\SY’ is one-to-one and so, K = ( S I Q I X\S 1 w = A”. 

“(ii) 3 (i)” Define a metric d on A” by putting for different f, g E A”‘, 

1 
d(f> g) = 

1 + min(n Ew: f(n) #g(n)] . 

Let Z,, be the family of all f E A”’ such that f is equal to zero for almost all 
n < w. Thus, 

IZ,,I = IA<wI =A 

and Z, = A”\Z, has cardinality A“‘. 
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Define a function G : A” -+ R by 

G(f)= o 1 [l+max(nEW: f(n) #O}]-‘, fEZO, 

, f EZ1. 

Now, consider the graph of G as a subspace of A” X R with the natural product 
topology. Notice that G, = G n (Z, x [WI is dense in G and points of G, are 
isolated in G. Thus, G, = G n (Z, X RI = Z, X (01 is closed and nowhere dense in 

G. So, N(G) =9(Z,). 
Take G, E [G,]” and define X= G, U G, with the subspace topology of G. It is 

easy to see that X has the desired properties. 

This finishes the proof. q 

Theorem 2.13 shows that there are no (2’, w) and (2’, c) nowhere dense 
metrizable spaces. ’ 

On the other hand, @J is a separable Hausdorff compact space which is (2’, o) 
nowhere dense. The existence of a (2’, c) nowhere dense compact T2 topology is 
stated in Corollary 2.16. 

Let us also recall that the density of a topological space X is defined by 

d( X) = min( ( D I : D is dense in X} + w. 

Theorem 2.14. Let p be the density of a compact Hausdorff topological space Y 
without isolated points. If p < A < 1 Y I then there exists a compact space X which is 

(I Y I, A) nowhere dense. 

Proof. The proof below is essentially a repetition of Alexandroff’s duplicated 
sphere construction. 

Let D be a dense subset of Y with cardinal&y A. We define set X as 
(D x (O}) u (Y x {l}). The topology on X is defined by a local basis system. Points 
of D x IO) will be considered as isolated points. For y E Y a local base of (y, 1) is 
defined as a family of all sets of the form 

Xn (ux {O, I))\{(Y, 0)) 

for every open set U in Y containing y. It is easy to see that X defined that way is 
Hausdorff and compact. Also, the set D X IO} is discrete and dense in X, since D 
was dense in Y and Y did not have isolated points. Hence, subspace S = Y x 11) is 
nowhere dense in X, while X\S = D X (0) is an open discrete subspace of X of 
cardinal&y A. Thus, X is ( 1 Y 1, A) nowhere dense. 

The proof of the theorem has been completed. 0 

Corollary 2.15. Let o < A < K. If K 2 c then the following conditions are equivalent: 
(i) There exists a compact Hausdorff space which is (K, A) nowhere dense. 

1 Letter c stands for the cardinality of the continuum, i.e., c = 2”. 
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(ii) There exists a compactification yh of A, considered with the discrete topology, 
such that 1 yh\A 1 = K. 

(iii) There exists a compact Hausdoflf space X with cardinality K and density less 

than or equal to A. 

Proof. “(i) * (ii)” follows directly from Lemma 2.4. 
“(ii) * (iii>” is obvious. 
“(iii) + (i)” follows from Theorem 2.14 used with X’ =X X [0, 11 considered 

with the product topology, since then X’ does not have isolated points. 0 

Since the density of /3N is equal to w and its cardinality is 2’ we conclude 
immediately that 

Corollary 2.16. There exists a compact Hausdorff topological space which is (2’, c) 
nowhere dense. 

So, let us consider a general problem for which cardinal numbers K and A there 
exists a compact Hausdorff topological space which is (K, A) nowhere dense. If 
K = 0 then the only T, space which is (K, A) nowhere dense is a discrete space of 
cardinality A. Thus, A must be finite. If K > 0 then A > w, since no finite set can 
have an accumulation point. So, assume that K > 0 and A 3 w. Now, if K G A then 
we have the following example. 

Example 2.17. If K > 0 and A > w are cardinal numbers such that K Q A then there 
is a compact Hausdorff topological space X which is (K, A) nowhere dense. 

Construction. To construct such a space, let Y be a free union of K copies of the 
one-point compactification of a discrete space of cardinality A. If K is finite, take 
X = Y. If K is infinite, define X as a one-point compactification of Y. 

Notice also that if there is a (K, A) nowhere dense compact Hausdorff space 
then K d Z2”, since I X I < 22”x’ for every Hausdorff space X [7, Theorem 3.21. 
Thus, the problem is reduced to A 2 o and A < K G 22*. Notice also, that for 
K = 2zA and K = 2” there is a compact Hausdorff space which is (K, A) nowhere 
dense. This follows from Corollary 2.15 used with X = /?A and X = 2”, respec- 
tively. This discussion can be summarized as follows. 

Corollary 2.18 (GCH). Zf K > 0 and A are cardinal numbers then the following 
conditions are equivalent. 

