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Analytic functions are I-density continuous

Krzysztof Ciesielski, Lee Larson

Abstract. A real function is I-density continuous if it is continuous with the I-density
topology on both the domain and the range. If f is analytic, then f is I-density con-

tinuous. There exists a function which is both C1 and convex which is not I-density
continuous.
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Let T N stand for the density topology on the real line, R. A function f :R ! R

is density continuous at the point x if it is continuous at x when T N is used on
both the domain and the range. The class of all everywhere density continuous
functions is written as CNN . It is known that all locally convex functions are
density continuous, and it follows quite easily from this that all analytic functions
are in CNN . But, there are C1 functions which are not in CNN [2].

W. Wilczy�nski [4] introduced the I-density topology on R, which has many
properties in common with the density topology, except that it is based upon
category instead of measure. (For its de�nition see [4] or [3].) The I-density
topology is denoted here by T I . The I-density continuous functions, CII , are
those functions f :R ! R which are continuous when the domain and range are
both given the topology T I .

It is natural to ask if the known properties of the density continuous functions
can be proved in the case of the I-density continuous functions. It turns out that
some properties can and some cannot be proved. Theorem 7, given below, estab-
lishes that analytic functions are I-density continuous, but the proof is necessarily
di�erent from the case of the density continuous functions because we also exhibit
in Example 10, a convex and C1 function which is not I-density continuous.

The notation used here is fairly standard. The set of subsets of R with the
Baire property is written as B. I stands for the ideal of �rst category subsets
of R. C1 is the set of all functions f :R ! R which are in�nitely di�erentiable at
every point and A stands for the collection of all real analytic functions. A set E
is a right interval set at a point a 2 R, if E =

S
n2N

[an; bn] or E =
S
n2N

(an; bn)
where an ! a and an > bn+1 > an+1 for all n 2 N . The de�nition of a left
interval set at a is similar. The set E is an interval set at a, if it is the union of
a right and left interval set at a. Any interval set at 0 is just called an interval
set.
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An open set S is said to be regular, if S = int (cl (S)). In particular, it can

be shown that for any B 2 B, there is a unique regular open set, ~B such that
B4 ~B 2 I . This observation is important below because it often enables us to
replace an arbitrary B 2 T I by ~B without losing any generality in a proof.

We begin by stating several known results which are needed below. The �rst
is essentially the same as [5, Theorem 2].

Lemma 1. Let fcngn2N be a decreasing sequence of positive numbers converging

to zero and, for each n 2 N , let (an; bn) be an open interval centered at cn. If

lim
n!1

cn+1
cn

= 0 and lim
n!1

bn � an
cn

= 0;

then 0 is an I-dispersion point of [
n2N

[an; bn]:

Theorem 2. Let B be a regular open set. The following statements are equiva-

lent:

(i) 0 is an I-dispersion point of B.

(ii) For every increasing sequence ftkg of positive numbers diverging to in�nity

there exists a subsequence ftkig such that

(1) lim sup
i!1

tkiB \ (�1; 1) 2 I:

(iii) For every increasing sequence ftkg of positive numbers diverging to in�nity

and every nonempty interval (a; b) � (�1; 1) there exists a nonempty

subinterval (c; d) � (a; b) and a subsequence ftkig such that for every

i 2 N
(c; d) \ tkiB = ;:

Proof: The fact that (i) and (ii) are equivalent is known [3, Theorem 1].
Assume that (ii) is true, but that there exists an interval (a; b) � (�1; 1) for

which (iii) fails. Then every subinterval (c; d) � (a; b) has the property that
fk : (c; d) \ tkB = ;g is �nite. From this it is apparent that lim supi tkiB is
a dense G� subset of (a; b) � (�1; 1) for every subsequence ftkig of ftkg. This
contradicts (1), so (iii) must be true.

Finally, suppose that (iii) is true. Let dn be a countable dense subset of (�1; 1)
and suppose In is a sequential representation of the set f(dn; dm) : n;m 2 N ; dn <
dmg. Applying (iii), there must exist an interval J1 � I1 and a subsequence ftk1mg

of ftkg so that tk1mB \ J1 = ; for all m. Proceeding inductively, for each i 2 N

there must exist an interval Ji+1 � Ii+1 and a subsequence t
ki+1m

of tkim such that

t
ki+1m

B \ Ji+1 = ; for each m. Since fdn : n 2 Ng is dense in (�1; 1) it is clear

that lim supi tkii
B \ (�1; 1) 2 I, and (ii) follows. �

The following theorem is a consequence of [1, Corollary 1].
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Theorem 3. If f :R ! R is monotone and satis�es the Lipschitz condition

0 < �jb� aj < jf(b)� f(a)j < �jb� aj <1

for all distinct a and b in some interval I , then f is I-density continuous on I .

