
Can. J. Math. Vol. 46 (6), 1994 pp. 1188-1207. 

TOPOLOGIZING DIFFERENT CLASSES OF REAL FUNCTIONS 

KRZYSZTOF CIESIELSKI 

ABSTRACT. The purpose of this paper is to examine which classes J of functions 
from Rn into Rm can be topologized in a sense that there exist topologies T\ and T2 on Rn 

and Rm, respectively, such that J is equal to the class C{T\ , T2) of all continuous functions 
/ : (Rn,n ) —> (Rm, r2). We will show that the Generalized Continuum Hypothesis GCH 
implies the positive answer for this question for a large number of classes of functions 
J for which the sets {x : f(x) = g(x)} are small in some sense for all/, g 6 7 J ^ g- The 
topologies will be Hausdorff and connected. It will be also shown that in some model 
of set theory ZFC with GCH these topologies could be completely regular and Baire. 
One of the corollaries of this theorem is that GCH implies the existence of a connected 
Hausdorff topology T on R such that the class L of all linear functions g(x) = ax + b 
coincides with C(T, T). This gives an affirmative answer to a question of Sam Nadler. 
The above corollary remains true for the class ¥ of all polynomials, the class A of all 
analytic functions and the class of all harmonic functions. 

We will also prove that several other classes of real functions cannot be topologized. 
This includes the classes of C°° functions, differentiable functions, Darboux functions 
and derivatives. 

1. Introduction. There are a number of known classes of real functions that can be 
represented as families of continuous functions 

C(rur2) = if: (R,n) —• (R,r2) : / is continuous}, 

where T\ and T2 are the topologies on R. Evidently, the ordinary continuous functions 
are C(<2 ,̂ T0)9 where % stands for the ordinary topology. The other obvious examples 
include the class c(%, {(a, 00) : a G [—00, 00]}) of lower semicontinuous functions, 
the class c(To, {(-co, a) : a € [—00,00]}) of upper semicontinuous functions and the 
class C(rn %) of right continuous functions, where topology r r is generated by intervals 
[a, b). Probably the most interesting non-trivial example of topologized class consists 
of the class C^0 of approximately continuous functions. This class was introduced by 
Denjoy in 1915 [6] and since then it was extensively studied, including Zahorski's very 
deep work on the derivatives [15] from 1950. However, it was not until 1952 when the 
density topology %£ on R and the relation C^0 - C{fT^ %) was discovered by Haupt 
and Pauc [10]. Moreover, the paper of Haupt and Pauc was completely unnoticed for 
years, and the real study of the density topology dates from 1961 when Goffman and 
Waterman [9] rediscovered the density topology and the relation C^0 = C(7^, %). 

In the last two decades another approach was used: several classes of real functions 
were introduced as classes of functions continuous in some topologies on R. This includes 
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the classes: C^^ %[) of the density continuous functions, C(T/, %) = C(7i, %) of the 
/-approximately continuous functions, Ci^i, %) of the /-density continuous functions, 
and C(7i, T®) of the deep /-density continuous functions, where the /-density topology 
T/ is considered to be a category analog of the density topology, and deep /-density 
topology %) is defined as the coarsest topology for the /-approximately continuous 
functions. (For more information on the subject, see [5]. Compare also [4, 8, 13, 14].) 

The purpose of this paper is to examine which of the other known classes of real 
functions can be topologized. This problem, with the emphasis on the classes of linear 
and differentiable functions, was first articulated by Sam Nadler in a student's problem 
session held at West Virginia University. The author discussed this for the class of linear 
functions with several people. This version of the problem was also restated by Lee 
Larson on Fifteen Summer Symposium in Real Analysis in Bratislava. 

The paper is organized as follows. Section 2 contains a discussion of relations between 
topologized class J = C(T\ , ri) and topologies T\ and TI. It also contains the proofs that 
several classes of real functions cannot be topologized. Section 3 states the main theorem 
and discuss its corollaries. The two cases of the theorem are proved separately. The first 
part, which involves only the use of GCH and transfinite induction, is presented in 
Section 4. The second part of the theorem, which proof involves forcing method, is 
left for Section 6, the last section of the paper. The reader unfamiliar with the forcing 
technic can simply skip this section. Section 5 contains a discussion of set theoretical 
assumptions of the main theorem and points several possible generalizations. 

The set theoretical and topological terminology and notation used in this paper is 
standard and follows [11, 7]. In particular, ordinals are identified with their sets of 
predecessors and cardinals with the initial ordinals. Symbol u denotes the first infinite 
ordinal as well as the first infinite cardinal. (P(X) will denote the power set of X and \X\ 
the cardinality of X. If n is a cardinal number than K+ denotes the cardinal successor of 
K and 2K = |fP(«)|. GCH will stand for the Generalized Continuum Hypothesis, i.e., the 
statement that 2K = K+ for every infinite cardinal K. The functions will be identified with 
their graphs. The class of all functions/: X —» Y from a set X to a set Y is denoted by Yx. 
For/: X —• Y the restriction of/ to a set A C X will be denoted by /^ . For a set X and a 
cardinal number «we define [X\^K = {Y C X : \Y\ < «}and [X]<K = {Y C X : \Y\ < «}. 
A family / C 2(X) is said to be an ideal if A U B E I provided A, B E /, and B G / 
provided B C A E I. An ideal / is said to be a a-ideal if\j!FE /for every J E [/]-w. 

The letters T and r, with possible subscripts, will always denote the topologies. In 
particular, 1$, or simply T09 will denote the ordinary topology on Rn. For topological 
spaces (X,TI) and (F,T2) the class of all continuous functions from (X,TO to (Y,T2) is 
denoted by C(TI,T2). We will also write C{r) in place of C(T,T). Symbol Const will 
denote the family of all constant functions in currently considered class Yx. Symbol idx 
will stand for the identity function on X and dom(/) for the domain of a function / . 
The closure and interior of a set A in topology r will be denoted by c\T(A) and int^A), 
respectively. 
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Symbol !A will be reserved for the class of all real or complex analytic functions. 

T C A and L C Si will stand for the class of all polynomials and the class of all linear 

functions/(JC) = ax + b, respectively. 

The definitions of these classes and other classes of real functions used in this paper 

can be found in [1] or in [5, 14]. 

2. Basic properties of topologized classes and their applications. In this section 

we will examine some of the properties of the topologies T\ and r2 that can be deduced 

from the properties of C(T\ , r2) . This will give us a perspective on the difficulties we must 

face topologizing different classes of real functions. Moreover, the results presented in 

this section will show the boundaries of the technic presented in the sections to follow. 

The following theorem lists some basic properties of classes of functions that can be 

topologized. Recall also that a family T of subsets of R or C is homothetically closed if 

L~\U) E T for every L E L and U E T. 