(i> There exists a compact Hausdorff space which is (K, A) nowhere dense. 
(ii> There exists a Hausdorff space which is (K, A) nowhere dense. 

(iii) A 2 o and K < z2*. 
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It is unknown to the authors whether Corollary 2.18 remains true in ZFC. By 
Corollary 2.15 this question can be reformulated as the following problem. 

Problem 2.19. Let A be an infinite cardinal considered with the discrete topology. 
Can we prove in ZFC that for every cardinal A < K < 22* there exists a compactifi- 
cation yh of A such that 1 yh \A 1 = K? 

Notice that the answer to Problem 2.19 is positive (in ZFC) for A = o and 
K = w1 [16, Corollary 6.161. 

A more general problem can be stated that way. 

Problem 2.20. Characterize completely regular spaces for which: 
(a) for all cardinal numbers K G 22’x’ there is a compacti~cation yA of X such 

that 1 -yX\X i = K; or 
(b) there is a compactification yX of X such that I yX\X I = I X I. 

Notice that there are completely regular noncompact spaces for which (b) in the 
above fails. For example, it is easy to see that the only compactification of or, 
considered with the order topology, is its one-point compactification wr + 1. (This 
is the case, since any continuous function from w, into [O, 11 is eventually constant 
on o,.> 

Some results of this section concerning (K, A) nowhere dense topological spaces 
are summarized in the next theorem. 

Theorem 2.21. In Table I we examine the existence of (K, A) nowhere dense 
topological spaces in the following classes: all topological spaces, T, spaces, TI 
spaces, T2 spaces, compact spaces C, metrizable spaces M, complete met&able 
spaces MC and separable spaces S. Table 1 lists the best possible classes in which 
papillar (K, A) nowhere dense spaces e&&t. 

Proof. Row A = 0 follows from Fact 1.4(l). Column K = 0 is discussed in Fact 1.3. 
Examples from row 0 < A < w and K > 0 are as described in Theorem 1.7. They 

cannot be 7; by Lemma 2.4, since no finite subset of a Tr space can have an 
accum~ation point. 

Table 1 
(K, A) nowhere dense spaces 

K=O o<ir<o K=W rc=c u=2( 

A=0 - - - 

O<h<w MT TO To To To 
A=CtJ MCS CM CM CM CT,S 
h=c MC MC or CT, MC or Cl; MC or CT, CT2 

h=2‘ MC MC or CT, MC or CT, MC or CT2 MC or CT, 
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Evidently, by Lemma 2.4, all the spaces from row A = w are separable (compact 
metric spaces are separable), while these from rows with A > w cannot be separa- 
ble. 

For A = w and 0 < K G o the spaces from Example 2.17 are also metrizable, 
since they are countable. 

For A = w and K = c notice that 

E [0, 11’: m and IZ are relatively prime 

considered with the subspace topology of the plane is a compact metric (c, w) 
nowhere dense space. 

Since, by Theorem 2.13, there is no metrizable (2’, o) nowhere dense space, PfV 
is the best possible (2’, w> nowhere dense space. 

Similarly, by Theorem 2.13, there is no metrizable (2’, c) nowhere dense space, 
so the example from Corollary 2.16 is the best possible. 

In the remaining seven cases the existence of compact T2 spaces follows from 
Example 2.17. There is no compact metrizable example in these cases, since such 
an example would be separable. Moreover, in all this cases K G A. Thus, the 
complete metrizable spaces can be constructed as a free sum of K many spaces 
w + 1 and of a discrete space of cardinality A. 

This finishes the proof of the theorem. 0 

For a similar theorem on (K, A) meager spaces we need also the following fact. 

Fact 2.22. If X is a compact T, or complete metrizable space then X is (K, A) 
nowhere dense if and only if X is (K, A) meager. 

Proof. Implication “ * ” follows from Fact 2.2. 
For the other direction let X be a compact T2 space which is (K, A) meager and 

let S CX be such that M(X) =9(S). By Fact 2.3, Iy) is open for every y EX\S. 
So, S is closed in X. It is also meager, by our assumption. Hence, by the Baire 
Category Theorem, in&S) = (d. So, S is nowhere dense and 5@(S) = N(X). 0 

The results on (K, A) meager topological spaces similar to these of Theorem 
2.21 are summarized in the next theorem. 

Table 2 
(K, A) meager spaces. 

lc=O O<K<cd K=CO lc=c K=2= 

A=0 _ MS MS M 

O<h<w M”C To MS MS M 

h=lO MCS CM CM CM M or CT,S 
A=c MC MC or CT, MC or CT, MC or CT, M or CT, 
A = 2’ MC MC or CT, MC or CT, MC or CT, MC or CT, 



K Ciesielski, J. Jasinski / Topology and its Applications 63 (1995) 277-298 281 

Theorem 2.23. In Table 2 we examine the existence of (K, A) meager topological 

spaces in the foLlowing classes: all topological spaces, TO spaces, T1 spaces, T2 spaces, 
compact spaces C, metrizable spaces M, complete metr~able spaces MC and separa- 

ble spaces S. Table 2 lists the best possible classes in which particular (K, A) meager 
spaces exist. 

