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Category theorems concerning I-density
continuous functions
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Krzysztof C i e s i e l s k i (Morgantown, W.Va.)
and Lee La r s on* (Louisville, Ken.)

Abstract. The I-density topology TI on R is a refinement of the natural topol-
ogy. It is a category analogue of the density topology [9, 10]. This paper is concerned
with I-density continuous functions, i.e., the real functions that are continuous when the
I-density topology is used on the domain and the range. It is shown that the family
CI of ordinary continuous functions f : [0, 1] → R which have at least one point of I-
density continuity is a first category subset of C([0, 1]) = {f : [0, 1] → R : f is continuous}
equipped with the uniform norm. It is also proved that the class CII of I-density con-
tinuous functions, equipped with the topology of uniform convergence, is of first category
in itself. These results remain true when the I-density topology is replaced by the deep
I-density topology.

1. Introduction. The ordinary density topology on R is defined to
be the collection of all subsets of R which have full Lebesgue density at
every point [1]. The collection of all sets open in the density topology
is denoted by TN . The open sets in the ordinary topology are denoted
by TO. A function f : R → R is approximately continuous at a point x
if it is continuous at x with the ordinary topology on the range and the
density topology on the domain, and it is density continuous at x if it is
continuous at x when TN is used on both the domain and the range. The
spaces of everywhere ordinary continuous, approximately continuous and
density continuous functions f : R → R are denoted by COO, CNO and
CNN , respectively.
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The structures of COO and CNO are quite well understood, but CNN is
more difficult to study, mainly because it is closed neither under addition
nor uniform convergence [4]. In particular, the relationship between density
continuity and ordinary continuity is quite complicated. The definitions
yield at once that COO ⊂ CNO ⊃ CNN , but it is not hard to construct
examples showing that

(1) COO �⊂ CNN �⊂ COO

[4, 5]. The following theorem is known [6].

Theorem 1. Let COO be given the topology of uniform convergence. If
C is the subset of COO consisting of functions with at least one point of
density continuity , then C is a first category subset of COO.

A combination of this theorem with the fact that every density contin-
uous function is continuous on a dense open set can be used to show the
following corollary [6].

Corollary 2. If CNN is given the topology of uniform convergence,
then it is a first category subset of itself.

Let I be the collection of all first category subsets of R and E ⊂ R. A
point x ∈ R is an I-dispersion point of E if for every increasing sequence of
natural numbers {tn} there is a subsequence {tnm

} such that

lim sup
m∈N

tnm
(E − x) ∩ (−1, 1) ∈ I .

The point x is an I-density point of E if it is an I-dispersion point of
Ec. Using this category density instead of Lebesgue density, the I-density
topology , TI , is defined to consist of all Baire sets E ⊂ R such that every
point of E is an I-density point of E [9, 10].

TI has many properties in common with TN , but TN is completely reg-
ular while TI is not. To remedy this, a topology coarser than TI , called
the deep I-density topology, is introduced in the following way. A point x
is a deep I-density point of the set E ⊂ R if there is an ordinary closed set
F ⊂ E ∪ {x} such that x is an I-density point of F . Using the idea of deep
I-density, the deep I-density topology , TD, is defined in the by now familiar
way [7]. TD is completely regular [7].

Given these two topologies based on I-density, the I-density continuous
functions, CII , and deep I-density continuous functions, CDD, are defined
in the natural way.

It is reasonable to ask if the known properties of the density continuous
functions can be proved in the case of the I-density and deep I-density
continuous functions. The purpose of this paper is to establish Theorem 1
and Corollary 2 using these topologies in place of the density topology.
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2. Comparison with COO. The purpose of this section is to prove
that the I-density continuous and deep I-density continuous functions have
the same relationship to the ordinary continuous functions as do the density
continuous functions. First, in analogy to (1), it is known [5] that

(2) CII ⊂ CDD �⊃ COO and CII �⊂ COO .

Moreover, the containment in (2) is proper [5]. To give some idea of just
how delicate the situation is, note the following lemma [2], [5, Example 5.7].

Lemma 3. There exists a convex C∞ function that is not deep I-density
continuous.