THEOREM 1. Let T\ and r2 be the topologies on sets X and Y, respectively, and let 

7 - C(T\ , T 2 ) ^Yx.Ifr is a weak topology on X generated by F, Le., generated by the 

family \f~\U) : U E r2J E j } , then 

(i) Const C J , T C T I , T I / (P(X), r2 i {0, Y} and 7 = C(T,T2); 

(ii) ifX-Y and id* E 7 then r2 C r C r i ; 

(Hi) ifY = Rand To Cr2 then 7is closed under the maximum and minimum operations; 

(iv) if Q C YY is such that idy E Ç and g of E 7 far all f E 7 and g E Q then 

7 - dj^T1), where T' is a topology generated by {g~l(U) : U E r2,g E Ç}; in 

particular, if Q — L than we may assume that r2 is a homothetically closed T\ 

topology; 

(v) ifX = Y, idx E 7 and 7 is closed under the composition, then 7 = C(j); 

(vi) ifX=Y£:{Ri C} and L C 7 then T\ is a T\ topology; 

(vii) ifX-YE. {R, C}, L C 7 andr2 contains two nonempty disjoint sets, then T\ is 

Hausdorff; 

(viii) ifX= Y = R and 7 C Darboux then T\ is connected; 

(ix) ifX=Y=R,LC7 and r2 contains a nonempty set which has either upper or 

lower bound, then % GT\; 

PROOF, (i) and (ii) are obvious. 

(iii) L e t / , g E 7- We have to prove that max{/\ g} E 7> 

First notice that the function V: (R x R,r2 x r2) —> (R,r2) defined by V(y,z) = 

max{j , z} is continuous. It follows from that fact for every U E r2 we have 

\/-](U) = (Ux U)U({(y,z) :y<z}n(RxU))u ({(y,z) :y>z}n(Ux R)) 

and the set on the right hand side belongs to r2 x r2. It is also easy to see that the 

following functions are continuous: A : ( X , T I ) - > ( I X X , T I X n ) , A(x) = (x,x) and 

/ x g : ( X x X , r 1 X T 1 ) ^ ( R x ^ T 2 X T 2 ) , ( / x g ) ( x l 7 x 2 ) = ( / ( x 1 ) ^ ( x 2 ) ) . B u t m a x { / ^ } = 

V o (f x g) o A , so it is continuous as a composition of continuous functions. 

file:///f~/U
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The argument for mini/*, g} G 7 is essentially the same. 
(iv) Evidently, by (i), Cij^) C C(T,T2) = C(TUT2) = J, sincer2 C r'. So, let/ G J. 

The topology r ' is generated by the sets of the form g~l(U) where g G Q and U G r2. 
B u t / " 1 ^ - 1 ^ ) ) = fe o /T^ I / ) G r, since g o / G 7. Hence, J C C{T,T>). 

Now, if £ = L then r7 is clearly homothetically closed and it must be a T\ topology, 
since r2 ^ {0, Y}. (Compare also (vi) below.) 

(v) By (iv) used with Ç = J we have J - C(r, / ) , where r ' C r. 
(vi) Sincer2 ^ {0, Y}, there are a, b G Y and [/ G r2 such that aEUandb £U. But 

the family { f - 1 ^ ) : U G r 2 , / G X} C r C Ti is homothetically closed. So, T\ is a Tj 
topology. 

(vii) is also implied by the fact that {f~l(U) : U G r 2 , / G X} C Ti is homothetically 
closed. 

(viii) is true since the characteristic function of any clopen set is continuous. 
(ix) is clear, since {f~l(U) : U G r 2 , / G L} C T C T\ is homothetically closed. 
Theorem 1 is proved. 
As an immediate corollary we obtain the following. 

COROLLARY 1. Let 7 CXx.If J can be topologized then J - Or) for some topology 
r onX if and only if id* G J and J if closed under the composition operation. 

PROOF. If J = C(r) then obviously J is closed under composition and idx G T. The 
other implication follows from Theorem l(v). 

The main goal of the paper is to prove that a wide range of classes of functions can 
be topologized. It is clear from Theorem l(i) that to fulfill this project it is enough to 
construct only a topology r2 on the range of the class of functions. By Corollary 1 this is 
true even is we like to have the same topology on the domain and the range. Moreover, 
by Theorem l(vi) and (viii), any topology on R topologizing class L must be T\ and 
connected. Condition (vii) of Theorem 1 suggest also that it is wise to construct this 
topology as Hausdorff. These are the properties that topologies constructed in the next 
sections will have. Right now, let us list some of the immediate corollaries of Theorem 1. 

THEOREM 2. Let ? be a family of real functions closed under composition and such 
that C°° C J. If 7 can be topologized then J is closed under the maximum and minimum 
operations. 

PROOF. Assume that J can be topologized. Then, by Corollary 1, J = C(r). More-
over, by Theorem l(vi), r is T\. Let/(x) = e~x for x > 0 and/(x) = 0 for x < 0. It 
is well known that/ G C°°, so that/ G J. Hence, (0,oo) = / _ 1 ( ^ \ {0}) 6 r, since 
R \ {0} G r. But conditions (ix) and (iii) of Theorem 1 imply now that % C r and that 
J is closed under the maximum and minimum operations. 

Theorem 2 implies the following corollary. The definitions of most of the classes of 
the corollary can be found in [1] and [14]. 

COROLLARY 2. The classes: C°°, I?1 of n-times differentiate functions and Cn of 
functions with continuous n-th derivative cannot be topologized The same is true, when 
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in the above we replace differentiability with symmetric differentiability, approximate 
differentiability, symmetric approximate differentiability, I-approximate differentiability 
or symmetric I-approximate differentiability. 

PROOF. All these classes contain C°° as a subclass and are closed under the compo
sition. Moreover, they are not closed under the maximum operation. It is shown by the 
function \x\ = max{x, — x} for all classes but those with prefix symmetric. To see that 
the symmetric classes are not closed under supremum, take ao > bo > a\ > b\ > - -
such that limn an = 0, 0 is a dispersion and /-dispersion point of UneN ian+\ ? bn] and 0 is 
neither right density nor right /-density point of P, = \Jne^[b2n+ii a2n+i] for i < 2. Define 
/(0) = 0,f(x) = (— l)lx for x E Pi, extend it to a C°° function on (0, oo) staying between 
the graphs of x and — x and define f(x) = f(—x) for x < 0. It is clear that function / 
is symmetrically infinitely many times differentiable in any of the sense define in the 
theorem. However, h(x) = max{x,/(x)} is in neither of these classes. 

Before we state the next theorem let us define the following class of functions. A 
function/ is in the class To provided there exists a sequence 

oo > d\ > c\ > b\ > a\ > d2 > C2 > b2 > a2 > - -

such that the right hand side density of the sets Pj = \Jne^ [an, bn] and Pj = U«<EN [c«, dn] 
with respect to 0 is equal to 1/2 and that/ is defined as follows:/(JC) = — 1 for x E Pi, 
f(x) = 1 for x E Pj,f is linear on each of the intervals [bn, cn] and [dn+\,an],f(0) = 0 
and/(x) =/(—x) for x E (—oo,0). 

THEOREM 3. / / Tis a family ofrealfunctions such that To C 7 ^RRandLofoM E T 
for all f E T andL,M E L, then J cannot be topologized. 

PROOF. By way of contradiction assume that J - C(TI,T2). By Theorem l(iv) we 
may assume, without loss of the generality, that T2 is a T\ topology and that T\ is a weak 
topology generated by f and TI. Choose/, g E To such that 

(0,co) = P ) U P /
2 U P ^ U P ^ c r 1 ( { - l , l } ) U g - 1 ( { - l , l } ) . 