The �rst order of business is to prove that A � CII . The following two
technical lemmas are needed for the proof.

Lemma 4. Let f; h: [0;+1)! [0;+1) be homeomorphisms such that

lim
x!0+

h�1(x)

f�1(x)
= 1:

Then for every 0 < c < c0 < d0 < d there exists "0 > 0 such that for every

" 2 (0; "0),
f
�
("c0; "d0)

�
� h (("c; "d)) :

Proof: Since c=c0 < 1 and d=d0 > 1 we can �nd �0 > 0 such that for every
x 2 (0; �0)

(2)
c

c0
<

h�1(x)

f�1(x)
<

d

d0
:

Using the continuity of f�1 at 0 we can �nd "0 > 0 such that f((0; "0d)) � (0; �0).
Now let " 2 (0; "0) and x 2 f(("c0; "d0)) � f((0; "0d)) � (0; �0). So, (2) holds

and f�1(x) 2 ("c0; "d0); i.e.,

"c0 < f�1(x) < "d0:

Multiplying the above inequality by (2), we obtain

"c < h�1(x) < "d;

which implies x 2 h (("c; "d)).

Lemma 5. If f; h : [0;1)! [0;1) are homeomorphisms satisfying

(3) lim
x!0+

h�1(x)

f�1(x)
= 1;

then h is right I-density continuous at 0 i� f is right I-density continuous at 0.

Proof: Without loss of generality we may assume that both functions are in-
creasing, as the decreasing case is essentially the same.
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So assume that h is right I-density continuous at 0. It will be shown that
f is right I-density continuous at 0. This will �nish the proof, as the converse
implication follows by exchanging f with h.

Let us choose B 2 B, 0 =2 B, which has 0 as an I-dispersion point. We will use
Theorem 2 to prove that 0 is a right I-dispersion point of f�1(B).

First, notice that since f and h are both homeomorphisms, we may assume
that B is a regular open set. Choose a divergent increasing sequence of positive
real numbers ftkgk2N and a nonempty interval (a; b) � (0; 1). Since 0 is a right
I-dispersion point of h�1(B), there exists a nonempty interval (c; d) � (a; b) and
a subsequence ftkpgp2N of ftkgk2N such that for every p 2 N

(c; d) \ tkph
�1(B) = ;:

But this last condition is equivalent to

h

  
1

tkp
c;

1

tkp
d

!!
\ B = ;:

Now let 0 < c < c0 < d0 < d. Then, by Lemma 4,

f

 
1

tkp
c0;

1

tkp
d0

!
� h

 
1

tkp
c;

1

tkp
d

!

for almost all p 2 N . This implies that for almost all p 2 N

f

  
1

tkp
c0;

1

tkp
d0

!!
\ B = ;;

or
(c0; d0) \ tkpf

�1(B) = ;:

This �nishes the proof of Lemma 5. �

The following theorem, which is interesting in its own right, is also needed in
what follows. Its analogue for ordinary density continuity is also known to be
true [2].

Theorem 6. For any � 2 R, the function f(x) = x� is I-density continuous on

its domain.

Proof: If x 6= 0 and f(x) exists, then it is clear that on a neighborhood of x, f
satis�es the conditions of Theorem 3, so f is I-density continuous at x.

Suppose x = 0 and � > 0. It su�ces to show f is right I-density continuous
at 0. Let B 2 B such that 0 is an I-dispersion point of B. It must be shown that
0 is a right I-dispersion point of f�1(B).
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To do this, �rst note that f is a homeomorphism on (0;1), so f�1(S) 2 I
whenever S 2 I and there is no generality lost with the assumption that B is a
regular open set. Choose any nonempty interval (a; b) � (0; 1) and an increasing
sequence fskgk2N of positive numbers diverging to in�nity. Let (a0; b0) = f((a; b))
and de�ne the increasing sequence

tk =
1

f(1=sk)
!1:

Using Theorem 2, there exists an interval (c0; d0) � (a0; b0) and a subsequence
ftkig of ftkg such that

(c0; d0) \ tkiB = ; for all i 2 N :

Suppose that (c; d) = f�1((c0; d0)). Then a straightforward calculation shows

; = f�1
�
(c0; d0) \ tkiB

�
= (c; d) \ f�1

�
1

f(1=ski)
B

�

= (c; d) \
�
s��ki B

��1=�
= (c; d) \ ski(B)

�1=�

= (c; d) \ skif
�1(B):

From Theorem 2, we see that 0 is a right I-dispersion point of f�1(B), and the
theorem follows. �

Theorem 7. A � CII .

Proof: Let h 2 A. It is enough to prove that h is I-density continuous at 0.
We prove that h is right I-density continuous at 0. The left-hand argument is
similar.

