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Density-to-deep-Z-density continuous
functions

1. Preliminaries

The class of real functions continuous with respect to the deep-Z-density
topology on the range and the density topology on the domain coincides with
the class of all constant functions. This determines of the last class from the
sixteen classes of continuous functions C(Ty,T») = {f: (R, T1) — (R, T2)},
where T stands for ordinary, density, Z-density or deep-Z-density topology
[2].

The notation used throughout this paper is standard. In particular, R
stands for the set of real numbers and N = {1,2,3,...}. For A, B C R and
d € R the complement of A is denoted by A¢, the Euclidean distance between
A and B by dist(A, B); i.e., dist(4,B) = inf{lz —y[:z € A,y € B} and we
define B—d = {z—d € R:z € B} and dB = {dz € R:z € B}. The families
of Lebesgue measurable subsets of R and of subsets of R with Baire property
are denoted by £ and B, while V and T stand for the ideals of Lebesgue
measure zero and of first category subsets of R. If A € £, we denote its
Lebesgue measure by m(A).

To define the density topology 7 4 and the deep-T-density topology To
we need the following notions of density and deep-I-density points (8, 10].

Let A € £. A number z, not necessarily in A, is a density point of A if

m(AN(z—h,z+h))

h1—1~I<I)1+ 2h =1L (1)

The set of all density points of A € £ is denoted as ®y(A). The family of
sets

Thw={AceL:ACPy(A)}
forms a topology on R [8, 4] called the density topology.

1 Received support from a West Virginia University Senate research grant.
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We say that 0 is a deep-I-density point of a set B € B [10] if there exists
a closed set A C B U {0} such that for every increasing sequence {nm}meN
of natural numbers there exists a subsequence {nm, }pen such that

pllrg‘é XﬂmpAn("lvl) = X(—lvl) I-a'e' (2)
It is worth noticing that condition (2) is equivalent to the fact that the set

liminfnn, A4 = U N nm,A (3)

qeNp>q

is residual in (—1,1). We say that a point b is a deep-I-density point of
B e B if 0 is a deep-T-density point of B —b. The set of all deep-Z-density
points of B € B is denoted as ®p(B). The family of sets

Tp= {B e B:B C @D(B)}

forms a topology on R called the deep-I-density topology [6, 10].

We will use also the following dual versions of the density points. We say
that z is a dispersion (deep-T-dispersion) point of A if z is a density (deep-
T-density) point of A°. In particular, 0 is a deep-I-dispersion point of A if
there exists an open B D (A4 \ {0}) such that for every increasing sequence
{nm}men of natural numbers there exists a subsequence {nm,}pen such that

(-1.1)n () Unm,B=(=11)0 limsup(nm,B) € T. (4)

qeNp>g p—eo

The symbols Const, C and Cap stand for the classes of real functions that
are constant, ordinary continuous and continuous with the density topol-
ogy on the domain and deep-ZI-density topology on the range, respectively.
Baire*1 denotes the class of all functions f:R — R with the property that
for every perfect set P there is its nonempty portion @ = PN(a,b) such that
f restricted to @ is continuous [T].

We say that any of the sets Unen(@n, bs) or Unetil@n, bs) is a right interval
set of a point a € Rif ap4 < bppr < ap < by forn €N and limp—eo @ = a.
In the case when a = 0 we simply say that it is a right interval set.

We need also the following two propositions. The first one can be found

in [1, Lemma 2.4]. (Compare also [9, Theorem 1] and [10, Theorem 2].) The
second in [2, Lemma 2.4].
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Proposition 1. If E = Unen(tn, bn] is a right interval set such that
(1) limy—oo (bn — an)/an = 0; and

(i1) limp—oo bpt1/an =0,

then 0 is a deep-T-dispersion point of E. In particular, E° € Tp.

Proposition 2. Let C C (0,1] be a closed nowhere dense set and let
{bn}nen be a decreusing sequence of positive numbers such that the limat
linn—co brns1/bn = 0. Then 0 is a deep-I-dispersion pount of the set

= | baC.

nely

In particular, E¢ € Tp.

2. Continuous functions
We will start this section with the following lemma.

Lernma 3. Let f:R — R be a measurable function such that f(0) =0 and
let ¢ € (0,1). If E = Unenlan, ba] s a right interval set such that, for every
neN, a, > cbh, and {d.}nen is a sequence from (0,1) such that

m(f~ ([an, 0a]) N (0,dn)) 2 dn/2, (5)
then f & Cnp.