Then, {0} =f~x (R \ {-1,1}) Pig~l(R \ {-1,1}) E rx. But n is homothetically closed, 
since for every/ E <J, U E r2 and M E L we have M~l (f~l(UJ) = (f o M)~l (U) E rx. 
So, n = (P(R) and J = RR, contradicting our assumption. 

COROLLARY 3. The following classes cannot be topologized: the class of all deriva
tives, the ZahorskVs classes <M{ for i = 0,1,2, 3,4, the class of all symmetrically (sym
metrically approximately or symmetrically I-approximately) continuous functions, the 
class of all Darboux functions, the class of all measurable functions and the class of all 
functions having the Baire property. 

PROOF. It is easy to see that all the above classes are proper subclasses of RR and 
are closed under interior and exterior compositions with linear functions. The proof that 
all the functions from the class To are derivatives and in class M\ can be found in [1, 
pp. 23 and 87]. They are also evidently symmetrically continuous. The rest follows from 
Theorem 3. 
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3. Main theorem and its corollaries. In this section we state the main theorem and 
conclude from it some corollaries. The proof of the theorem will be postponed until the 
next sections. Recall that family 7 C Yx separates points if for every distinct points 
x\,X2 EX there i s / E 7 such thatf(x\ ) ^f(x2). The topological space is Baire if every 
first category set in this topology has empty interior. 

Let us also stress here that in what follows regular and completely regular topological 
spaces do not have to be Hausdorff. 

THEOREM 4. Let \X\ = \Y\ = 2U, % e [Yx]-2" and let 1 be a proper a-ideal on X 
containing all singletons. 

(A) If GCH holds then there is a Hausdorff, connected and locally connected topology 
r2 on Y with the property that for every family 7 C Const U ^ such that Const C 7 and 

(1) {xEX: f(x) = g(x)} E / for every distinct / , g e 7 

we have 
7=C(T,T2), 

where T is generated by the family {f~l(U) : U €r2,f E 7}- Topology r is connected 
and locally connected. It is also Hausdorff, provided 7 separates points. 

(B) Moreover, it is consistent with the set theory ZFC plus GCH that the topologies 
T and r2 are completely regular and Baire. 

To see the real meaning of Theorem 4 let us state several of its corollaries. In the first 
corollary we use Theorem 4 with the cr-ideal Ic of the first category subsets of Rn. 

COROLLARY 4. If GCH holds then there is a Hausdorff, connected and locally con
nected topology Tc on Rm such that for any family 7 C CCZQ1, T£), of ordinary continuous 
functions, containing all constant functions and such that 'm^Ux E X : f(x) = g(x)}) = 
$for every distinct f, gE7we have 

7=C(jr,TC\ 

where Tj is generated by the family {f~l(U) : U E TcJ E 7}- Moreover, TJ is 
connected and locally connected, and it is Hausdorff provided 7 separates points. It is 
also consistent with ZFC + GCH that all these topologies are completely regular and 
Baire. 

In particular, it can be shown that for any different harmonic functions/, g: Rn —•* Rm 

we have int^ ({x E X : f(x) = g(x)}) = 0.l Thus, by Corollary 4, the class of all harmonic 
functions/: Rn —> lRm can be topologized. 

1 To see it let / ,g: Rn —> R be two harmonic functions that agree on some neighbourhood of XQ 6 R'\ 
Let R > 0 be a supremum of all balls B[XQ, r] = {x £ R" : \x — XQ\ < r} on which/ and g agree. If R = oo 
then we are done. So, assume that R < oo. In particular, / and g agree on BIXQ, R]. NOW, for every point x 
in a boundary of B[XQ, R] use Cauchy-Kovaleski Theorem [2, Theorem 1.5 p. 330] for Laplacian operator L 
with initial values given by the derivatives off on a boundary of B[XQ, R] to find an open neighbourhood Ux 

of x in which this initial value problem has a unique solution. Since both functions/ and g form the solutions 
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Another <r-ideal that can be used with Theorem 4 is the ideal 4, of at most countable 
sets. Since for any two different analytic functions/, g € A we have {x : f(x) = g(x)} 6 
4,, we can also conclude the following corollary. 

COROLLARY 5. If GCH holds then there is a Hausdorff, connected and locally con
nected topology Ta (on R or C) such that for any family J C A containing all constant 
functions we have 

where T<J is generated by the family {f~l(U) : U £ r^f E f}. Moreover, T<J is 
connected and locally connected, and it is Hausdorff provided J separates points. It is 
also consistent with ZFC + GCH that all these topologies are completely regular and 
Baire. 

Notice also, that if the family J in Corollary 5 is closed under the composition and 
id E J, then, by Theorem l(v), J = C(jj). We can write this in the form of next corollary. 

COROLLARY 6. If GCH holds and J is a family of real functions which is closed under 
the composition and such that {id} U Const C f C i l then there exists a Hausdorff, 
connected and locally connected topology T^ (on R or C) such that J = C(fï<j). In 
particular, there exist a "linear topology" 22, a "polynomial topology" % and an 
"analytic topology " 7^ which are Hausdorff, connected and locally connected such that 
22 C % C 7^ and for which L = C(72), T = C(<T<p) and A = C(2i). Moreover, it is 
consistent with ZFC + GCH that all these topologies are completely regular and Baire. 

The three corollaries above show that "nice" classes of real functions can be "nicely" 
topologized. However, Theorem 4 tells us also that variety of "wild" classes of real 
functions can be topologized as well. This is the case, for example, for the families 
7\ = ConstU{JC3 ,^}, <h = ConstU{jc5 - 17,sinx, 1 /(JC2 + 1)} and % = ConstU 
{x, ln(x2 + 2), g}, where g(x) = e~x for x ^ 0, g(0) = 0, is well known C°° func
tion which is not analytic. Also, the functions in the class J must be neither measurable 
nor have the Baire property, since in Corollaries 4 and 5 the families C(%) and A can be 
replaced by any family % of real functions as long as |%| < 2U. In particular, 

COROLLARY 7. //"GCH holds andh: R —>Ris any one-to-one function then the family 
ConstU{h} can be topologized. 

The next corollary gives a negative answer for the following question of Lee Larson 
(private communication): "Letri and r^ be homothetically closed connected topologies 
on R. Is it true that either C(j\, r2) = Const or L C C(r\, r2)?" 

COROLLARY 8. //"GCH holds then there exist homothetically closed Hausdorff con
nected topologies r\ andr2 on R such that C(T\ , r2) ^ Const while C(T\ , T2) Pi £ = Const 

for this initial value problem (they agree on B[XQ, R], SO their derivatives must also agree on the boundary of 
B[*0i R]) they must be equal on Ux. Now, {UX}\X_X \=R is an open cover of a compact set {x : |x — x0\ = R} 
so, we can find finite subcover of it. But this means that we can find r > R such that/ and g agree on B[XQ, r], 
contradicting maximality of R. 

Notice also, that this scheme can be used to any class of functions defined by operator for which we can 
use Cauchy-Kovaleski Theorem. 
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PROOF. Let/O) = *3 for all x € R and let J = {L of o M : L,M € L} C A. 