Proof. The two first columns of Table 2 are identical to those of Table 1 by Fact 
1.2. 

For the remaining cases first notice that, by Fact 2.22, the compact T, entries 
and complete metrizable entries in Table 2 must be the same as those in Table 1. 

The entries for A = 0 and K f {w, 2’) are justified by Fact 1.4(4). For A = 0 and 
K = c take R X Q with the subspace topology of the plane. 

The noncompact metrizable (K, A) meager spaces for A > 0 and K a o can be 
obtained by taking the free union of a (K, 0) meager metrizable example and a 
discrete space of cardinality A. These spaces will be separable for A < w and 
K E {w, c}. They cannot be separable for K = 2’ since separable metric spaces have 
cardinality less then or equa1 to c. They cannot be separable for A > w by Fact 2.3. 

This finishes the proof of the theorem. Cl 

3. Ideals containing all singletons 

Assume that X is an infinite set and 9 = [Xl < I”. By Fact 1.6 the family 
T(9) = IX\N: N E4) u (8) is a T, topology with N(7, X> =Z Taking the free 
union of such spaces we obtain the following. 

Example 3.1. For any k < w there exists a T1 space X with k disjoint open sets 
and N(r, XI = [Xl’-. 

This stands in contrast with the next lemma. 

Lemma 3.2. Let (7, X) be a T, space with [XICo ~iV(r, X). If there exists an 
in~~ite family I B,: n < w) of ~onernp~ d~joint open sets, then there is an infinite set 
YEN(7, X). 

Proof. Let Y = {y,: II < w) be a selector from {B,,: 12 < w). If I’= r is nonempty, 
then Vn S, n Y c {y,} for each IZ < w. Since { y,} E P&r, X), Y cannot be dense in 

v. q 

Lemma 3.3. If X is an infinite Hausdorff space, then there exists an infinite family 
{U,: n < w) of nonempty pairwise disjoint open sets. 
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Proof. A folklore diagonal argument is left to the reader. q 

Theorem 3.4. There is no Hausdorff topology on X making the ideal [X] < o nowhere 
dense. 

Proof. For finite X it is obvious. So, suppose that r is a Hausdorff topology on an 
infinite set X such [Xl<“’ ~N(T, X). By Lemma 3.3 there exists an infinite family 
of open nonempty disjoint sets in X and, by Lemma 3.2, there exists an infinite 
nowhere dense subset of X. •I 

Notice also that M(X) is always a a-ideal. So we cannot have M(X) = [X] < “. 
Hence, 

Fact 3.5. There is no topology making [Xl < w meager. 

By Fact 1.6 for any uncountable set X there exists a (not second countable) T, 
topology on X making [X] G w nowhere dense. Theorem 3.6 proved below shows 
that the existence of such second countable topologies is independent of ZFC 
axioms. (This also follows from Kunen’s theorem quoted below as Fact 3.7.) 

Recall that an uncountable separable metric space is called a Lusin space if 
M(X) = [X]GW. It is known that the Continuum Hypothesis CH implies the 
existence of Lusin spaces while under Martin’s Axiom MA such spaces do not 
exist. (See [ll, p. 2051 or [9].) Thus, the existence of Lusin spaces is independent of 
ZFC axioms. 

Theorem 3.6. If there exists an uncountable, second countable T, space X such that 

MT, x)G[xl’w then there exists a Lusin space. 

Proof. Let S be a union of boundaries from all sets of some countable open basis 
for X. Then, X\S is an uncountable T, zero-dimensional space. By the Urysohn 
Metrization Theorem [4, p. 2561, X\S is metrizable, hence it is a Lusin space. 0 

Fact 3.7 (Kunen [9]). MA + -ICH implies that there in no uncountable Hausdorff 
space X with M(X) = [XIGW. 

A topology r on X is said to be compatible with an ideal 4 on X if for any 
Y c X the following condition holds: if for every x E Y there exists an open 
neighborhood x E U such that U n Y EY, then Y ~3. 

The following facts are due to NijHstad. (See [8,13].) 

Lemma 3.8. If a topology 7 is compatible with an ideal 9 on X, then 4 = {U\N: 
UE~andN~~)isatopologyonX. 
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Notice that any second countable topology on X is compatible with any r-ideal 
on X. Thus, the family TV in the next lemma is indeed a topofogy. 

Lemma 3.9. Let (X, r) be a second countable topological space and Zet 9 be a 
o-ideal on X such that 3n 7 = {fl}. Zf r9 is a topology as in Lemma 3.8 then 
NEN(T~, X)ifandonlyifN=MUZforsomeM~N(~, X)andZ~2? 