Let h(x) =
P1

n=0 anx
n. We can assume that a0 = 0. Since the I-density

topology is closed under homothetic transformations of its open sets, we can also
assume that for i = minfn: an 6= 0g we have ai = 1. Now let f(x) = xi. Because
h is analytic, h�1 exists on some right neighborhood of 0. Let us assume that
h�1 is positive on this neighborhood, the other case being similar. Then

1 = lim
x!0+

h(x)

xi
= lim

x!0+

h(h�1(x))

(h�1(x))i

= lim
x!0+

 
x
1

i

h�1(x)

!i

=

�
lim
x!0+

f�1(x)

h�1(x)

�i
:
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Hence,

lim
x!0+

h�1(x)

f�1(x)
= 1

and, by Lemma 5 and Theorem 6, h is I-density continuous at 0. �

After seeing that A � CII , it is natural to ask whether the same can be claimed
for C1. This turns out not to be true. The lemma and theorem given below are
used to establish this fact.

Lemma 8. Let f 2 C1 be such that for every n � 0

f (n)(0) = 0 and f (n)((0; "n)) � (0;1); for some "n > 0:

Then

lim
x!0+

f(ax)

f(x)
= 0;

for every a 2 (0; 1).

Proof: Let a 2 (0; 1) and n 2 N . Moreover, let us choose " > 0 such that

0 < " < "k for every k � n+ 1. In particular, f (n) is increasing on (0; "), and so�����f
(n)(a�)

f (n)(�)

����� < 1 for every � 2 (0; "):

Now let x 2 (0; ") and let g(x) = f(ax). Using Cauchy's Theorem n-times we can
�nd � 2 (0; x) such that

����f(ax)f(x)

���� =
���� g(x)f(x)

���� =
����� g

(n)(�)

f (n)(�)

����� = janj

�����f
(n)(a�)

f (n)(�)

����� < an:

Thus,

lim
x!0+

f(ax)

f(x)
= 0:

Theorem 9. Let f 2 C1 be such that for every n � 0

f (n)(0) = 0 and f (n)((0; "n)) � (0;1) for some "n > 0:

Then f is not I-density continuous.

Proof: We start with a proof that f is not right I-density continuous at 0. Let
Dn = f i

2n : i = 1; 2; : : : ; 2ng for n 2 N . First notice that if a sequence fnkgk2N is
such that

(4) nk+1 > 2knk for every k 2 N ;
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then

min
1

nk
Dk =

1

nk

1

2k
>

1

nk+1
= max

1

nk+1
Dk+1:

This means that if fsigi>1 is a decreasing ordering of D =
S
k2N

1
nk

Dk, then

1

nk
Dk = fsi: 2

k � i < 2k+1g:

We also de�ne a sequence fnkgk2N by induction on k such that it will satisfy
condition (4) and for every k > 0

(5)
f(si)

f(si�1)
�

1

k
for 2k � i < 2k+1:

Put n1 = 1 and assume that nk�1 has already been chosen for some k > 1.

Choose nk > 2k�1nk�1 such that

f(2
k�1
2k

x)

f(x)
<

1

k
; for all x 2 (0;

1

nk
):

Such a choice is possible by Lemma 8. Then, the above condition obviously implies
condition (5) for 2k < i < 2k+1. Increasing nk, if necessary, we can also obtain

condition (5) for i = 2k. This �nishes the construction of D.
Now let f(an; bn)gn2N be a sequence of pairwise disjoint intervals such that

every interval (an; bn) is centered at cn = f(sn) and that

lim
n!1

bn � an
cn

= 0:

By (5),

lim
n!1

cn+1
cn

= 0

so, by Lemma 1, 0 is an I-dispersion point of the interval set

E =
[
n2N

(an; bn):

On the other hand, we notice that for every subsequence fnkigi2N of fnkgk2N ,
the set [

i2N

nkif
�1(E) �

[
i2N

Dki

is dense and open in [0; 1]. So, 0 is not a right I-dispersion point of f�1(E) and
f is not I-density continuous at 0. �
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Example 10. There exists a convex C1 function that is not I-density contin-

uous.

Proof: De�ne g: (�1; 0:5)! R by

g(x) =

(
e�x

�2

x 2 (0; 1=2)

0 x 2 (�1; 0]

Examining the second derivative of g it is easy to see that g is convex on (�1; 1=2).

It is well-known that f 2 C1 and that f (n)(0) = 0 for all n. Repeated di�er-
entiation of f makes it apparent that for each n there is an "n > 0 such that

f (n)(x) > 0 whenever 0 < x < "n. Now an application of Theorem 9 �nishes the
argument. �

It is also not di�cult to see that the function described in Theorem 9 does not
preserve I-density points. In particular, the function g from Example 10 does not
preserve I-density points.
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