Then, by Corollary 5, J can be topologized as C(n,T2). Moreover, by Theorem l(iv), 
the topology T2 can be taken as homothetically closed. It is also easy to see that if T\ 
is a week topology, as in Theorem 4, then it is homothetically closed, connected and 
Hausdorff. This finishes the proof. 

In fact, the assumption GCH in Corollary 8 is unnecessary. It will follow from the 
Theorem 6. 

4. Proof of Theorem 4(A). In what follows we will write //(A, B) for the set of all 
functions from a finite subset of A into B. 

Take X, F, /, ^ as in Theorem 4. In both parts of the theorem the topology T2 will 
be chosen in the following way. We will choose a topological space S, and construct a 
one-to-one function e: Y —•* S(2W)+. Topology T2 on Y will be defined as a weak topology 
generated by the function e: Y —• 5(2W)+. Thus, Y will be identified with the subspace e[Y] 

Notice that if 2b C !P(S) is such that % U {S} forms a basis for S then the sets 

[S]Y = {yEY:(\/de dom(S)) (e(y)(d) € 8(d))}, 

with 6 6 H({2W)+, 2fo), form a basis for (K,T2). NOW, if J is as in Theorem 4 and we 

define ex:X —> S^{7"r by formula ex(x)(f, 0 = e(f(xj)(Q then the sets 

[e]x = {xeX:(Vd6 dom(e))(ei(*X<*) e e(</))}, 

with e 6 H( J x (2"')+, 2fo), will form a basis for the weak topology r on X generated by 

J, since for/ e J and {(£, B)} € #((2W)+, 2b) 

r ' ( [ ( ^ 5 ) ] , ) = {x:/(x)6[(4,fi)]r} 

= {i:e,W(f,() = # ) ) ( 0 6B} 

= {x:x6[((f,0,fi>]x} 

= [<^0,5)]r 

Thus, X can be "identified" with e\[X]. (Notice that the "identifying" function e\ does 
not have to be one-to-one.) 

It is easy to see that for such topologies we have J C C(T,T2). Thus, the problem in 
our construction will be to show that any function/ € Yx \ J is not in C(T,T2). This 
will be done by choosing an appropriate space S and an embedding e. Function e will be 
naturally identified with the mapping from Y x (2^)+ into S. 

In the case of the proof of Theorem 4(A) we will choose S to be the space P = {0,1,2} 
with topology {0, P, {0}, {1}, {0,1}} and % = {{0}, {1}}. The construction of e will 
be done by induction on £ < (2W)+ by listing all functions from Yx as a sequence 
(hç : C € (2^)+), constructing an increasing sequence of functions e|yX£ and, in step 
£ G (2a;)+,defining^|Fx^}insuchawaythat/i^1([(4,{0})]r) ^rprovided/z^ £ C(T,T2). 
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We will need two technical lemmas for our constructions. The first one will be used 
in both parts of the proof of Theorem 4. More precisely, assumptions (A) and (B) of 
Lemma 1 correspond to the proofs of parts (A) and (B) of Theorem 4, respectively. 
(Thus, if the reader likes to skip the proof of Theorem 4(B), he may skip the proof of 
second part of Lemma 1 as well.) 

LEMMA 1. Let (X,TI) and (F,T2) be connected topological spaces of cardinality 2U 

such that Y is Hausdorff and that every A G [Y]<2U is closed in Y. Moreover, let 
Const C 7 C C(T\ , ri) and let %be a o-ideal generated by all sets {x : f(x) = g(x)}for 
fig€ 7, f ^ g- If J is a G-ideal containing % and <B is a base for X such that 

(2) U\D is nonempty and connected for every U G *B and D G J 

then for every h G C(T\ ,ri) \ 7 there is x EX such that for every U ET\ with x € U, 
D E J and % G [7]-" the following is true. If either 

(A) % is finite; or 
(B) J = %, X is a regular space andf]n<UJ Un ^ 0 for every sequence {Un G $ : n < u} 

such that c\(Un+\) C Un, 
then 
(3) \h({z EU\D: h{z) ïf{z)forallf G %})\ = 2». 

PROOF. Let h e C(T\ , r2) \ J . 

First notice that there is x G X such that for every U €T\ with x G £/, 

(4) V * f a for a l l / € J . 

To see this, assume, by way of contradiction, that for every z G X there isfzE7 and 
Uz G T\ with z G UZi such that h\Ur = (fz)\uz- Let U G T\ be a maximal, nonempty set 
such that h\u =f\u for some/ G 7-^U^X then, by connectedness of (X,TO, there is 
z G c\Tl(U)\U. Then UZHU ^ $ and (fz)mnU) = hmnU) =f\iUznu), i.e.,ftmdfz are equal 
on a nonempty open set. Thus, by (2), fz - / , contradicting maximality of U. Hence, 
U - X. But then, h = h\v =f\v = / contradicting the fact that h £ 7- The condition (4) is 
proved. 

Now, choose x as in (4). We will show that Lemma 1 holds for h and x. 
For/ G 7 let 

Pf = {zeX: h{z) =/(z)}. 

Thus, (4) tells us that 

(5) U ft Pf for al l / G 7 and U G T\ with xEU. 

Assume, by way of contradiction, that there are W G T\ with x G W, Do G J and 
% G [ J ] - w for which condition (3) does not hold, i.e., such that \h(B \ D0)\ < 2" where 

B = {zEW: h(z) Jf{z) for al l / e%} = W\ \J Pf. 
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We will show that this contradicts (A) and (B). 
Without loss of generality we may assume that the constant function equal to h(x) is 

in %. Hence, h(x) £ h(B). Since h(B \ D0) is closed in r2, U = W \ h~l (h{B \ D0j) E n 
and x E U CW\(B\ Do). Decreasing U, if necessary, we may assume also that U E *B. 
Since U C W and 

(U\D0)n(w\ (J Pf)=(U\D0)nB = Un(B\Do) = <b 

then 

(6) U\D0C \JPf. 

Notice also that the sets Pf are closed, since TI is Hausdorff, and that for every/ E J 
and D E i , 
(7) ( / C P / if and only ifU\DCPf. 

Condition (7) follows from the fact that, by (2), U \ D is dense in U and that U \ D C Pf 

implies £/ C c\(U \ D) C P/. 
Notice also that (5) and (7) in particular imply that 

(8) U\D£Pf for every/E J a n d D E ^ 

so that, by (6), 1561 > 1. 
We have two cases to consider. 

CASE (A). Decreasing Jo, if necessary, we may assume that % is minimal family 
satisfying (6), i.e., that we have also 

(9) Pfn(U\ D0) <jL U Pg f o r e v e r y / € 5b-

PutD{={J{PfnPg :f,g E %Jjg}<Z {z:/fe)=£(z)forsome/,£ E ft,/?**} E ^ 
and £> = D0 U£>i E J. Then, U\D is connected in n and the family {Py H (£/ \£>)}/6^ 
forms a partition of £/ \ D by the sets relatively closed in U\D. Moreover, % has at 
least two elements and, by (9), all these sets must be nonempty since D\ C Uge?i\{f} Pg 
and PfC\(U\D) = (Pfn(U\ Do)) \ D\. This contradicts connectedness of U \ D. Case 
(A) is completed. 