Proof. ‘< * ” Assume that NE N(r>, Xl. Let {U,: n < o} be a basis for T. For each 

n < o there exist a nonempty open V, c U, and Z, E 9 such that N n (V, \Z,> = fl. 
TakeM=N\U(Z,:n<o)andZ=Nr?U(Z,:n<o).WehaveMEN(~,X)and 

Z ~3. Clearly N = M U I. 
“ = ” Now let N = MU Z where ME N(T, X) and Z ~3. For any nonempty 

open set ZJ E T there exists a nonemp~ open set VC U which is disjoint with M. 
Clearly, if Z’E~ then V’= V\(ZUZ’l c ZJ\Z’, V’E~, and VR N = 8. Also 
I”#@, since snT={fl}. Thus, N=N(rY, X1. 0 

Lemma 3.10 (CH). Let A be a set with I A I = c. Zf 9 is a o-ideal on A containing all 

singletons then there exists a Ha~do~ topolo~ r’ making 9 meager. 

Proof. Let r0 be a topology on A such that (A, TV) is a Lusin space. Then, 

M(ro, A) = [A]<“. Let D CA be a countable dense subset and let 9’ =Y I A,D 
= {Jn (A\D): .ZE~). Clearly Y is a a-ideal on A such that Yn r. = @I. 
Hence, by Lemma 3.8, T’ = r<’ is a topology on A. Moreover, by Lemma 3.9, 
M(T’, A) = {M uZ: M EM(T~, A) and ZEY}. It follows that 

M(T’, A) = (MUZ: MEM(T,,, A) and ZEY’} 

= {D’uZ: D’E [A]“” and ZES’} 

=9. 

Clearly r’ is Hausdo~, since r0 was. E7 

Theorem 3.11 (CH). For any o-ideal 9 on a set X of cardinality c there exists a 

Hausdorff topology T making 3 meager. 

Proof. If A = IJ 4 is uncountable let +r’ be a to~lo~ on A as in Lemma 3.10. 
Define T as a topology on X generated by r’ uP’(X\A). It is easy to see that r 
has the desired properties. 

If lJ 9 is at most countable then a metrizable topology 7 exists by Theorem 
2.23. CI 

Notice that the topology r from Theorem 3.11 does not need to be regular. To 
see this take 3= [A]<“. Then, r = 7’ = r<‘, as in Lemma 3.10. Let a E A be any 
condensation point for 7s. There is a sequence X = {x,: n < o) cA\({a} U D) of 
r,-condensation points such that lim, em x, = a, where D is a dense countable set 
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from the proof of Lemma 3.10. Now take any T,-open neighborhood U of a and a 
set C = (A \ U) U X. The set C is closed in (A, 7’) but it cannot be separated from 
a since if CCWET’ and aEV=I$\AE+, where V,ET” and IE[A\D]<“, 
then there exists x, E V0 and U E T’ such that x, E U c T and U I-I V+ 41. 

The following theorem implies that for a large number of natural g-ideals 9 on 

[w it is consistent with ZFC that there exists a zero-dimensional regular topological 
space X making 4 nowhere dense. 

Theorem 3.12. There exists a model of ZFC + GCH in which the following holds. 
There exists a one-to-one mapping e : R! + 2”‘~ such that e[R] is a dense subspace of 

2”’ habing the following properties: 
(i) euery nowhere dense subset of e[R] is at most countable; 

(ii) for ecery (Y < w2 and every r E R there exists an ordinal ,$ < o, such that 
e(rXa + s> = 0; 

(iii) e[ A ] has an empty interior in e[W] for euery meager and el;ery null subset A of 
R. 

Before we prove Theorem 3.12 we will show the following corohary. 

Corollary 3.13. There exists a model of ZFC + GCH in which the forrOwing holds. 
For every u-ideal 9 of R containing all singletons and such that every element of 9 

is either meager or null, there exists a Hausdorff zero-dimensional topology TV on R 

making 3 nowhere dense. 
In particular, there exist Hausdorff zero-dimensional topologies on R making the 

following ideals nowhere dense: perfectly meager sets, universally measure-zero sets, 
strong measure-zero sets, nuN sets, etc. 

Proof. Let 7 be a topology on R generated by the mapping e : [w + Zw2 from 
Theorem 3.12. Then, a base of (R, T) induced by a standard product basis of 2w2 is 
given by sets 

U, = (r E R: E Ce( r)} 

= {rEW: (Va ~dom(~))[e(r)(a) -e(a)]} 

for all E E H(o,), where H(A) is defined as a set of all functions from finite 
subsets of A into 2. Notice that sets U, are nonempty, since e[[W] is dense in 2w2. 

Let 9 be a g-ideal as stated in the assumptions. We will define Ty by 
modifying 7. 