Proof. The sets f~([an,b,]) N (0,1) are pdxxwwe disjoint and bounded.
Therefore limn—o m(Uksn £~ ([0k, b4]) N (0,1)) = 0. From this and (3) it
follows that limp—. dn = 0.

Taking a subsequence, if necessary, we can assume that
lim b b, = 0.
o n-{»—l/ n
We may also assume that a, = ¢b,, because decreasing a, does not change

(5).

There are two cases to consider:

173



(1) there is a point = € (c,1) and an ¢ > 0 such that such that for every
nontrivial interval I C (c,1) containing z and for every k € N there is
ng > k with m(f=1(bs )N (0,dyn,)) = €dn,; and

(2) for every z € (c,1) and every ¢ > 0 there exists an interval I C (¢, 1)
containing z and an k € N such that m(f~1(b,I) N (0,d5)) < edyn for
every n > k.

Case (1). Let z and ¢ be as in the assumption. Put no = 0 and, by
‘nduction on k € N, define a closed interval Iy C (z—1/k,z +1/k) N (e, 1)
and an ny > ng_1 such that

m(f‘—l(bnkjk) N (07d"k)) 2 Sdnk' (6)

Then, by Proposition 1, 0 is a deep-ZI-dispersion point of the interval set
D = UneN bny. Ik, While d(f~Y(D),0) # 0, because

s U N0 dn)) S g

k—o0 dﬂ-k

Hence, D¢ € Tp and f~YDe) ¢ Tw; te., f & Cxp.

Case (2). Let {gx: k¥ € N} be an enumeration of the rational numbers in
(¢,1) and let 6 € (0, 1/2). Put no =0 and, by induction on k € N, define an
open interval [i containing gx and a number ny > nk_1 such that

o £~ (buyIy) 1 (0,dn,)) < .2§_d

Let C = [c,1]\ Uken In,- Then, C is closed and nowhere dense. By Propo-
sition 2, 0 is a deep-I-dispersion point of E = Uken bnC. So, E€ € Tp. On
the other hand, 0 is not a dispersion point of fY(E), as

m(f7(E) N (0, dn,)) m(f~*(ba, C) N (0, drs )

mint = 2 lipint =
o= 5 1
> --S —>--6>0.
2 37 Lgm =07

Thus, f~(E%) € T and f & Cap-

Now we are ready for the main result of this section.
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Lernma 4. CNCyp = Const.

Proof. Evidently, Const C C NCyp. To prove the opposite inclusion, let
f € C\ Censt. We will show that f & Cyp by using Lemnma 3. Let a < b
be such that f(a) # f(b). We may assume that f(a) < f(b) and, by the
continuity of f, that f((a,b)) = (f(a), f(b)). We may also assume, moditying
of f in a linear way, if necessary, that f(a) = ¢« = -1 and f(b) = b = 1.
Then, we obtain f(—1) = -1, f(1) =1 and f((-1,1)) = (=1,1).

We construct, by induction on n € N, the sequences: {a,}, {b,}, {c.}
and {d,} of real nurnbers and sequences {I,} and {J,} of intervals. We start
by putting ag = ¢o = —1, bg = do = 1 and [y = [~1,1]. Then we procede
inductively to obtain the following conditions:

(a) In = [an, bn);

(b) f(ca) =an and f(d,) = by;

(c) fl(en,dn)) = (aa, ba);

(d) In € {[an-1,(@no1 + bac1) /2], [(anet + bae1) /2,601 ]}
(e) Jn=cl(laza\ L1);

() m(f~H(Jn) N [ea1,dn1]) 2 (dacy = cam1)/2.

The inductive step is self-explanatory. First, select I, as in (d) to satisty
(). If [n = [ano1, (@nor + bae1)/2] then we put ¢, = ¢,y and d, = min{z €
(a1, daor]: f(7) = (@noy + bao1)/2}. In the other case, proceed similarly.

Let ¢ € (Mnen[ca, da]. Then, f(2) € MNuen Lo We may assuine, translating
f, if necessary, that « =0 = f(z).

Evidently, m(I,) = 2m(l,41). A simple argument shows that for every
n € N either dist(J,, [;) > m(J,)/4 or dist(Jary, [;) > m(Jasy)/4 for all
J 2 n + 2. This allows us to choose a subsequence {n;} such that

dist(Jay,0) > m(Jn, )/4 (7)

for all & € N. Tt is easy to assume that a subsequence {n;} is choosen
in such a way that the intervals {J,, } are monotone and on oune side of 0.
For simplicity we assume that £ = Ugen Ja, is a right interval set. Then,



condition (7) implies that minJn, 2 (1/5) max J,,. Thus, the first part of
the assumptions from Lemma 3 1s satisfied for the set E with ¢ = 1/5. To
finish the proof we will show that the second part is satisfied as well.