CASE (B). Notice that, by (2), int(Pf) n int(Pg) = 0 for every / , g E F, f ? g. 
Replacing sets Pf with sets Pf \ |J{int(Pg) : g E Jo, g ^ / } , if necessary, we can assume 
that in addition to (6) and (8) we have 

(10) Pg H int(P/) = 0 for all/, g E %,g Jf. 

Enumerate % as {fn : 0 < n < u}. Increasing D0, if necessary, we can also assume 
that D0 = \Jo<n<uDn where sets Dn, 0 < n < u, are of the form {x : f(x) = g(x)} for 
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fig £ 7, f ^ g, ie., Dn are closed and nowhere dense. We will construct a sequence 
{Un E (B : n < u} of open subsets of U such that for every n < UJ we will have 

cl(£/„+1 ) C t/„, Un+l H (P/n+] U Dn+1 ) = 0 and £/n ft Pf for every/ E 7. 

This will finish the proof, since, by (B), we will get 0 ^ f U ^ UnC(U\ D0) \ \Jfey6 P/ 
contradicting (6). 

To see that the construction is possible start with putting UQ = U. It satisfies the 
inductive hypothesis by (8). So, assume that Un is already constructed for some n < u. If 
Pgn(Un\D0) C Pfn+l foreveryg 6 5b then, by (6), Un\D0 C P/ll+1 and, by (7), t/n C P/n+1 

contradicting our inductive assumption. So, choose g E % such that 0 ^ PgPi(Un \D) </L 
Pfn+r put D" = PSH Pfn+l C {z : g(z) = /n+i(z)} E i and D' = D0 U D" E J. Then, 
Pg H (t/n \ D') = (P, n (I/n \ D0)) \ Pfn+l i 0 and Pg H (f/n \ D') j Un\D

f since the 
equation Pgf)(Un\D

f) = Un\D
f = (Un \D0)\D" would imply Un\D0 C PgUD" C Pg 

and, by (7), Un C P#, contradicting our inductive assumption. Thus, Pgn(Un \Df) cannot 
be open in Un \ D' since it is closed in Un \ Dr and Un \ D' is connected. So, choose 
z E (Un \ D') Pi [Pg \ int(P^)). Since z £ P/n+l UD„+i and X is regular, we can choose 
Un+\ such that z E Un+\ C cl(Un+\) C Un and Un+\ n (P/n+1 U £>rt+i) = 0. To finish the 
proof it is enough to show that Un+\ </L Pf for every/ E 7- So, by way of contradiction 
assume that there i s / E J such that Un+\ C Pf. Since z fc int(P^) we have Un+\ ft Pg 

and so , / ^ g. But then, z E Pg H £/n+i C int(Pf) contradicting (10). Lemma 1 has been 
proved. 

We already noticed that topologies r and T^ should be connected. The next lemma 
explains how we are going to achieve this goal for the proof of Theorem 4(A). In the 
next lemma [8] will stand for 

[8] = {g E P z : 8 C g}. 

LEMMA 2. Let Z be an arbitrary set and let M C P z be such that [8] D M ^ 0 for 
every 8 E //(Z, 3). Then for every 8 E H(Z, 2) the set [6] H M is connected in Pz. In 
particular, M considered as a subspace ofPz is connected and locally connected. 

PROOF. For the use of this proof let [8] denote [8] DM for 8 E //(Z, 3). Then, for 
every e, 8 E //(Z, 3) 

[e] H [8] ? 0 if and only if e U 8 E //(Z, 3) 

and 
(11) [e] C[<$]ifandonlyif<SCe. 

To argue for (11) it is enough to show that [e] C [8] implies R e , since the other 
inclusion is obvious. But if 8 f_ e then there exists e' E //(Z, 3) extending e such that 
e' U8 £ H(Z, 3). Hence, [ef] H [8] = 0, while 0 ^ [e'] C [e]. This contradicts [e] C [«]. 

Now, let us turn to the proof of connectedness of [8], where 8 E //(Z, 2). Let eo, e\ E 
//(Z, 2) be such that [eo] and [ej] are nonempty disjoint subsets of [8]. Then, by (11), 
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8 C et for / < 2, i.e., si = 8 U 8i for some Si E //(Z, 2) such that dom(<5) D dom(<5/) = 0. 
Let D = dom(<$o) U dom^O and define r].D —• 3 by 77(d) = 2 for all d ED. Then, 
0 ^ [77 US] C [5]. We will see that [rjUS]C c\[e0] Rclfo]. This will clearly imply that 
[8] is connected. 

So, let £ € #(Z, 2) be such that [£] H [77 U<S] ̂  0. Then, £ U 77 U<5 E H(Z, 3), /.*>., for 
i <2,£U6i = £UèiUè E H(Z, 2) and so, [£] H fo] ^ 0. But this means that the set 
[77 U 8] C [8] is in the closure of both [eo] and [ei ]. 

Since sets [8] = [8]C\M for 8 E H(Z, 2) form basis for M we conclude that indeed M 
is connected and locally connected. Lemma 2 is proved. 

Now we are ready for the main part of the proof. 

CONSTRUCTION OF EMBEDDING e. Assume GCH and take X, Y, I and ^ as in The
orem 4. By the structure of condition (1) it is easy to see that we can assume that 
% D Const = 0 and 

f~x (y) E I for all / E % and y E Y. 

Let I0 be a family of all / E I such that either |/| = 1 or / = {x E X : f(x) = g(x)} E I 
for some/, g E ^ and let J C / be the cr-ideal generated by I0. Let #1 = % U {{2}} = 
{{°}> {1 }> i2}} a n d f o r r C (2W)+ define ^ (7 ) as the set of all e E H{^ xT,<B\) such 
that 

{x : /(*) = $(*)} E I for all (/, 77), (g, 77) G dom(e), f J g. 

Moreover, let 

(12) {(/ ! ox c ,A c) :C<(2u)+} 

be an enumeration of Yx x X x [y]<2W. This can be chosen by GCH. 
We will construct, by induction on £ < (2W)+, an increasing sequence of functions 

{<?|KX< • C < (2W)+} that will satisfy the following inductive conditions for all 77 < ( < 
(2W)+, when we adopt the notation introduced on the beginning of this section: 

(a) Av C [{(77,{l})}]Fand^(^)G [{(77, {0})}]r provided hv(xv) £ Av; 
(b) | [ % | = 2W for all S E //(C, %)\ 
(c) [ e k ^ f o r a l U € # ( 0 ; 
(d) [5]x PI /z"1 ([{(77, {2}) }]Y) fÈ J for all e E ti(Q such that for every / E J 

(13) \hv({z E [e]x \ I : hv(z) ïf{z) for all if, 77) E àom{e)})\ = 2". 

First, let us see how conditions (a)-(c) imply the theorem. So, let J be as in the 
theorem and let topology T2 be chosen as described in the beginning of the section. 
Condition (a) clearly implies that every A E [Y]<2U1 can be separated from every point 
y E Y\A. (Simply choose 77 E (2UJ)+ such that Av = A, hv = y.) Thus, Y is Hausdorff 
and every A E [Y]<2<J is closed in Y. This also implies that e is one-to-one and that (X,r) 
is Hausdorff, provided J separates points. 