Let /3 < w2 be such that the sets {I/,: E E H(P)] separate points of Iw. Such p 
can be found, since ( R I = w,. Let 

A = (a < o2 : cofinality of LY is 0,) 

and let (J,: (Y E A) be an enumeration of Y such that 

J,=$ for all a<P. (2) 
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For (YEA, t<o, and i<2weput 

v$I+[.i> = 

i 

~f(a+g,O)~\JcV i = 0, 

u 
((u+~,l)) “Jay i = 1, 

and define a base of rs as a family of all sets 

u;p = n q&&q, 
a E dam(s) 

for E E H(q). 
Notice that 

UMLAUT E 3 for every E E H( 02) . 13) 

Clearly, (178, rg) is zero-dimensional. Xt is Hausdorff, since, by (21, Udp = U, for 
all E E H(p) and {U,: E E ii(p)) separates points. Thus, it is enough to show that 

the nowhere dense sets of (R, rg) are precisely the sets from .A 
It is easy to see that sets from Y are closed, since if J ~4 and a E A is such 

that J=J, then, by (ii) of Theorem 3.12, 

R\ u ui;&+*,O>) = R\ u &x+&o>~\Jn = ~\(~\J,) =J* 
k(fJJl ( 5-1 1 

Also, the sets from 9 are nowhere dense, since, by (iii) of Theorem 3.12, U, EY, 

while, by (21, UMLAUT ~4 for every E E H(w,). 
So, we have proved that every set from 4 is nowhere dense in (R, rg). To 

finish the proof choose a closed nowhere dense set f; in (IR!, rg). We will show that 
FEZ 

Let {E, E H(w,): s E Sl be such that F = R\ U SESU$ Since F is nowhere 
dense, for every E E H(o,) there is an s E S such that Ue< f? U$ + @. This implies 
that for every E E H(w,) there exists an s E S such that 

V,M$4. 

By a simple closure operation we can find a countable infinite set T c wz such that 
for every E E H(T) there is an s E S such that 

U~nU~,~#~ and E,EH(T). 

Let S, = (s E S: E, E H(7’)}. Thus, S, is at most countable and for every I E H(q) 
there is an s E S, such that 

u, n 4, f pr , 
i.e., the set Fb = R\ U sESOU8s is nowhere dense in (R!, 7). So, by (i) of Theorem 
3.12, F; is at most countable and, in particular, FA ~3. But if F, = R\ U s E s,UE< 

then, by (3), F,,AFh ~3. Hence, F. EY. But F c Fo. Thus, F ~3. 
This finishes the proof of the corollary. q 

Proof of Theorem 3.12. Let V be a model of ZFC + GCH. We will find a generic 
extension of I, in which the theorem holds. 
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The forcing we will use is w-closed and satisfies 02-cc. Thus, it preserves 
cardinal numbers and the reaI numbers from V and from its extension are the 
same. We will denote this set of real numbers by R. 

Let 

8 = I(%},<, E [II(o (V&~H(o,))(3n<o)[EuE,EH(W2)]] 

(4) 

and let 

s = {I~@Z&+): r EA}: A E [R]G”}, 

where H,(X) stands for the functions from at most countable subsets of X into 2. 
The forcing notion we will use is defined as P = S x [E41Go. The partial order on P 
is defined by 

((f&At 9) G Rf:)rEA’, 9’) 

0.9 18’ and A xA’ and (Vr EA’)[ f, Ifi] 

and (Vr EA\A’)(V{E,} ~.@‘)(3n < OJ)[E,, cf,] (5) 

for all t( fr)r=A, g), ((f,%=A’, 8’) E (FD- 

It is easy to see that P is w-closed. To see that ff satisfies W+C take a sequence 

{ttf:),fA, z 95) E ff: 5 < 02} and notice that we can choose a subset Z E [w,l”z 
such that As = AS for all 5, S E I. Now, using CH and a standard A-system 
argument, we can find 6,s E Z such that f; U f,! E HJo,) for every r E A = A5 = A’. 
Clearly, ((f! UfjbEA, 8cu&) extends ((f,E>FEAt, 9*> and <<ff>rEAq SC>. 

Now, let G be a V-generic filter over P and define a mapping e : R -+ 2”~ by 
putting for s f R, 

e(s) = U{g,: (%(f&A, -@ EG)[-A and &=f,]}. 

In order to show that this definition is correct it has to be argued that the following 
sets are dense in P for every s E R and & < wr, 

Q = (((fJr~ A, .@s> E P: .s =A} 

and 

@= {UfJrcA, 9) E P: s E A and 5 E dom( f,)}. 

To see that 0, is dense in P take (( f, >, E A, 9 > E [FD and assume that s 4 A. Let 

9 = {{&,k}: k < w} and define by induction on ~fz < o a sequence Cn,,J, <o such that 

U k < ,,& E H(w,) for every m < O. This can be done by the definition (4) of 8. 

Then, f, = U k<o~ik E&,6+) and ((fr)reAU(s), g’> extends ((frhEA, 9). 

To see that 0: is dense in P take (( f,jr E A, 9) E P. By the density of 0, we 
can assume that s E A. If 6 sz dom( f,), extend f, onto 5 arbitrarily and notice that 
such obtained condition extends (( f,),. E A, 9). 