To proceed further toward the proof of a theorem similar to Theorem 1,
some more definitions must be introduced.

If A is a measurable subset of R, then its measure is denoted by m(A).
A set of the form

⋃
n∈N

[an, bn] or
⋃

n∈N
(an, bn) is a right interval set if

bn > an > bn+1 > 0 for all n ∈ N and an → 0. The definition of a
left interval set is obvious. Any set which is the union of a right and left
interval set is just called an interval set . The following lemmas give useful
techniques for constructing I-density open sets [3], [10, Theorem 2].

Lemma 4. If B =
⋃

n∈N
(an, bn) is a right interval set and there exists a

positive number c such that

(bn − an)/bn > c

for every n ∈ N, then 0 is not an I-dispersion point of B.

Lemma 5. If
⋃

n∈N
[an, bn] is a right interval set with

lim
n→∞

(bn − an)/bn = 0 ,

then there exists an increasing sequence {nm}m∈N of natural numbers such
that 0 is an I-dispersion point of

⋃
m∈N

[anm
, bnm

].

Theorem 6. Let CI denote the class of all continuous functions f :
[0, 1] → R which have at least one point of I-density continuity. Then CI is
a first category subset of C([0, 1]).

P r o o f. We will show that there exists a dense Gδ subset E of C =
C([0, 1]) such that every f ∈ E is nowhere I-density continuous.

For every n ∈ N denote by Dn the set of all f ∈ C such that for every i =
1, 2, . . . , 2n, f is linear and nonconstant on every interval [(i− 1)2−n, i2−n].
Note that Dn+1 ⊃ Dn for every n ∈ N and D =

⋃
n∈N

Dn is a dense subset
of C.

For f ∈ C define

‖f‖n = max
i=1,2,...,2n

|f(i2−n) − f((i− 1)2−n)| .
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We claim that for each open set U in C, there exists an n ∈ N and a
function f ∈ Dn such that the ball in C centered at f of radius ‖f‖n is
entirely contained in U . To see this, first find an m ∈ N and an f ∈ Dm

such that f ∈ U . Since U is open, there is a δ > 0 such that the open ball
of radius δ centered at f is contained in U . Using the uniform continuity of
f , we can find an n > m such that if |x− y| < 2−n, then |f(x) − f(y)| < δ.
From this it is clear that f ∈ Dn and ‖f‖n < δ. The claim becomes evident.

We now start the construction of the Gδ set E as the intersection of
dense open sets Wk.

Let k ≥ 1 be an integer and let U be a nonempty open subset of C.
Choose f and n ≥ k as above. For j = 0, 1, 2, . . . , 2n+1, define

g(j/2n+1) = f(j/2n+1) .

If i2−n ≤ j2−n−1 < (j + 1)2−n−1 ≤ (i + 1)2−n, where i ∈ {0, 1, 2, . . . ,
2n − 1}, put

Li = (i2−n, (i + 1)2−n) , Mj = (j2−n−1, (j + 1)2−n−1)

and let Kj = [aj , bj ] be an interval concentric with Mj such that

m(Kj)/m(Mj) = 1 − 1/2n = 2m(Kj)/m(Li) .

Choose I0j = [cj , dj ] concentric with the interval f(Mj) and such that

m(I0j )/m(f(Mj)) = 1/2n .

Define the function g to be linear on each of the intervals [j2−n−1, aj ],
[aj , bj ], and [bj , (j + 1)2−n−1] in such a way that g([aj , bj ]) = [cj , dj ] = I0j .
(See Fig. 1.) Thus, if

Jj = f(Mj) = g(Mj) ,

then

m(g(Kj))/m(g(Mj)) = m(I0j )/m(Jj) = 1/2n ,

m(g−1(I0j ))/m(g−1(Jj)) = m(Kj)/m(Mj) = 1 − 1/2n .

Note that g is contained in the open ball centered at f of radius ‖f‖n. Thus,
g ∈ U .

Let W k
U be the open ball centered at g of radius

(3) εk = 2−n−1 min
i=1,2,...,2n

|f(i/2n) − f((i− 1)/2n)| > 0 .