Condition (b) and Lemma 2 used with M = e[Y] imply that (K, T2) is connected ard lo

cally connected, since M n [{(£,/)}] = e [{(£, {'})}]F • Similarly, since 

H(T x (2W)+, ^1) C #((2W)+) we can use (c) and Lemma 2 with M = ex\X \ D], 
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D G _7, to conclude that (X,r) is connected, locally connected and that [e]x \D is con
nected for every D G _7 and every e G //( 7 x (2W)+, %). Therefore, condition (2) from 
Lemma 1 is satisfied with family # defined by # = {[e]x : e G H(jF X (2W)+ , %)} and J/ 
defined as above. To finish the argument it is enough to show that C(y, Ti) C 7-, since the 
converse inclusion is clear. By way of contradiction assume that there is h G C(r: T2)\7-
Let x be as in Lemma 1 and let r/ G (2W)+ be such that h = hv, x = xv and Av = 0. Then, 
by (a), x G /z_1([{(r7, {0})}L). Moreover, by Lemma 1, condition (13) is satisfied for 
every [e]x G <B such that x G [e]x. Thus, by (d), [e]x n/z_1([{(r/, {2})}]r) ^ 0. Hence, 
none basic open set [s]x G r with x G [ek, can be contained in / r 1 ([{(77, {0})}]y) ^ 0 
and so, h cannot be continuous. This contradiction shows that J = C{T, TI). 

To finish the proof it is enough to make the inductive construction. Let {/̂  : £ < 2W} 
be an enumeration of 1$ and let us assume that for some £ < (2W)+ the construction is 
indeed done. We will construct e|rx{<}- To do this, let 

be an enumeration of//(C, #0 x tH{Q x (( + 1) x //({(}, #0 x #({£}) with each tuple 
appearing in the sequence continuum many times. We will construct, by induction on 
£ < 2W, an increasing sequence of functions {^Ir.xft}}* where Y^ C Y, by starting with 
Ko = Ac U {/zcOc)}, defining e(d,0 = 1 for d G Ac, é>(/zc(xc),C) = 0 if hc(xc) £ Ac, and 
such that the following inductive conditions are hold for 0 < £ < 2U: 

(i) F ^ U ^ K , is finite; 
(ii) there is y G Y^ \ U ^ Yv such that y G [< ]̂y Pi [<^k; 

(iii) there exists x G [e^k \ Ur/<£^ such that/(x) G £$(/", 0 f l ^ \ Ur/<£ ^ f°r all 
(/,Ç) G dom(e^); moreover, we have ha^(x) G [{(<*£, {2})}] provided for every 

\ha, {{z G [ 4 k \ / : h^(z) ïf(z) for all if, C) € dom(^)})| = 2W. 

Notice that this will imply (a)-(d) when we extend U <̂2w ^lr£x{£}to ^lrx{c} arbitrarily. 
Clearly (a) is implied by the definition of e on Y$ x {£}. Condition (b) is implied by (ii), 
since functions #9 U 8^ list all H(Ç + 1, %) and each function appears there continuum 
many times. Finally, (c) and (d) are implied by (iii) in similar way, if we notice that every 
function from #(C + 1 ) appears as él U e^ for continuum many £ and that for every I £ J 
there is £ < 2W such that / C UKÉ V 

So, let us assume that for some £ < 2W construction is done. Notice that the set 
UT/<£ YTJ has cardinality less that continuum. To get y satisfying (ii) it is enough to 
choosey G [S^\Y \ UT;<£ YTI a nd define e(y,Q = i where 8% = {(C, {*})}• To get (iii) let 
£Z = {(&&{*)}> :j<n] and put 

I = {x G X :^(x) =fk(x) for some 7 < /: < n}. 

Then / G /, since e^ G #({C}). The set T0 = {}>} U U r ^ Yv h a s cardinality < 2W 

so 7 = / U \Jj<nfj~l (To) G J/ and, by the inductive hypothesis, we can choose x G 
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[ ^ k \ ( r u U ^ / , ) . Since fjQc) J fk(x) forj<k<n andjJW £ T0 we can define 
eifj(x)iCj - h f° r7 < n- This gives the main part of (iii). Moreover, if additional 
assumption is satisfied than we can choose* E {z E [e®]x \ (TU |Jî/<^ Ẑ ) : /^(z) ^Jjfe) 
for ail 7 < «} such that ha^(x) £ T$. So, we can freely define e(hai(x),Q = 2. The 
construction is finished if we define Y^ = \fj(x) : j < n}U {ha^(x)^y} U Ur?<£ *V (We 
define e(haç(x),Ç) arbitrarily, when the additional requirement of (iii) is not satisfied.) 

This finishes the proof of Theorem 4(A). 

5. Discussion of the assumptions and generalizations of Theorem 4. We start 
here with noticing that all families J from Theorem 4 can be topologized with the same 
topology T2 on the range. It would be nice to prove Theorem 4 with % = Yx, i.e., to 
have the same universal topology TI that could be used for topologizing all families 
J C Yx containing constant functions and satisfying condition (1) from Theorem 4. 
However, this cannot be done at least as long as we assume that X = Y and that the 
"universal" topology TI contains a set U such that \U\ = \X \ U\ = 2W. This is the case, 
since then for a bijection/: X —+ X such that/(X \U) = U and/(x) ^ x for all x E X 
the family Const U{idx,/} could be topologized. But the family Const U{idx,/} cannot 
be topologized since the domain topology would have to contain both U and X\U, and 
thus, the class of continuous functions would contain also a characteristic function of U. 

It is not clear at this point whether the Theorem 4(A) or (B) can be proved without any 
additional set theoretical assumptions. However, it is easy to see that the real assumptions 
we have used in the proof is that 22" = (2W)+ and that |J g ± X for every Q e [I]<2U>. For 
general ideals, this last assumption does not have to be satisfied if 2U > u\. However, 
if we consider only a-ideal / = 4, = [X]-u then the situation simplifies and essentially 
the original proof of Theorem 4(A) works with the assumption l2" = (2W)+ in place of 
GCH. The only change in the proof of Theorem 4(A) that has to be made is to define J 
as [X]<1U! and remove sets Iv from condition (iii). Thus, we can state this in form of next 
theorem. 

THEOREM 5. Let \X\ = \Y\ = 2" and % e [Yxp2". If22" = (2")+ then there is a 
Hausdorff, connected and locally connected topology ri on Y such that for every family 
J C Const Ui^ with the property that Const C J and 

{xeX: f{x) = g(x)} e [X]-w for every distinct / , g <E T 

we have 
T=C(T,T2), 

where T is generated by the family {f~l(U) : U E Ti,f E j } . Topology T is connected 
and locally connected. It is also Hausdorff, provided J separates points. 

In particular, in Corollaries 5, 6 and 7 the assumption of GCH can be replaced by the 
assumption that 22" = (2W)+. 

On the other hand, the assumption 22W = (2W)+ is fundamental for the proofs of 
Theorems 4 and 5. However, we still are able to get the following version of Theorem 5 
without any extra set theoretical assumption. 
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THEOREM 6. Let \X\ = \Y\ = 2* and % E [Yx}^2\ If<Ke [Yxp{2")+ then there is a 
Hausdorff, connected and locally connected topology r2 on Y such that for every family 
J C Const U ^ with the property that Const C 7 and 

{xEX: f(x) = g(x)} E [X]-w for every distinct f, gE 7 

we have 
(14) ^ n f = ^ n c ( r , T 2 ) , 

where T is generated by the family \f~l(U) : U E r2,f E J}. Topology r is connected 
and locally connected. It is also Hausdorff, provided J separates points. 