Thus, we proved that indeed e: R --) 2O2. To see that e is one-to-one it is 
enough to see that the set 

0,~ = {((f&A, 9) EP: s, teA and 

(35 E dom(.L) ndom(fJ)[.L(O +ft~l) 
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is dense in P for every distinct s, I E R’. Similarly, the density of e[W] in 2‘9 follows 
from the density of 

I), = (((fJ’E A, 9) E IP: (If EA)[& cf,]} 

for every E E H(w,). The density of both these types of sets can be proved similarly 
as that of D,’ and D,, respectively. We will leave it as an exercise. 

To argue for (iii) let E E H(w,) and let J be either meager or null. We will show 
that fJF QJ. We can assume that J is a Bore1 set, extending it, if necessary. Thus, J 
is already in V and the set 

Q!= {((f&~, .g> E P: (+=A\J)[e cf,]} 

belongs to V. The density of this set is proved similarly as that of 0,. This easily 
implies (iii). 

To prove (ii) it is enough to notice that for every (Y < w2 and s E R the set 

E.: = (((fr),~, 9) E P: s EA and (35 <w,)[(‘Y + 5, 0) of,]} 

is dense in P. The proof of this fact is identical to the proof of the density of 4:. 
To finish the proof it is enough to show (i). So, let F be a closed nowhere dense 

subset of e[R]. Choose a family (E~ E H(w,): s E S) such that F = e[Rl\ U ,yE &&,I, 
where [E] = (f~ 2? E cf}. Since F is nowhere dense in e[R’], for every E E H(w,) 
there is s E S such that e[Rl n [E] n [E,] + @. Similarly as in Corollary 3.13 we can 
find a countable subset S, of S such that for every E E II(w,) there is s E S, such 
that e[lR] I? [E] f~ [E,] # @. Notice that F,, = e[Rl\ U .FESJ~S] contains F and that 
D = {E,: s E S,} E 8. We will show that F, is at most countable. 

Since the set 

E,={((f,),,., ~;)EP: DEB} 

is dense in P we can find (( f,!& E A’r 59’) E G such that D ~9’. We will show that 
F,, c A’. 

Let te R\A’. It is enough to show that e[t]E UsESU[eS]. Choose ((f,jrEA, 
9 > E G extending (( f:>r E A’, 9’) and such that t E A. Then, by (19, there exists 
s E S,, such that E, cf, c e(t). Thus, e(t) E [E,]. 

This finishes the proof of the theorem. q 

4. Remarks on Theorem 3.12 

First notice that if we assume only the Continuum Hypothesis then the follow- 
ing weaker version of Theorem 3.12 can be proved. 

Theorem 4.1 (CH). There exists u one-to-one mapping e : R + 2”‘lx”‘l such that e[R] 
is a dense subspace of 2”’ xwl and: 

(i) euery nowhere dense subset of e[R] is at most countable; 
(ii) for every (Y < w, and euery distinct r, s E R there exist 5 < 77 < w, such that 

e(rX(cu, 5)) = 0 and e(sX(cr, 7))) = 1; 



294 K Ciesieiski, J. Jasinski / Topology and its Applications 63 (1995) 277-298 

(iii) e[ A] has an empty interior in e[R] for every A c R which is either meager or 
null. 

Sketch of proof. Change the definition of forcing P in Theorem 3.12 by replacing 
o2 with w1 x q. 

Let F be the family of all dense subsets of P considered in the proof of 
Theorem 3.12, i.e., sets D,, D!, DS,t, D,“, E,” and ED, where indexes are chosen as 
in the proof. (Evidently in the definition of E,* we replace (Y + 5 with (a, [).> 
Then 9 has cardinality o1 and we can easily construct, by transfinite induction of 
length wi, a filter G in P intersecting every set in 9. But this is all we need to 
conclude @-(iii). q 

Although Theorem 4.1 is very similar to Theorem 3.12 we cannot, in general, 
deduce from it the conclusion of Corollary 3.13. This is the case, since to this order 
we would need to modify the topology of e[R] c 2”lx”1 by I 9 I -many sets and we 
have only w1 coordinates to make this adjustment. However, if there exists (J,: 
ff < oi} c9 cofinal in 4 * (i.e., such that for every J ~4 there is CY < wi with 
J C./J, then similarly as in Corollary 3.13 we can find a zero-dimensional Haus- 
dorff topology on R making 9 meager. In particular, we can conclude the 
following: 

Corollary 4.2 (CH). If 9 is a a-ideal on R containing all singletons and having 
cofinality w1 (i.e., with cofinal subfamily of cardinal@ wl) then there is a zero-di- 
mensional Hausdorff topology on [w making 9 nowhere dense. 

In particular, there exist zero-dimensional Hausdorff topologies making null sets 
and (ordinary) meager sets nowhere dense. 

In the recent years two refinements of the natural topology on R have been 
intensively studied: the density topology and the Y-density topology. (For summary 
of topological properties of these topologies see [21.) They make, respectively, null 
sets and ordinary meager sets nowhere dense. However, both of these topologies 
are connected. Moreover, the Sdensity topology is Hausdorff but not regular. 
The density topology is completely regular but not normal. In this context the 
following questions seems to be interesting. 

Problem 4.3. Can we find in ZFC a zero-dimensional Hausdorff topology on R 
making meager sets nowhere dense? 