First notice that for infinitely many k we have either

m(f—l(‘]nk) N [0, dnk-—l]) > m(f—l(Jnk) N [Cry-1, 0)) (8)

dnk—l —Cnp—1

or the converse inequality (where, 0/0 is considered to be 0.) Without loss of
the generality we may assume that (8) holds for every k. But this, together
with (f), implies that

m(f—l(']nk) N [07d”k—1]) 2 dﬂk—1/2'

Thus, the assumptions of Lemma 3 are satisfied and Lemma 4 is proved.

3. General case

For the next step, the following definition and lemma are needed [5, Lemma
29.1].

A partition of a set E is a pairwise disjoint family Il = {E:t € A}
such that U;ep Ei = E. Note that any partition II can be associated with a
function F: E — A such that F(z) = F(y) if, and only if, z and y belong to
the same E; € II. Conversely, any function F: E — A determines a partition
of E.

For a set A and n € N define

[A]* = {B C A: card(B) =n}.

IfII = {E;:i € A} is a partition of [A]", then a set H C A is homogeneous for
the partition II if, for some 7 € A, [H]" C E:. That is, all n-element subsets
of H are in the same piece of the partition II.

Lemma 5. (Ramsey’s Theorem) If n,k € N, then every finite partitzon
II = {E,Es,...,Ec} of [N]* has an infinite homogeneous set. In other

words, for every F:[N]* — {1,2,...,k} there exists an infinite H C N such
that F is constant on [H]™.
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The next lemma combines the proofs of the theorems that density contin-
wous functions and deep-Z-density continuous functions are in Baire®1 class

[3, Theorem 3], [1, Theorem 4.2].
Lemma 6. Cyp C Baire*1.
Proof. Assume to the contrary that for some perfect set P the set
Z = {z € P: f|p is not continuous at z}

is dense in P.

We will construct sequences: {Z.}nen of points of P, {(@n,bs)}nen of
open intervals, {J.}nen of compact intervals, and {In}nen of open intervals
having the same midpoint as the corresponding Jn, and contained in that
corresponding J,. The construction is inductive, and aimed at having all the
objects obtained satisfy the conditions (a) through (f) listed below.

Start by choosing zo € Z, (ao,b0) = (zo — lL,zo+ 1) and [o = Jo = 0.
Assume that for all n € N and all: € N, 1 <7 < n, it holds that:

(a) f(zi) € L CJi
(b) Jioy N Ji =0 and, for: > 2,

m(J;) < %min{dist(Jk, Jes1): k€ Nk <i—1};

(¢) m(J;) < w(flp,z:) and 0 < m(l;) < 27'm(Jy);
(d) z; € (ai, b)) N Z C [as, 0] C (ai-1, biz1);

(e) (bi—a;) <27 and,

(£) m(f~H (L) N (ai b)) > (1 —279)(bi — @),

To continue with the inductive step, note that by (c) and (d), we are able
to choose

y € PN fHJIL) N (an, bn).

If y € Z, then let z,41 = y. Otherwise, flp is continuous at y. In this case,
the fact that Z is dense in P guarantees the existence of

Tnpr € PN FTHIE) N (an, ba) N Z.
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Because J, is closed and z,4+1 € Z, there is a closed interval J,4+1 centered
at f(zn41) such that Jopa Ny = 0, 0 < m(Jng1) < w(flp,Tnt1) and, for
1> 2,

m(J;) < %min{dist(Jk, Jez1): ke Nk <i—1}.

Setting In+1 to be the closed interval centered at f(zn41) with length equal
m(Jne1)/271, it follows that (a), (b) and (c) are true with ¢ = n + 1. Next,
use the approximate continuity of f at zn4+; to find an interval (an+1, bny1) C
(an, by) containing z,41 such that (d), (e) and (f) are satisfied. The induction
is complete.

Let
{z} = [ [an,bal.

nEN

We show that there is an increasing sequence {n;};cn of natural numbers
such that

(1) f(z) is a deep-I-dispersion point of U;en In,, and
(2) z is not a dispersion point of f™ (Usen In,)-

This implies that f € Cup.
First notice that z is not a dispersion point of f~! (Uien In,) for every
sequence {n;};cn as, by condition (f),

lim m(f_'l(fn.') N (ann bn.’)) _

1—00 m((ann bﬂ-{))

To find an increasing sequence {n;};en of natural numbers such that con-
dition (2) is satisfied we will consider two cases.

Case 1°. There exists an increasing sequence {n,};en of natural numbers
such that the J, are pairwise disjoint.