PROOF. We used the assumption 22W = (2W)+ in Theorem 5 only in (12). However 
there were two reasons for it's use. The main reason was to enumerate all functions from 
XY in a sequence of length of (2W)+ and make sure that none of the function from the list 
is in C(r, T2), provided it is not in J. If we list that way all the functions from 3C than we 
can deduce (14). 

The second use of 7F = (2U)+ in (12) was to enumerate [F]<2W in sequence of length 
(2U)+. However, we enumerated the sets from [T\<2U} to make sure that they are closed 
in (Y,T2). But, the only place in the proof we really needed this fact was the proof of 
Lemma 1. Moreover, we did not need this fact for all sets from [Y]<2" but only for the 
sets of the particular form of h({z E [e]x \ D : h(z) ^ f(z) for all / E %}\ where 
D E [F]-w, % E [ jTl-" and h E XY. In case of this theorem need to consider only h 
from J£. Thus, there is only (2a;)+-many sets of this form, and we can list all of them in 
a sequence of length (2W)+. This finishes the proof of Theorem 6. 

Let us notice, that using Theorem 6 we can deduce Corollary 8 without any additional 
set-theoretical assumptions. 

As a last position in this section we like to discuss separation axioms for topologizing 
topologies. 

A disadvantage of the original form of Theorem 4 is that for families J that do 
not separate points the topology r of the domain is not Hausdorff. Can we modify the 
theorem to make topologizing topologies Hausdorff even if j^does no separates points? 
The positive answer is given by the next theorem. 

THEOREM 7. Let \X\ = \Y\ = 2U, ^ E [Yx]-2" and let I be a proper a-ideal on X 
containing all singletons. 

(A) If GCH holds then there are topologies T\ and T2 on X and Y respectively such 
that for every family J C Const U ^ with the property that Const C J7 and 

{x E X : f(x) - g(x)} E / for every distinct/, g E 7 

we have 
T=C(T,T2\ 

where r is generated by the family T\ U {f~l(U) : U E T2,/ E J7}. Topologies T\, T and 
T2 are Hausdorff, connected and locally connected. 
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(B) Moreover, it is consistent with the usual axioms of set theory ZFC and GCH that 
the topologies T\, T andri are completely regular and Baire. 

Sketch of the proof. Modify the proofs of either of the part of the Theorem 4 as 
follows. Partition (2W)+ into two sets C and D of the size (2W)+ and choose k:X —• Y 
such that \{x E X : f(x) = k(x)}\ < 2U for every/ E %. In case of proof of part (A) 
make sure that every tuple listed in (12) appears for 77 in C and in D. Next, consider 
T2 as topology generated by restricted embedding e'\ Y —• Sc of e and n by restricted 
embedding e[:X^ S » x D of ex. 

It is not difficult to check that these topologies will have the desired properties. 
Topologies r, T\ andr2 Theorem 7 are Hausdorff and connected. The similar is true for 

the topologies of the Theorem 4, if J separates points. Notice also that from Theorem 1 (v) 
it is clear that the topologies must be connected. But, do they have to be Hausdorff? The 
next theorem gives the negative answer to this question. 

THEOREM 8. Let \X\ = \Y\ =2", % E [Yx]-ltJand let I be a proper a-ideal on X 
containing all singletons. If GCH holds then there is a topology T2 on Y such that for 
every family J C Const U ^ with the property that Const C J and 

{x 6 X : f(x) = g(x)} 6 / for every distinct f, g E 7 

we have 

T=C(T,T2\ 

where r is generated by the family \f~x(U) : U G T2,/ 6 f}. Topologies r and T2 are 
connected, locally connected and T\. However, they are not Hausdorff. 

PROOF. Change topology on P = {0,1,2} to |0,P,{O}}. It is easy to see that it 
works. 

6. Proof of Theorem 4(B). In this section we will write H^A.B) for {s E BD : 
D E [A]^}. 

The idea of the proof of Theorem 4(B) is essentially the same as that of Theorem 4(A), 
except that we will take as space S the unit interval [0,1 ] with the natural topology and 
we will construct an embedding e: Y —+ [0,1](2W)+ using the forcing method. 

So, let V be a model of ZFC in which GCH holds and let 

P = ^ ( 0 , 2 , [0,1]) 

be a forcing notion in V ordered by the reverse inclusion. Let G be a V-generic filter over 
P and put g = U G: u>2 —» [0,1]. We will show that the statement from the theorem is 
true in V[G] = V[g]. 

It is clear that P is o;-closed. In particular, the real numbers in V and in V[g] are the 
same so, we do not have to be worry about the different sets of real numbers R in V and 
in V[g]. It is also well known (see e.g. [11]) that under CH forcing P satisfies a;2-chain 
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condition. So, the cardinals are preserved by P and, since \Hu)(uj2') [0,1])| = u/?, GCH 
holds in V[G\. 

Take X, F, /, % E V[g] as in Theorem 4. Clearly it is enough to prove Theorem 4 for 
any sets X and F of cardinality 2W. In particular, we can assume that X, Y E V are the sets 
of ordinal numbers. As in the proof of Theorem 4(A) assume that ^ n Const = 0 and 

f~l(y) E I for al l / € ^ and y E F. 

Define ib as a family of all sets I E I such that either |/| = 1 or / = {x E X : /(*) = g(x)} 
for some/, g E ^ , let jfo be a family of all countable unions of sets from Jo and let J C J 
be the a-ideal generated by %. 

Next, choose 2^' C Fx \ (X U Const) of cardinality continuum such that |{JC E X : 
/(JC) = g(jc)}| < 2" for every/ E % U Const and g € ^ ' and such that 

(15) h = {{xEX :/(*) = #(*)} : / , # E * ' , / ^ } . 

Such a family can be easily chosen by transfinite induction. Put % = ^ U ^/. Notice 
that if 7 C %! satisfies the assumption (1) of Theorem 4, then so does y u ^/. 

Since P satisfies a;2-chain condition, X, Y E V and all sets X, F, i%, Jfo have cardinality 
< u\ there is £ < a;2 such that % U {%} U Jfc U {jfc} C V[gfe]. Thus, we can work in 
extension V[g|^] of V instead in V. To cut unnecessary notational problems we simple 
treat V[g\^] as V, i.e., we are assuming that ^) U {%} U Jo U {_7o} C V. 

Since P defined as above is isomorphic to H^Y x ÙJ2I [0,1]) ordered by the reverse 
inclusion, we also assume that 

p = / /w(yx(j2,[o,i]) . 

Now, if Gisa V-genericfilteroverPtheng = \JG:YXLL>2—* [0,1]. We define embedding 

e:Y-+[0,irbye(y)(O = 8(y,O. 
Let J C %, J E V[g], be as in Theorem 4. Topologies T2 and r are defined as before. 