It is easy to see that under Martin’s Axiom such a topology exists. 

* Under CH it is not the case for the ideals of perfectly meager sets and universally null sets. This 
follows from Lemma 4.10. 
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Problem 4.4. Can topologies from Corollaries 3.13 or 4.2 be normal? Compact? 
Metrizable? In particular, can we have such topologies for the ideals of meager 
sets or null sets? 

Notice that neither of Theorem 3.12, Corollary 3.13 and Corollary 4.2 can be 
proved in full generality in ZFC. More precisely, Corollaries 3.13 and 4.2 fail 
under MA + --,CH for the ideal [W] to by Fact 3.7. The corollaries also fail for the 
ideal SMZ of strong measure-zero sets under the Bore1 Conjecture, i.e., when 
SMZ = [R]“W. This is the case since every Lusin set has strong measure zero, i.e., 
the Bore1 Conjecture implies that there are no Lusin sets. 

In what follows we will present few additional examples showing farther 
limitations on possible generalizations of Theorem 3.12 and Corollary 3.13 or 4.2. 

The first fact shows that the assumptions on the ideal 9 in Corollary 3.13 
cannot be completely disregarded if we like to make 9 nowhere dense. 

Fact 4.5. Zf X has at least two elements and 9 is a maximal ideal on X, then there is 
no Hausdorff topology making 9 nowhere dense. 

Proof. Suppose that r is a Hausdorff topology on X making .Y nowhere dense. By 
the maximal&y of Y out of every two disjoint open sets one must belong to 3. So, 
X cannot have two disjoint nonempty open sets. Thus, as a Hausdorff space, X 
must be a singleton. q 

If we like to make 9 only meager in Corollary 3.13 the situation is not so clear. 
The next fact shows that we cannot make a measurable ideal meager by a 
Hausdorff topology. 

Fact 4.6. Assume that there e&s a measurable cardinal K, let I X 1 > K and let 9 be 
a maximal u-ideal on X containing all singletons. Then there is no Hausdorff topology 
making 9 meager. 

Proof. By way of contradiction assume that there is a Hausdorff topology T on X 
making 9 meager. The Hausdorff property implies that all points, with possible 
one exception, have open meager neighborhoods. Let %! be a maximal family of 
pairwise disjoint open meager sets. Then, R\ U % is closed and nowhere dense. 
To get a contradiction it is enough to show that U YJ is meager in X. But this 
follows immediately from the following fact. 

If %! is a family of disjoint open and meager sets then U ‘8 is meager. (6) 

To argue for (6) let NG be nowhere dense subsets of X such that U = U n < o NG 
for every U E %!. Then every set N, = U (i E v NC is nowhere dense since sets from 
% separate sets (N;}, E %. So, U ‘%! = U n < w N, is meager. 

The fact has been proved. q 
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Clearly in Fact 4.6 the cardinality of X is greater than c. It could be expected 
that the same result could be obtained if you replace the O-l universal measure 
with a finite universal measure, i.e., a measurable cardinal with a real measurable 
cardinal. However, this is not the case, as our next example shows. 

Example 4.7. If Z.L is a universal a-additive measure on !l&! which extends the 
Lebesgue measure and 9= (X: p(X) = 01, then there is a Hausdorff topology on 
R making 9 nowhere dense. 

Proof. Let T be the density topology on R, i.e., T is the family of all measurable 
subsets of R such that every point of A is its density point. (See [14, p. 901.) Then 

Ip = (U\Z: U E r and Z ~9) is a Hausdorff topology making y nowhere dense. 
Go see this notice that ~n9= {@I so, by the “ .+ ” part of Lemma 3.9 (the 
assumption of Lemma 3.9 that X is second countable was not used in the proof of 
part “ = “), we have fcN(~, R). On the other hand let YE N(r, R’) and let 
y= {VG T: Yn VEX) = {VE 7: (31~9)[Yn V\Z= @I). It is easy to see that 
U y is r-dense in R, since W\ lJ yc Y. Let y’ be some maximal pairwise 
disjoint subfamily of y. Then, ??‘-’ is countable and U T’ is also T-dense in R. 
Now, we have Y c U ,,,,(VnY)U(R\UF’?. But [W\UF’EN(T, R> so it is 
Lebesgue null. It follows that p(Y) = 0. 0 

It is worth noticing that the topology TV from Example 4.7 is not normal. To 
see this recall that the density topology T on IF! is not normal [14, p. 901. So, let C, 
and C, be two disjoint T-closed subsets of R which cannot be separated by T. 
Suppose that C, and C, can be separated by T>. Then C, and C, are contained in 
disjoint sets E, \I1 and E2\Z2, respectively, where E, and E, are in T and 
p(Zi) = p(Z2) = 0. We may assume that E, n C, = E, n C, = @. Since E, n E, cZ, 
u Z, and Z_L is an extension of the Lebesgue measure E, n E, is Lebesgue null. It 
follows that E,\E,, E,\E, E T separate C, and C,, which is a contradiction. 