By taking a subsequence of {n;};cn, if necessary, it may be assumed that

U T

ieN

is either a right or left interval set. For simplicity, assume it is a right interval
set.
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Let J,, = [c;,di] and I, = (@i, B8;). Then
flz)=0<dip1 <ci <o < Bi < d;
for all 2. Condition (c) states that

Bi — a; _ m(In.') < _}_
di—c; m(J,) 2™

Let z, be the common center of I, and J,, for n > 0. Then

. Bi—ai . B _ . Bi—a . B
lim = ! < lim = * < lim L =2 lim &—F
1—0o0 N 1— 00 ZTL 1—O0 Zn‘. _ Ct 1—0Q dl — Ct

= 0.

The above allows us to choose a subsequence of {n;}:cn satisfying the as-
sumptions of Proposition 1.

Case 2°. There is no pairwise disjoint subsequence {Jn, }icn of the se-
quence {J,} nen.

Let us first consider the subsequence {Jant1}nen, indexed by the odd
numbers, of the sequence {Jn}nen. Define a partition function F:[NJ* —

{0,1} by
F({n,m}) =1 If, and only lf, J2n+1 N J2m+1 ‘7‘—/‘ @

By Lemma 5 (Ramsey’s Theorem) there exists an infinite homogeneous sub-
set {n;}ien of N; i.e., a sequence {n;};en of natural numbers such that for
some k € {0,1}, F ({n:,n;}) = k for all positive integers ¢ # j. But &k =0
would contradict the definition of the case 2°, which is currently considered.
Thus k£ = 1; 1.e.,

Janis1 N Jan 41 # 0 (9)

for all nonnegative integers ¢ # J.
Now let us repeat the Ramsey-type argument, which was used above, for
the even-numbered counterparts of {Jan+1}ien. Define G: [N]* — {0,1} by

G({i,7}) =1 if, and only if, Jon, N Jon; # 0.

By Lemma 5 (Ramsey’s Theorem) there exists a subsequence {ni,}sen of
{ni}ien such that
J?n,'s m JQ‘n"t ?’L' @ (10)
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for all nonnegative integers s # t, while condition (9) is still preserved, or
more precisely

']211.,',+1 N J’Zn.‘t-{-l # @ (11)

for s % . Define & = dist (Jan,,» Jang+1). By (b), £ > 0. Moreover, by (b),
(10) and (11)

. €
BO = U J2"is C {:r:dxst <I7J2ﬂ;0) < g}
seN
and A
B, = U Jon,,+1 C {x:dist (:E,Jzn‘» -H) < 1}.
° 3
sEN
Hence .
d.ISt(Bo,Bl) > § > 0.
Note that
So = U Ipn,, C Bo
s>0
and

S1 = U Ion,,+1 C B;.

s>0
Thus dist(So, S1) > 0, which implies that either

dist(f(zx),So) > 0

or

dist(f(z).Sy) > 0.

This clearly means that f(z) is an I-dispersion point of either So or Si.
This finishes the proof of Lemma 6.

Now, we are ready to prove our main theorem.
Theorem 7. Cyp = Const.

Proof. Evidently, Const C Cap. To prove the other inclusion, let f €
Cunp. By Lemma 6 the set

U = int({z € R: f is continuous at z})
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is dense. Notice that U¢ does not have any isolated points, because the
approximately continuous function f has the Darboux property. Thus, the
set P = U¢ is perfect. We prove that P = (. By way of contradictions let
us assume that P # 0 and let {(an,b,):n € N} be an enumeration of all
components of U. Notice that, by Lemma 4, f is constant on any interval
(@n, by) and, by the Darboux property, also on [an, b.)-

Now, let us use Lemma 6 for f and P. Then, there is a nonempty portion
Q = PN (c,d) on which f is continuous. The set P is nowhere dense, so
there exists an n such that (c,d) N (an,b,) # 0. Then, (c,d) U (an,b,) is an
interval properly containing (a,,b,). We will obtain a contradiction with the
assumption that (@, b,) is 2 component of U by showing that f is continuous
on J = (¢,d)U(an,b,). So,letz € J. If z € U, then evidently f is continuous
at z. If z € P, then choose a sequence {z;};cn converging to ¢ and define

{I,‘ if z;,€ P
Yi =

a, for z; € (an,bn).
Then, y; € P, f(z;) = f(y;) for i € N and lim;_, y; = =. Moreover,

lim f(z:) = lim f(y:) = f(z)

1—00

as f|p is continuous at z. Hence, f is continuous at z.
This finishes the proof of Theorem 7.
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