So, it is enough to show that they satisfy the desired properties. 
Since for every A E [F]-^ and y E Y \ A the set 

[s E P : (3a < O*)(J | h "A C [{(a, {0})}]y and? E [{(a, {1})}]/')} 

= {s E P : (3a < u;2)(Va E A)((a, a, 0), (y, a, 1) E 5)} 

is dense in P, we conclude easily that T2 is Hausdorff and every A E [F]-w is closed in 
(F, T2). Then, it is also obvious that the weak topology r on X generated by J is Hausdorff 
if and only if 7 separates points. Also, since e[Y] and e\ [X] are subspaces of a product 
of [0,1] we can easily conclude that (F,T2) and (X,r) are completely regular. 

To prove connectedness of these topologies we need some extra facts and notations. 
Let % be a countable base for [0,1] and let <Bz be the standard base for [0, l ] z associated 
with %, i.e., (Bz is the family of all sets 

m = {ge [0, l ] z : (Vz E dom(8))(g(z) E «(*))}, 
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where 8 E //(Z, %). We will need the following analog of Lemma 2 that holds for every 
£/€!%. 

(16) If S C U is disconnected then [e]CU\S for some e E H^Z, [0,1]), 

where [e] = {f E [0, l ] z : e C / } . This is a well known fact and it can be found in [12] 
or [3]. 

Thus, to show that (7, ri) is connected and locally connected it is enough to show that 
YD [e] ^ 0, for every e E Hu(u2, [0,1]). This easily follows from the density, in P, of a 
set 

E£ = {s E P : (3y E F)(s | |- " j € M")} 

= {5 E P : (3v e r)(V£ E dom(e))((y, £, e(O) G 5)} 

for every e e HJJJJI, [0,1]). 
The connectedness and local connectedness of (X,r) we can be deduced similarly. 

However we need a stronger fact, i.e., condition (2) of Lemma 1. We will show that for 
every / € J and e E H(J xw 2 ,%) 

(17) X D [e] \ I is nonempty and connected in (X, r), 

z.e., that condition (2) of Lemma 1 is satisfied for topologies r and T2. Notice that it 
obviously implies that (X, r) is connected and locally connected. 

By (16) in order to prove (17) it is enough to show that 

(18) XH [e] \ I -f 0 for every / E % and e E //w(( J U ^ ' ) x u;2, % ) . 

Condition (18) follows in natural way from the density of the sets 

E] = {sEP: (3x eX\I)(s | h "x E [£]")} 

= {sEP:(3x E X\/)(V(f,£) 6 dom(e))((ft*U,e(AO) G 5)} 

for all I E Jo and e E //w( J x 6̂ 2, %)• The density of this set can be, in turn, deduced 
from the fact that for every s E P 

/ ' = {* E X : f(x) = g(x) for (f, £), (g, 0 € dom(e),/ ^ g } E Jo, 

/" = {x e X : (/, 0 E dom(e) and (f(jc), 0 E dom(s)} E Jo 

so that there exists x E X \ (/ U /' U /"). 
To finish the proof it is enough to show that r and T2 are Baire and that C(r, T2) C 7, 

since the inclusion J C C(T,T2) is obvious. 
By way of contradiction let us assume that we can find h E C(T,T2) \ J- Let r7 be 

a weak topology on X generated by J"U ^/. Then, in particular, h E C(r',T2) \ J . We 
will use Lemma 1(B) for h, topologies r' and T2 and the a-ideal J. We already checked 
that (XjT7) and (K,T2) are regular, connected, locally connected, that Y is Hausdorff 
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and that countable subsets of Y are closed. Condition (2) of Lemma 1 is satisfied by 
(17), and J is equal to % from the Lemma 1 by (15). To use Lemma 1(B) we have to 
show that rin<Jen] ¥ 0 for everY sequence [en G / / ( ( J U %!) x o^,%) : « < a;} 
such that clx([ew+i]) C [en]. But it is easy to see that sets cl([en]), considered as subsets 
of the entire [0, l ] z , are compact, so they have nonempty intersection. However, we 
used only countable many coordinates in definitions of f]n<U} cl([en]). So, there exists 
S E HU((!FU!K!) x CJ2, [0,1]) such that [S] C f U , cl([e„]) = f W ^ n l - This, and (18), 
imply (B) of Lemma 1. This also imply easily that (X,r) is Baire. The proof that (F,T2) 
is Baire is similar. 

So, let XQ be as in Lemma 1(B) for h. Similarly as in the proof of Theorem 4(A) we 
will show that there exists an ordinal r\ < u>2 such that XQ E h~l (U (77, {0})}]) and that 
[e] n/z_1([{(r/? {1})}]) ^ 0 for every e E H(T x o;2, %) with x0 G [e]. This will give 
as a contradiction with the fact that h G C(T,T2), since *-1([{(»7J0,1/2))}]) would be 
nonempty open set with empty interior. 

By u^-chain condition of forcing P we can find C < ^2 such that h G V[g|yx<]- Since 
now we will work in V[g|yx<] with forcing notion Pi = H^Y x (u>2 \ 0? [0, 1]) • Clearly 
the set 

E0={sePx: On G u2 \Q(s \\- "Afo) G [{(rj, {0})}]")} 

= {s G Pi : (3r/ G ̂  \C)((^o),r / ,0) G s)} 

is dense in Pi. So, there exists 77 G a>2 \ ( such that XQ G /Z-1([{(T7, {0})}])- Let so G Pi 

be such that s0 \\- "*o G A-1 ([{(77, {0})}])". To show that 

[e]DA-1([{(i,,{l})}])^0 

for every E £ W ( ? X W 2 , ? ) ) with xo € [e] fix such an e. To finish the proof it is enough 
to show that the set 

E = {sePi :(BxeX)(s\\-"x€[e]nh-l([{(ri,{l})}])")} 

= is 6 Pi : (3x 6 [e|yx<])N (h(x), IJ, 1} € s) and 

(V(A 0 € dom(e), £ > C) ( s ( / « , t) € e(/(x), £)) j }. 

is dense in Pi below so-
To see it, choose t E P\, t < so. We must find s < r, s E P\ and an x G [e| jx<] 

such that (h(x),r]) E dom(s), s(h(x),rj) = 1 and for every (/, £) G dom(e), £ > (, 
we have (/(JC), £) G dom(j) with S(/(JC), £) G e(/X*), £). But let ft be the set of a l l / 
such that either (/", a) G dom(e) for some a or / is equal to a constant m EM, where 
M = {c : (c, j8) G dom(0 for some /3}. Then, it is enough to find x E [e| jx<] such that x 
does not belong to 

I={zeX:Gf,ge%)(f(z)=8(z)*ndfjg)}ej, 
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(Le., that/C*) ± g(x) and/W fÊ M for all (f, £), (*, 0 € dom(e),/ ^ g, £ > 0 . and that 

h(x) € h({z E [e\m] \ I : h(z) ?f(z) for al l / E 56}) \ M. 

But this can be done by the conclusion of Lemma 1(B). 
Theorem 4(B) has been proved. 
We will finish this paper with the following two problems. 

PROBLEM. Can we prove Theorem 4 or any of the Corollaries 4, 5, 6, 7 without any 
additional set-theoretical assumptions? 

PROBLEM. Can topologies from Theorem 4 or any of the Corollaries 4, 5, 6, 7 be 
normal? Lindelôf? hereditarily Lindelôf? compact? metrizable? 
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