Obviously Wk =
⋃
{W k

U : U is open and nonempty in C} is open and dense
in C, so that E =

⋂
k∈N

Wk is a residual set in C. We will show that if h ∈ E
then h is nowhere I-density continuous.
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g(x)

dj
Jj I0j

cj

Kj

i2−n j2−n−1 aj bj (i + 1)2−n

Mj

Fig. 1. The function g(x)

Let x ∈ [0, 1] be arbitrary. We will choose intervals Im, m ∈ N, such
that h(x) is an I-dispersion point of

⋃
m∈N

Im, but x is not an I-dispersion
point of h−1(

⋃
m∈N

Im). This will prove that h is not I-density continuous
at x.

Let m ∈ N. We have h ∈ Wm, so there exists a set U , open in C, such
that h ∈ Wm

U . Let g be the center of Wm
U . Let n ≥ m be the number

given in the construction of Wm
U . Let i ∈ {0, 1, 2, . . . , 2n − 1} be such that

x ∈ [i2−n, (i + 1)2−n]. Put

Lm = [i2−n, (i + 1)2−n].

Let

M1 = ((2i)2−n−1, (2i + 1)2−n−1) , M2 = ((2i + 1)2−n−1, 2(i + 1)2−n−1) ,

and let Mm ∈ {M1,M2} be such that h(x) /∈ g(Mm). Put Jm = g(Mm)
and let I0m = [cj , dj ], Km = [aj , bj ] be as in the construction of g.

Thus we have

m(I0m)
m(Jm)

=
1
2n

≤ 1
2m

and
m(Km)
m(Mm)

= 1 − 1
2n

≥ 1 − 1
2m

.

Define Im = [cj − εm, dj + εm]. As h(x) /∈ Jm, we can choose a subsequence
{Imi

}i∈N of {Im}m∈N such that the union of all intervals in the sequence
{Imi

}i∈N is a left or right interval set at h(x). Without loss of generality we
may assume that it is a right interval set at h(x). As, for each i ∈ N, Imi

and Jmi
have a common center and

lim
i→∞

m(Imi
)/m(Jmi

) = 0 ,
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Lemma 5 says that we can choose a subsequence {Imij
}j∈N of {Imi

}i∈N such
that h(x) is an I-dispersion point of

⋃
j∈N

Imij
.

On the other hand, by the way εn was chosen in (3), Kn ⊂ h−1(In).
Thus, using Lemma 4, the fact that x ∈ Lm for every m ∈ N and

lim
j→∞

m(Knij
)/m(Lnij

) = lim
j→∞

m(Knij
)/(2m(Mnij

)) = 1/2 > 0

we conclude that x is not an I-dispersion point of
⋃

j∈N
Knij

. Thus x

is not an I-dispersion point of h−1(
⋃

j∈N
Inij

). This finishes the proof of
Theorem 6.

3. Comparison of CII and CDD to themselves. Recall that a
function f : R → R is in the class Baire*1 if for each nonempty perfect set
P there exists an open interval I such that I ∩ P �= ∅ and the restricted
function f |I∩P is continuous [8]. It is clear from the definition that any
f ∈ Baire*1 must be continuous at each point of a dense open set. This
useful property is true of the functions in CDD [3], [5, Theorem 4.1(iv)].

Theorem 7. CDD ⊂ Baire*1.

Theorem 8. The spaces CDD and CII , equipped with the topology of
uniform convergence, are of the first category in themselves.

P r o o f. We only prove this for the class CDD as the other case is essen-
tially the same.

Let {In}n∈N be the sequence of all open intervals with rational endpoints
and let Cn be the family of all deep I-density continuous functions that are
continuous on In in the ordinary sense. By Theorem 7, CDD =

⋃
n∈N

Cn.
Also, it is evident that the sets Cn are closed in CDD equipped with the
topology of uniform convergence. Finally, for any function f ∈ Cn and any
of its neighborhoods U ⊂ CDD, it is easy to slightly modify a function g
such as in Lemma 3 in such a way that g ∈ U \ Cn. Thus, the sets Cn are
nowhere dense.
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