Recall that the weigZzt of a topological space is defined by 

w(X) =min{ )A?[: 9 is an open basis for T) +o. 

The cellularity of X is defined as 

c(X) = sup{ I 53’ I : g is a pairwise disjoint family of open sets) + o. 

If 9 is an ideal on a set X then g ~9 is cofinal in 9 if for each Z ~3 there 
exists a set C E 55 such that Z c C. We define confinality of 4 by 

cf(9) =min( I%\: 5Fc9 is cofinal in f}. 

Lemma 4.8. Let T be a topology on a set X. Then cf(M(T, X)> B W(X)‘(~). 

Proof. Let 99 be a basis for T with I _%’ I Q w(X). For every A E N(T, X) there 
exists a maximal pairwise disjoint family gA CL&’ such that A n U gA = @. Clearly, 
l_l gA is dense in X. It follows that 

9 = {R \ U %?‘: g” CA? is a family of pairwise disjoint sets} 
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is cofinal in N(r, XI. Hence, cf(N(r, XI) & 19 / Q r&X)@). So 

cf(M(r, X)) +f(N(T, x))]“~fW(X)C(X))W=W(X)CfXf. cl 

Recall that an ideal 9 on X is q-saturated if every family SrcPP(X)\S of 
pairwise disjoint sets is at most countable. In particular, the ideal 4 from Example 
4.7 is q-saturated. It also contains [RI < ’ if measure Al, is continuum additive. 
Thus, the next fact tells us, in particular, that for a continuum additive measure p 
in Example 4.7 the ideal 9 cannot be made meager by a metrizable topology. 

Fact 4.9. Let I X I = c and /et 9 be tm ~~-sat~ruted cr-ideut on X such that 
[ X] < ’ ~9. If ca ~~~do~~ tupelos T on X is making 9 meager teen w(X, r ) G c . 

hz purticul~r, there is no ~t~z~~ie topolo~ rn~k~~g ._.F meager. 

Proof. Let T be a Hausdorff topology making 4 meager and by way of contradic- 
tion, assume that w(X, T) < c. Condition (6) in the proof of Fact 4.6 shows that 
the set of all points which have meager open neighborhoods is meager. Therefore, 
without loss of generality, we may assume that r r?S= I@}. Hence, c(X) GO, 
since 9 is q-saturated. So, by Lemma 4.8, we obtain cf(M(T, X>> < c. Let {n/i,: 
/3 < c} be a cofinal family in M(r, X). For LY < w1 and /3 < c, select 

x,P~X\[MB~{~,Y:y=pand6<aory<p}~. 

Clearly, the sets X, = Lx:: /3 < cl e9 are pairwise disjoint subsets of I%. But this 
contradicts ~~-saturation of 9. u 

We would like to conclude this discussion with a few remarks on universally null 
and perfectly meager sets. Recall that a set XC R is pefectly meager (X E PM) if 
P n X is meager in P for every perfect set P c 08. A set Y c R is uniuersally null 
(YE UN> if w(Y) = 0 for every continuous Bore1 probability measure on R. For 
more information on PM and UN see [ 1 l] or [ 11. In general these two ideals have 
many similar properties. In particular, it is an open problem whether UN it PM is 
provable in ZFC [3]. In this situation it would be particularly desirable to know 
more about topologies making UN or PM meager. 

For an ideal 9 on a set X we define 

Lemma 4.10. cf(UN) > non(UN) and cf(PM) > non(PM). 

Proof. Following an idea of Reclaw [lS] we take two disjoint compact perfect 
subsets C and D of a linearly independent perfect set 2 c R. (See [12, Theorem 
19, p, 2061.) The mapping h: C x D + C -i+ D, MC, d) = c + d, is a homeomor- 
phism. 

To prove cf(UN) > non, choose a universally nuil set XCD such that 
I X 1 = non. We can find such a choice by a theorem of Grzegorek IS]. Notice 
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that any selector Y from (C +x: x E X) is also universaIly null because g = 7r2 0 h -’ 

(T* is projection onto the second coordinate) is an injective continuous mapping 
from Y onto X. Now, take any family 8 = {C,: x EX} of UN sets such that 
1’27 I = I X I = non(UN). We will show that % does not cover UN, i.e., that cf(UN) 
> I E’I = non(UN). To this end for every x EX select y, E (C +x)\C,. Then, 
Y = (y,: x E X) E UN but Y $ C, for any x EX. Hence ‘8’ is not cofinal in UN. 

The proof of cf(PM) > non(PM) is similar. We just need to take X to be 
Grzegorek’s set from Theorem 1 of [6]. CI 

Since under Martin’s Axiom non(UN) = non(PM) = c, Lemma 4.8 yields the 
following. 

Theorem 4.11 (MA). l%ere ti no second countable topufugy on R making UN or PM 

meager + 

The following problem seems to be interesting. 

Problem 4.12. How good topologies making UN or PM meager (or nowhere dense) 
can be found in ZFC? 
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